Developments Towards Higher Efficiency of RF Systems

Erk Jensen/CERN

The work and results I present here stems from a truly collaborative effort. It is not my own work, but I wish to highlight their successful effort. I acknowledge some by name – forgive me for not being complete!

Introduction

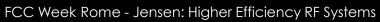
- This is not a summary talk.
- The RF relevant FCC machine parameters have well converged they clearly indicate the need for Higher Energy Efficiency.
- These parameters have been scrutinized in a recent RF review and are well converging towards a baseline design.
- Energy efficiency can be improved by
 - Optimizing cryogenic consumption
 - Optimizing the RF power generation:

The highlight I have chosen to present concerns very high efficiency klystrons, based on novel ideas ("bunch core oscillations", "BAC" and "congregated bunch").

Motivation: FCC parameters

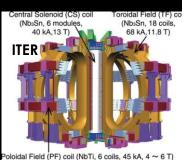
	FCC-hh	Z	Z	W	Н	tī
Beam energy [GeV]	50,000	45	5.6	80	120	175
Beam current [mA]	0.5	14	50	152	30	6.6
Bunches / beam		30180	91500	5260	780	81
Bunch spacing [ns]	25	7.5	2.5	50	400	4000
Bunch population [10 ¹¹]	1.0	1.0	0.33	0.6	0.8	1.7
Crossing angle at IP [mrad]		30				
Bunch length [mm] (total)	300	6.7	3.8	3.1	2.4	2.5
Energy loss / turn [GeV]		0.0	03	0.33	1.67	7.55
Total RF voltage [GV]	0.032	0.4	0.2	0.8	3	10
RF frequency [MHz]	400					
cells×cavities×beams	1×25×2	1×150×2	1×75×2	2×150×2	2×400×2	2×1340
Luminosity/IP for 2IPs [10 ³⁴ cm ⁻² s ⁻¹]	530	207	89.4	19.1	5.1	1.3
SR power (total) $pprox$ total RF power [MW]	5	100				
Electric power for RF [MW]	≈ 10	≈ 165				
Total cryogenic power [MW]	0.4	2	2	5	23	39

Energy consumption – orders of magnitude


generation	consumption	storage
1d cyclist "Tour de France"	1 run of cloth washing machine:	Car battery (60 Ah):
(4h x 300W): 1.2 kWh	0.81 kWh	0.72 kWh
1d Wind Power Station (avg):	1d SwissLightSource 2.4 GeV,0.4 A:	ITER superconducting coil:
12 MWh	82 MWh	12.5 MWh
1d nucl. Pow. Plant Leibstadt (CH):	1d FCC-ee at <i>tī</i> with 1.3E34	all German storage hydropower:
30 GWh	9 GWh	40 GWh

cyclist, 300 W

nucl. plant 1.3 GW


wind-power,

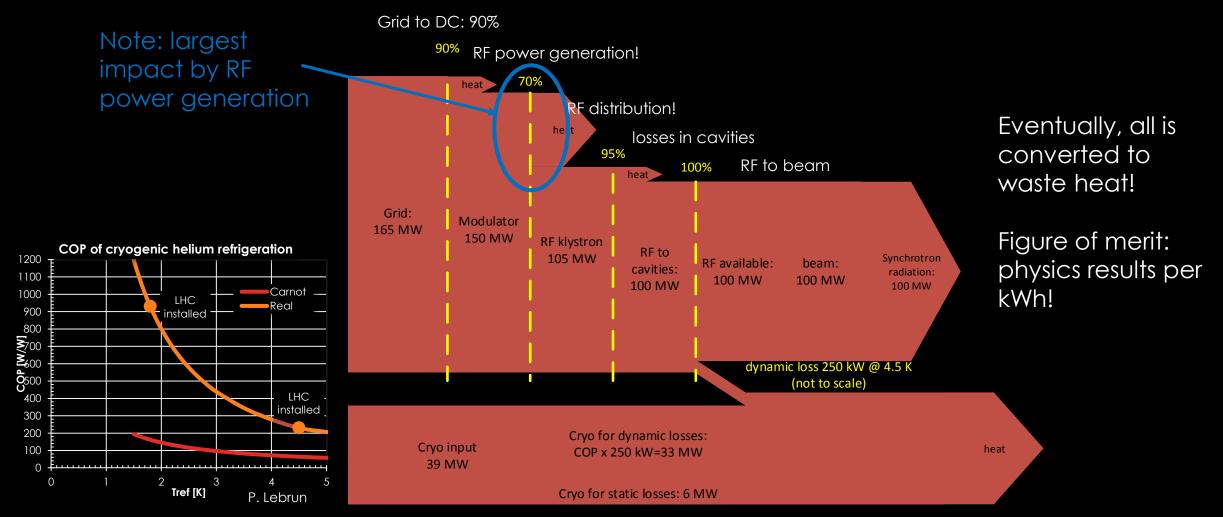
3 MW peak

M. Seidel/PSI 11-Apr-2016

Δ

EUCARD² network "EnEfficient"

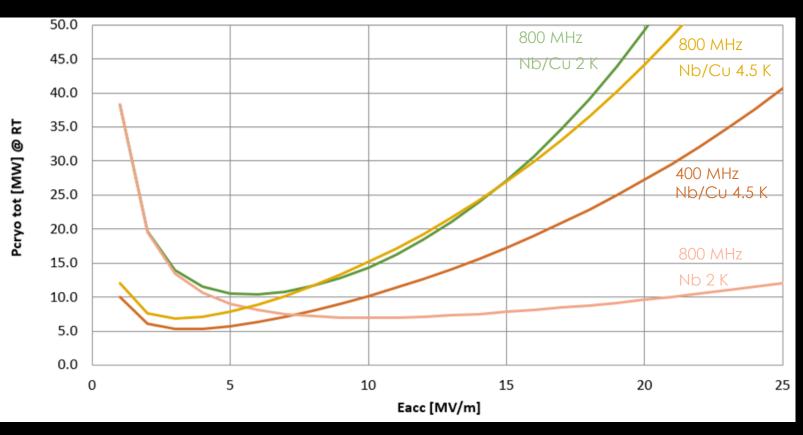
EUCARD² ("**Eu**ropean Coordination for Accelerator **R&D**") is co-funded by its partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453, and runs from 2013 to 2017.


- Work Package 3 of EuCARD² is the networking activity "EnEfficient", which stimulates developments, supports accelerator projects, thesis studies and similar in the areas of
 - Energy recovery from cooling circuits
 - Higher electronic efficiency RF power generation
 - Short term energy storage systems
 - Virtual power plant
 - Beam transfer channels with low power consumption
- More details under <u>www.psi.ch/enefficient</u>

FCC-ee: estimate of energy consumption

Initial estimates (target values)	Ζ	W	H	ŧī
Electric power for RF [MW]	≈ 165			
Total cryogenic power [MW]	2	5	23	39
Collider magnets [MW]	3	10	24	50
Booster [MW]	4	5	8	12
Injector complex [MW]	10			
Detectors (2) [MW]	10			
Cooling & ventilation [MW]]	47	49	52	62
General services [MW]	36			
Total [MW]	277	290	328	384
1d FCC running	6.5 GWh	7 GWh	8 GWh	9 GWh

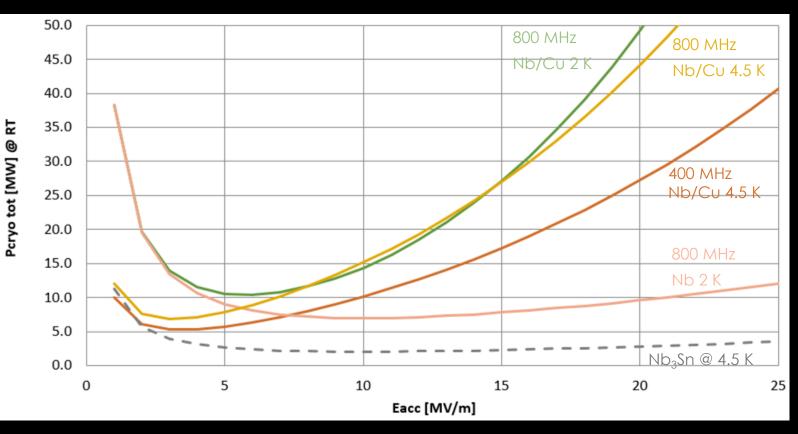
- The FCC like other planned future large accelerators has an energy consumption in the range relevant for society and public discussion
- Electric Energy is expensive (≈ 40€/MWh) and valuable transforming it to heat is destroying exergy, increasing global entropy and thus has significant environmental impact.
- In the following, I will concentrate on the largest consumer for FCC-ee: **RF!**


Example $t\bar{t}$: orders of magnitude

FCC Week Rome - Jensen: Higher Efficiency RF Systems

Cryogenic system optimization

• In the example above $(t\bar{t})$, 20% of the total power for the RF system is used to cool the cavities – this was already a result of an initial optimization.

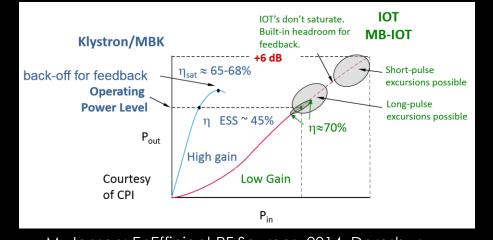


These results allowed to converge to baseline parameters! They also indicate:

- With present day technology, to contain cryogenic losses, fields should remain moderate.
- 4.5 K or 2 K operation no significant difference at 800 MHz, 10 MV/m.

Cryogenic system optimization

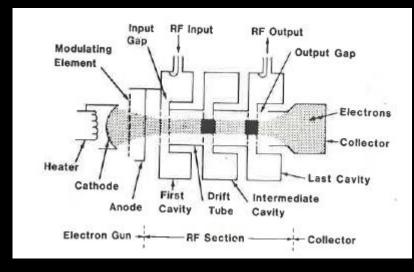
• ... But this also indicates what significant improvement could be obtained when Nb₃Sn-like (A15) materials can be successfully used!!!


This is the mouth-watering for tomorrow afternoon's session "Material, cavities and cryomodules R&D" – Giulio & Tiberio, 13:30

RF generation: What means 69% instead of 70%?

- I had assumed above: 70% efficiency for RF power generation.
- With 105 MW RF output and at 70% efficiency, this means that 1 percentage point less means
 - Input power up from 150 MW to 152.2 MW, waste heat up from 45 MW to 47.2 MW.
 - 2.2 MW more electricity consumed (assuming 5000 h: 10 GWh/year or 400 k€/year)
 - 2.2 MW more heat produced and wasted in the environment.
 - The electrical installation has to be larger by 1.45%!
 - The cooling and ventilation has to be larger by 4.8%!
- All the above are significant!
- Work on increasing the useable efficiency is worth every penny invested!

RF power generators - efficiencies


	Tetrodes	IOTs	Conventional klystrons	Solid State PA	Magnetrons
f range:	DC – 400 MHz	(200 – 1500) MHz	300 MHz – 1 GHz	DC – 20 GHz	GHz range
P class (CW):	1 MW	1.2 MW	1.5 MW	1 kW @ low f	< 1MW
typical η :	85% - 90% (class C)	70%	50%	60%	90%
Remark	Broadcast technology, widely discontinued			Requires <i>P</i> combination of thousands!	Oscillator, not amplifier!

M. Jensen: EnEfficient RF Sources, 2014, Daresbury

How does a klystron work?

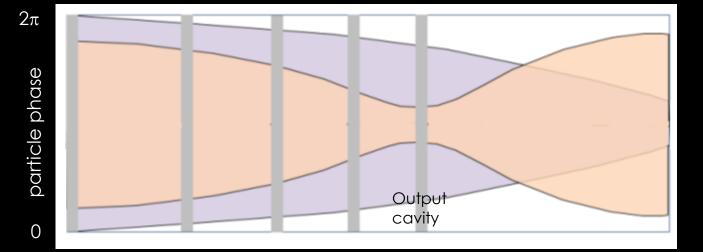
- A continuous electron beam is accelerated by a DC voltage and guided by magnets,
- A small power RF input causes an RF voltage in the input gap, where the velocity of the electrons will be modulated with the RF.
- Passing though a subsequent drift tube, this velocity modulation will lead to density modulation (bunching).
- The density modulation causes an RF component of the current which will excite large power in the output gap.
- With just input cavity and output cavity, the maximum possible efficiency of a klystron is 58%.
- Additional cavities (near the operation f and possibly at harmonics) will help the bunching process.
- The best efficiency reached this way is around 70%.

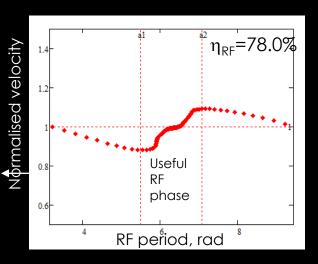
From A.S. Gilmour, Jr. "Microwave Tubes", Artech House 1986, who took this from Microwave Tube Manual by Varian Associates, Air Force Publication Number T.0.00-25-251, 1979

This is where we stood in 2013...

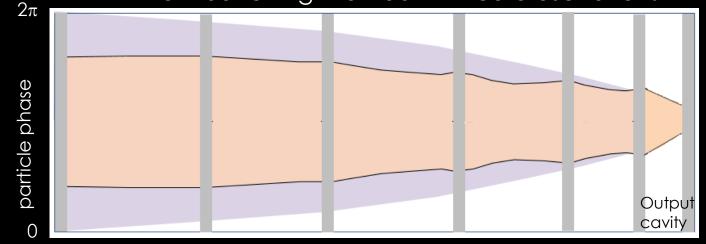
... and then Igor Syratchev (CERN) met Igor Guzilov (VDBT*) and Andrey Baikov (МФЮА**)

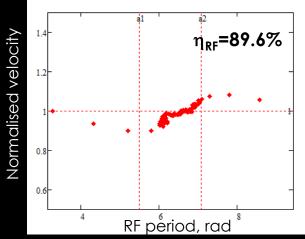
> *JSC VDBT: "Vacuum Device's Basic Technologies" ** МФЮА (MFUA.ru): Moscow University of Finance and Law


Remember Washington*? I said:


- 2014 saw a breakthrough in klystron theory:
 - The "**congregated bunch**" concept was re-introduced [V.A. Kochetova, 1981] (later electrons faster when entering the output cavity).
 - The concept of "bunch core oscillations" was introduced [A. Yu. Baikov, et al.: "Simulation of conditions for the maximal efficiency of decimeter-wave klystrons", Technical Physics, 2014] (controlled periodic velocity modulation)
 - The "BAC" method was invented [I.A. Guzilov, O.Yu. Maslennikov, A.V. Konnov, "A way to increase the efficiency of klystrons", IVEC 2013] (Bunch, Align velocities, Collect outsiders)
- These methods together promise a significant increase in klystron efficiency (approaching 90%)
- An international collaboration has started prototypes are being designed. (SLAC plans to convert an existing 5045 klystron simulations are encouraging)

*) FCC-week, Washington DC, 23-27 March 2015


"Bunch core oscillations" explained


"Classical" bunching

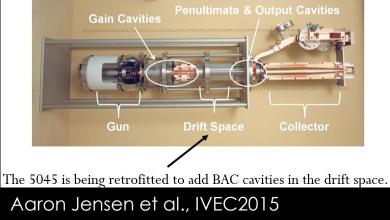
New bunching method with core oscillations

11-Apr-2016

HEIKA collaboration

- HEIKA "High Efficiency International Klystron Activity" is evaluating and implementing this "breakthrough".
- HEIKA Members: Labs (CERN, ESS, SLAC, CEA), Universities (MFUA, Lancaster), Industry (Thales, L3, CPI, VDBT)
- It studies theoretically and experimentally high efficiency klystrons for both pulsed (e.g. CLIC, ESS) and CW applications (FCC).
- HEIKA is well integrated with the "EnEfficient" network in EuCARD² as enabler.

I. Syratchev (CERN), A. Baikov (MFUA), I. Guzilov (VDBT), J. Neilson, A. Jensen (SLAC), G. Burt, D. Constable, C. Lingwood (U Lancaster), A. Mollard (CEA), R. Marchesin (Thales), Q. Vuillemin (Thales/CERN), C. Marrelli (ESS), R. Kowalczyk (L-3com), (Toshiba), T. Grant (CPI)

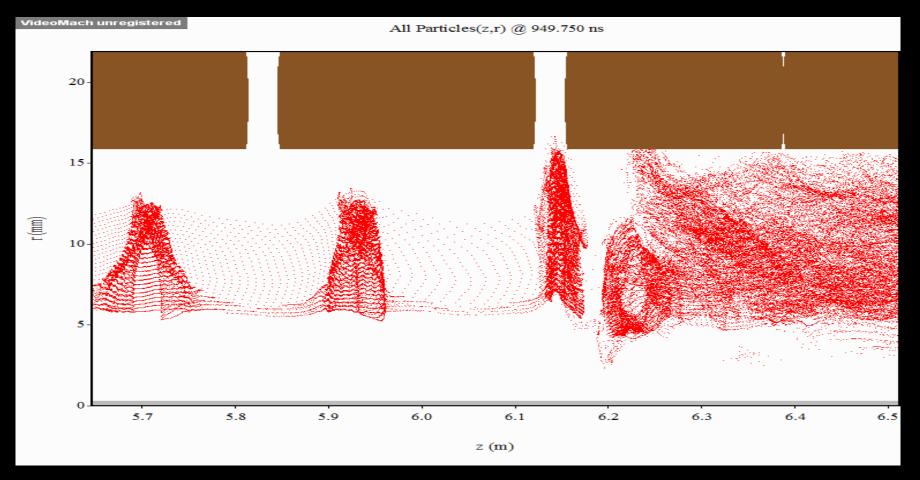

The plan(s)

17

• VDBT to build a POP prototype with the following parameters:

Parameter	specification
RF frequency	2.99855 GHz
Peak power	> 6 MW
RF gain	> 45 dB
Efficiency	> 60% (aiming at > 70%)
Voltage	\leq 60 kV (aiming at 52 kV)
pulse length × rep rate	$\geq 7.5 \ \mu s \times 300 \ Hz = 2.25 \cdot 10^{-3}$

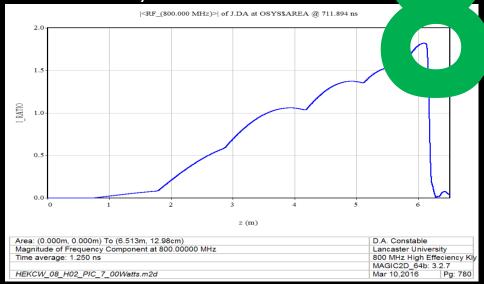
- SLAC had the idea to refurbish an existing 5045 klystron (2.856 GHz)
 - Increase of η from 45% to 55%
 - Increase output power from 65 to 85 MW!
- ... design a klystron for FCC!

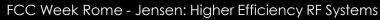


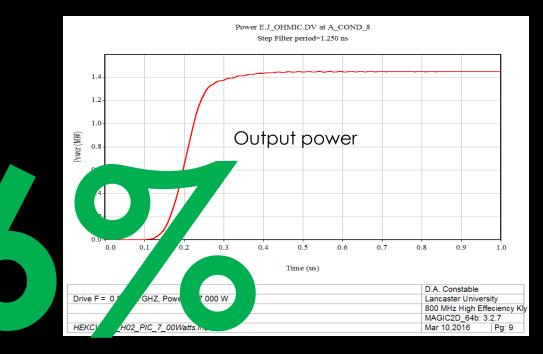
FCC klystron – initial target parameters

Operating frequency	800 MHz initially
Target RF Output power	1.5 MW (CW)
Voltage	40 kV
N-beams×Current	$16 \times 2.6 \text{ A} = 42 \text{ A}$
Target Efficiency	90%
Perveance	$16 \times 0.33 \ \mu K = 5.25 \ \mu K$
Number of cavities	8
Cathode loading	$< 2 \text{ A mm}^{-2}$
Length	2.3 m

PIC simulations showed that this is not easy at all – efficiency limited to about 80%

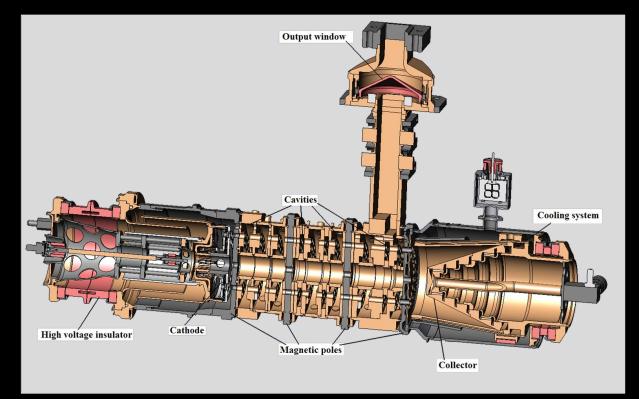

The way out: hollow beams!




D. Constable, C. Lingwood (U Lancaster) & HEIKA collaboration

Magic HEKCW #08-H02

- Cavity 1 voltage, 1.35 kV:
- Nice stable output
- No reflected electrons
- Peak modulation current ratio 1.82
- Nice modulation current
- Efficiency.....



More of these exciting results tomorrow afternoon, session "RF Efficiency Optimization" – Giulio & Tiberio, 15:30

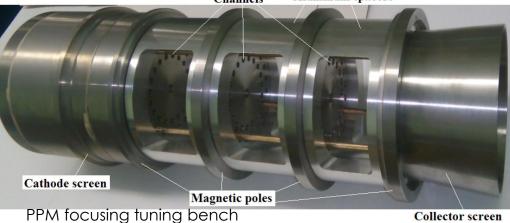
D. Constable, C. Lingwood (U Lancaster) & HEIKA collaboration

Progress with the VDBT prototype

Shown in Washington: the concept

The engineering design and fabrication of parts started in 2015

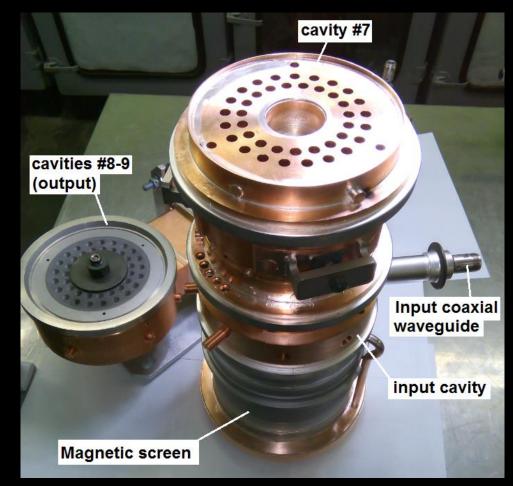
I. Guzilov (VDBT)


VDBT Prototype – status Aug 2015

22

Aluminum spacers Channels

FCC Week Rome - Jensen: Higher Efficiency RF Systems


Collector screen

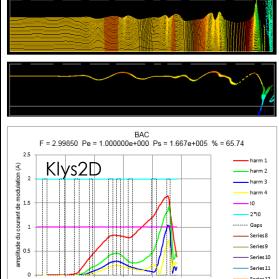
I. Guzilov (VDBT)

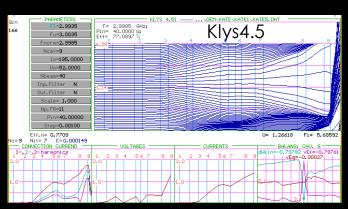
VDBT Prototype – status Dec 2015

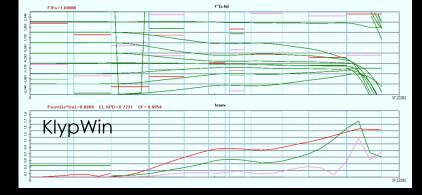
Cavities 8 and 9 and output waveguide FCC Week Rome - Jensen: Higher Efficiency RF Systems

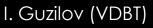
Cavities during assembly

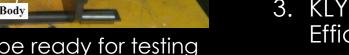
I. Guzilov (VDBT)


Progress with the VDBT prototype²⁴

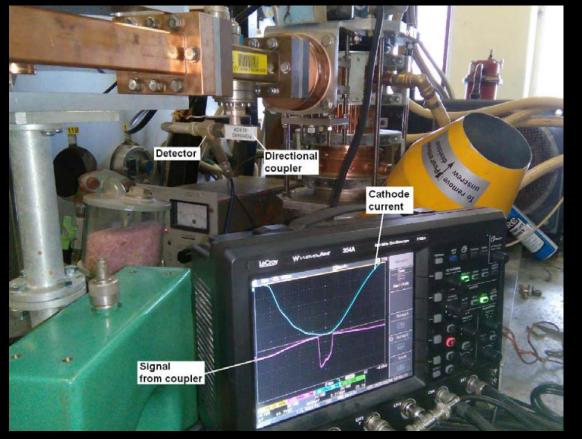

Assembled prototype ready for testing




- 1. Klys4.5 (1-D): Efficiency 77%. Original company code used to optimise the tube.
- 2. KlypWin (1-D, A. Baikov): Efficiency 69.9%. The code used by HEIKA study for the basic design and optimisation of high efficiency klystrons.
- 3. KLYS2D (2-D, Thales): Efficiency 65.74%.

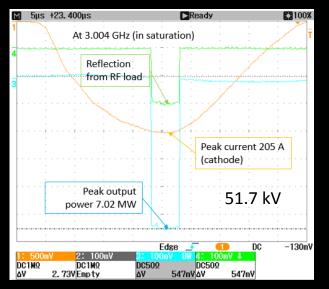


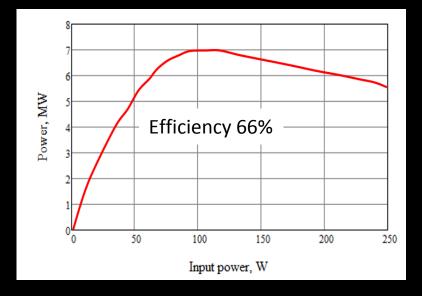
7 MM



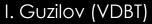
VDBT Prototype – status Mar 2016

The rear view of the test set-up


Test set-up – first RF pulses FCC Week Rome - Jensen: Higher Efficiency RF Systems


I. Guzilov (VDBT)

VDBT prototype – factory test



In the lab - ready to go

FCC Week Rome - Jensen: Higher Efficiency RF Systems

VDBT prototype factory test – results

- Initial tests of the transmission through the 40 beams (230 A) was 96%!
- Initial RF power tests resulted in 7 MW peak with 100 W drive (48 dB gain)

Parameter	specification	1 st prototype measurement (preliminary)
RF frequency	2.99855 GHz	3.004 GHz
Peak power	> 6 MW	7.02 MW
RF gain	> 45 dB	48 dB
Efficiency	> 60% (aiming at > 70%)	66%
Voltage	\leq 60 kV (aiming at 52 kV)	51.7 kV
pulse length × rep rate	$\geq 7.5 \ \mu s \times 300 \ Hz = 2.25 \cdot 10^{-3}$	7.5 μs × 300 Hz

- This result is remarkable for a 1st prototype!
- This is a beautiful confirmation of the concept!
- The measured efficiency is remarkably close to the Klys2D prediction!

This is just meant to water your mouth for tomorrow afternoon's session "RF Efficiency Optimization" – Giulio & Tiberio, 15:30FCC Week Rome - Jensen: Higher Efficiency RF Systems11-Apr-2016

Closing remarks

- The FCC RF parameters have converged towards a baseline design.
- FCC-hh is naturally integrated with the more challenging FCC-ee designs.
- Energy efficiency is a major concern that is addressed
- A recent major breakthrough in klystron technology has made significant, impressive progress, both theoretically and experimentally!
- Find out more in tomorrow's RF sessions in Giulio & Tiberio

Thank you for your interest and attention!