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m Background

Introduction

FCC
Requirements
» Previous collaboration between CERN and TU Wien (2010 — Experimental
2015): investigation of irradiation effects on Nb3Sn wires ST
. . . . Fast Neutron
intended for upgrading the LHC (inner triplet magnets) Irradiation
. . . . . Measurement
> Most extensive fast neutron irradiation study on Nb3Sn carried Techniques
out so far Results
» Small fluence steps of approx. 2 - 10 m~2, maximum S
-2 Pinning Force

cumulative fluence around 3 - 1022 m

» Most important result: large increase in the critical current Cone L9

density of all examined wire types
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m FCC Requirements

Introduction

Background

FCC
Requirements

Experimental

» FCC design aims at a dipole field of 16 T — Nb-Ti Samples
superconducting magnets (used in the LHC) are not an option Fast Neutron

Irradiation

» Nb3Sn is a promising candidate for the production of the dipole e iiwrinl
magnets, but the performance of currently available wires is

i fFicient Results
Insutrncien Critical Current
. . P . . Density
» New collaboration explores wire optimization strategies for P:':nz Force

achieving a 50% increase in the critical current density at 16 T
relative to state-of-the-art wires

Conclusions
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m FCC Requirements

Introduction

Background

Property Unit Requirement Experimental
Samples
Wire diameter mm ~1 fostlbenion
Non-Cu J. (42K, 16 T)  A/mm? > 1500 Measurement;
o AM(4.2K, 1T) mT < 150
ouoAM(4.2K, 1T) % <45 e
Effective filament diameter pm <20 Density
RRR Z 100 Pinning Force
Unit Iength km >5 Conclusions
Conductor cost €/kA'm ~5
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TUT

m Samples

» Five types of multifilamentary Nb3Sn wires (RRP / PIT, Ta- or A
Ti-alloyed, one binary wire) Fccg
Requirements
» Short samples (~4 mm) for magnetometry were cut from ) i
straight pieces of reacted wire Shemental

Fast Neutron

» Transport samples were made by winding approx. 50 cm of wire FasNeu
onto mini-VAMAS barrels made from Ti-6Al-4V alloy Measurement

Techniques

Introduction

Results

Critical Current
Density

Pinning Force

Conclusions
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> Carried out in the TRIGA Mark-II
reactor at Atominstitut (Vienna)

» Sequential irradiation of two
magnetometry samples of each type
in fluence steps of ~2-10?' m—2

» Cumulative fast neutron fluences
(E > 0.1 MeV) between 2.6 - 10?2 and
3.2-102m—2

» Nickel samples included for fluence
monitoring (reaction threshold
~ 1 MeV = fast neutrons only)
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m Measurement Techniques

» Short wire samples were used for SQUID magnetometry

» Magnetization measurements after each irradiation step to
assess the fluence dependence of the critical current density

» Changes in the critical temperature were obtained from AC
susceptibility measurements in the same system

» Transport measurements at 4.2 K were performed on 10

unirradiated and on 2 irradiated samples for comparison with
magnetometry, and to obtain high-field data (up to 15T)
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Measurement Techniques

13 /. from magnetometry

Introduction
Background
FCC
Requirements
Experimental
Samples

Fast Neutron
Irradiation

Measurement
Techniques
Results

» Magnetization loops with field applied perpendicular to the wire it

Pinning Force

> Sub-elements regarded as parallel, uncoupled tubes
» Current is assumed to flow in planes perpendicular to the field o
» J. is connected to irreversible moment by proportionality factor!
_ 3my,
= AL — )

1T, Baumgartner et al.: IEEE Trans. Appl. Supercond. 22, 6000604, 2012
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Jg (AIm?)

Measurement Techniques

Jo from magnetometry — comparison
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> J. data available for B < 7T at 12 temperatures ranging from
4.2 to 15K, spanning 3 orders of magnitude

» First-order self-field correction inherent to the method

» Good agreement with transport measurements (4.2 K, available
up to 1000 A)
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m Critical Current Density
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» RRP-Ti-108 wire: transport data of irradiated samples

» Transport measurements obtained from six unirradiated samples
(only 1% standard deviation) and two samples irradiated to
different fluences

» Extrapolated J. enhancement at 6 T is in agreement with data
obtained from magnetometry
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m Critical Current Density

ATOMINSTITUT

2.0
Introduction
T=4.2K Background

18 B=6T ! B FCC

Requirements
16 F + T 1 | Experimental
- / Samples
11 ) Fast Neutron
y T
' /ﬁ/ - —~— RRP-Ta-54 it
iy 2= g/ — PIT-Ta-192
12t 27 1Y —— RRP-Ti-108 | Results
F 1 tranSpOrt IT-246 Critical Current
1 record D
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1.0 = L L L L L L Pinning Force
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Jo(Pt) 1 J(0)

Conclusions

» Record value? in transport measurement on RRP-Ti-108 at
Pt =0.9-102m=2: J (42K, 12T) =4.1-10°A/m?

» Large J. increase in all wire types, saturation occurs around
2-3-102m~2

2T, Baumgartner et al.: Sci. Rep. 5, 10236, 2015
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Pinning Force

The concept of scaling ATOMINSTITOT
1.0 B Introduction
L ] Background
0.8 r — FCC
Requirements
’é\ .
r 1 E_ 06 , Experimental
W
- Samples
= =
| 0.4 1 Fast Neutron
Irradiation
Measurement
] 0.2 b Techniques
0 . . ) ) Results
L - L 0 0.2 0.4 0.6 0.8 1.0 Critical Current
* Density
=B/B
i prelta
» F, = |J. x B at different temperatures mapped onto single Conclusions

curve by normalizing F, to max. value and B to scaling field
» f(b) = CbP(1— b)7 ... Unified Scaling Law® pinning function

» Shape determined by two exponents which can be derived for
different mechanisms?

3J. W. Ekin: Supercond. Sci. Technol. 23, 083001, 2010
4D. Dew-Hughes: Phil. Mag. 30, 293-305, 1974
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Pinning Force
Analysis of the magnetometry data

Fo = J. B from magnetometry data normalized at each
temperature

f(b) = CbP (1 — b)? used as a fit function

b= B/B

Algorithm finds p and g which minimize the global error
(entire temperature range included)

Expected scaling exponents for Nb3Sn (grain boundary pinning):

p=0.5
q=2

TUT
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Pinning Force
Unexpected result

1.0 Jr— . 42K 30
o TR = 5K
46K 25
08 | /% & x 7K
+ 8K
5 v 9K 20
E_06 Lok E
L= 11K 315
- 4 12K o
04 + 13K
) © 14K 10
15K
0.2 5 | - unirradiated
= ot=1.0102m?
0 0
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b=BIBg TK)

» Relatively good agreement with expected scaling exponents in
the unirradiated state

» Pronounced peak shift in the pinning function after irradiation

» Change in the upper critical field B, is small (< 5% at
1022 m~2), and cannot account for the large J. increase

ATOMINSTITUT

Introduction
Background
FCC
Requirements
Experimental
Samples

Fast Neutron
Irradiation

Measurement
Techniques

Results

Critical Current
Density

Conclusions

14/19



Pinning Force
A second pinning mechanism

ATOMINSTITUT

» Possible contributions of other pinning mechanisms* were Introduction
investigated to explain the shift Bedgaun
FCC
f(b) = o bP? (]_ — b)q1 + [3 bP2 (1 _ b)qz , a4+ B =1 Requirements
» Shift can be explained with a point-pinning contribution® Esxpelr'me“tal
. . amples
(p2 =1, g2 = 2) which increases with fluence AN
Irradiation
Measurement
Techniques
Results
Critical Current
Density

Conclusions

4D. Dew-Hughes: Phil. Mag. 30, 293-305, 1974
5T. Baumgartner et al.: Supercond. Sci. Technol. 27, 015005, 2014
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Pinning Force
A second pinning mechanism

ATOMINSTITUT

» Possible contributions of other pinning mechanisms* were Introduction

investigated to explain the shift Background
FCC

f(b) =« bPl (1 - b)ql + ,8 bPZ (1 — b)q2 , [0 + B = 1 Requirements
» Shift can be explained with a point-pinning contribution® E:pel”me”ta'
(p2 =1, g2 = 2) which increases with fluence P

Fast Neutron
Irradiation

Measurement
Techniques

’ I\ | i Results

\ "
‘ el ' BT Critical Current
| v \ ; Density

3 1o, )

\ l \ l . Conclusions

1 1
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5T. Baumgartner et al.: Supercond. Sci. Technol. 27, 015005, 2014
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Pinning Force
A second pinning mechanism

ATOMINSTITUT

» Possible contributions of other pinning mechanisms* were Introduction
investigated to explain the shift szcckground
f(b)=ab”Pr(1—-b)"+ b (1—-b)%2, a+p=1 Requirements

» Shift can be explained with a point-pinning contribution® i e tal

Samples

(p2 =1, g2 = 2) which increases with fluence Fast Neutron
Irradiation
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4D. Dew-Hughes: Phil. Mag. 30, 293-305, 1974
5T. Baumgartner et al.: Supercond. Sci. Technol. 27, 015005, 2014
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Pinning Force
Point-pinning contribution
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> Irradiation induced defects add a point-pinning contribution to

the original grain boundary pinning

» Resulting volume pinning force is larger in magnitude and

high-field behavior is improved

ATOMINSTITUT

Introduction
Background
FCC
Requirements
Experimental
Samples

Fast Neutron
Irradiation

Measurement
Techniques

Results

Critical Current
Density

Conclusions

16 /19



g ¥) Pinning Force

M Point-pinning contribution
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» Large performance improvement in all examined wire types

» Maximum volume pinning force was increased by 50 — 90%
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m Conclusions

Introduction
Background
FCC

» We demonstrated by means of fast neutron irradiation Requirements
experiments that the J. of state-of-the-art Nb3Sn wires has a Experimental
large potential for improvement Samples

. . . . . . . pr Fast Neutron

» The introduction of point-pinning centers was identified as the Irradiation
responsible mechanism e

» A similar pinning landscape modification in next-generation Resuliis
Nb3Sn wires is likely to yield the J. improvement necessary for il

. . ensity
meeting the FCC requirements Pinning Force

» Neutron irradiation is hardly a viable method for industrial
production

> Alternative: embedding nano-particles in Nb3Sn, which act as
pinning centers

18/19



Conclusions

ATOMINSTITUT

Introduction
Background
. . FCC
» Introduction of nano-particles (ZrO,) was successfully Requirements

demonstrated on a monofilamentary NbsSn wire®:? Esmarimanizl

Samples

» Changes in magnitude and functional dependence of the S
pinning force are similar to our irradiation results Irradiation

Measurement

» Grain size was also refined by presence of ZrO, nano-particles {[echniques

» Other fabrication challenges such as the small filament diameter ~ Results
Critical Current

still need to be addressed sty

Pinning Force

Conclusions

> Feel free to have a look at my poster:

A-15 Inhomogeneity in NbsSn Wires: A Potential Leverage
Point for Conductor Improvement

6X. Xu et al.: Appl. Phys. Lett. 104, 082602, 2014
“X. Xu et al.: Adv. Mater. 27, 1346-1350, 2015
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Thank you.

One sometimes finds what one is not looking for.

— Alexander Fleming
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