Preliminary design of a 16T cosine theta bending dipole for the Future Circular Collider

Vittorio Marinozzi,
Giovanni Bellomo, Pasquale Fabbricatore, Stefania Farinon, Massimo Sorbi, Giovanni Volpini
Outline:

1. Main design parameters
2. Magnetic design
3. Mechanical design
4. Protection
5. Conclusions
1.1 Main design parameters

<table>
<thead>
<tr>
<th>Constraints for the magnet design</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bore inner diameter</td>
<td>50 mm</td>
</tr>
<tr>
<td>Beam distance</td>
<td>250 mm</td>
</tr>
<tr>
<td>Bore nominal field</td>
<td>16 T</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>4.2 K</td>
</tr>
<tr>
<td>Operation on the load line</td>
<td>90 %</td>
</tr>
<tr>
<td>Maximum strand number per cable</td>
<td>40</td>
</tr>
<tr>
<td>Cable insulation thickness</td>
<td>0.15 mm</td>
</tr>
<tr>
<td>(\text{Cu}/\text{NCu})</td>
<td>(\geq 1)</td>
</tr>
<tr>
<td>Field harmonics (geometric/saturation)</td>
<td>(\leq 3/10) units</td>
</tr>
<tr>
<td>Peak temperature (105 % of operating current)</td>
<td>350 K</td>
</tr>
<tr>
<td>Yoke outer radius</td>
<td>400 mm</td>
</tr>
</tbody>
</table>

- Magnetic design for a **double aperture** magnet
- Mechanical design for a **single aperture** magnet
1.2 Main design parameters

- \(J_c \) @ 18T, 4.2 K ~890 A/mm\(^2\)
- \(J_c \) @ 18T, 1.9 K ~1500 A/mm\(^2\)
- \(J_c \) @ 16T, 1.9 K ~2250 A/mm\(^2\)
- \(J_c \) @ 16T, 4.2 K ~1500 A/mm\(^2\)
2.1 Magnetic design – cross section

Cable 1 (inner)
Strand number: 28
Strand diameter: 1.1 mm
Bare width: 16.5 mm
Bare inner thickness: 1.892 mm
Bare outer thickness: 2.036 mm
Insulation: 0.15 mm
Keystone angle: 0.5°
Cu/NCu: 1
Operating current: 10275 A
Operating point on LL (4.2 K): 90 %

Cable 2 (outer)
Strand number: 38
Strand diameter: 0.7 mm
Bare width: 14 mm
Bare inner thickness: 1.204 mm
Bare outer thickness: 1.326 mm
Insulation: 0.15 mm
Keystone angle: 0.5°
Cu/NCu: 2.04
Operating current: 10275 A
Operating point on LL (4.2 K): 90 %

B peak: 16.4 T
Turn number:
Layer 1: 14
Layer 2: 21
Layer 3: 37
Layer 4: 43
Tot: 230/ap.

Grading

All the parameters are within the **designed constraints**

4.2 K
2.2 Magnetic design – iron yoke

<table>
<thead>
<tr>
<th>Inductance@I_{op} (1 ap)</th>
<th>Stored energy (1 ap)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 mH/m</td>
<td>1.5 MJ/m</td>
</tr>
</tbody>
</table>

Bladder & key
2.3 Magnetic design – field quality

NORMAL RELATIVE MULTIPOLES @ 16 T:

- b_1: 10000
- b_2: -19.94
- b_3: -0.01
- b_4: -0.49
- b_5: 0.97
- b_6: -0.01
- b_7: -0.87
- b_8: -0.00
- b_9: 0.28
- b_{10}: 0.00
- b_{11}: 0.66
- b_{12}: 0.00
- b_{13}: -0.13
- b_{14}: 0.00
- b_{15}: 0.03

- b2 optimization **not yet performed**
- Persistent currents **not** considered

Acceptable field quality
2.4 Magnetic design – strand area

Conductor 1:
- 28 strands
- $\varnothing = 1.1$ mm
- Cu/NCu = 1
- $J_{cu} = 934$ A/mm2
- Strand Area = 37.3 cm2/apert.
- Weight (FCC) = 4.3 ktons

Conductor 2
- 38 strands
- $\varnothing = 0.7$ mm
- Cu/NCu = 2.04
- $J_{cu} = 1047$ A/mm2
- Strand Area = 46.8 cm2/apert.
- Weight (FCC) = 5.3 ktons

High Cu content for protection reasons!

COND. AREA (double ap.): = 168.1 cm2

FCC dipoles extrapolation:
- COND. MASS: = 9.6 ktons

<table>
<thead>
<tr>
<th>Data for FCC extrapolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of dipole units</td>
</tr>
<tr>
<td>Dipole length</td>
</tr>
<tr>
<td>Conductor density</td>
</tr>
</tbody>
</table>
2.5 Magnetic design – strand area

➤ Option to reduce cost

Conductor 2 (smart option)
- 25 (SC)+13 (Cu) strands
- \(\varnothing = 0.7 \text{ mm} \)
- \(\text{Cu/NCu} = 1 \)
- \(J_{cu} = 1047 \text{ A/mm}^2 \)
- Strand Area (SC)= 30.7 cm\(^2\)/apert.
- Strand Area (Pure Cu) = 16.0 cm\(^2\)/apert.
- SC weight (FCC) = 3.50 ktons
- Pure Cu weight (FCC) = 0.75 ktons
- Pure Cu cost \(<< \) SC cost

➤ Stability as in cable 1 (Cu/NCu = 1)

➤ Current diffusion time in the Cu strands to be evaluated and **compared with discharge time**
 - Zero order evaluation seems **ok** (few ms)

TOTAL SC STRANDS: = 9.6 \(\rightarrow \) 7.8 ktons

You can save

\(~\text{20\% costs}\)
3.1 Mechanical design – layout

- The **mechanical** design of the cos-theta option presently **under study**
 exploit the **bladder & key** technology
 - It concerns a **single aperture** producing 16 T central field

![Diagram showing materials used in the design: Al alloy, Titanium, Iron, Copper wedges, Stainless steel]
Due to the very large Lorentz forces, the mechanical structure is based on **3 active elements:**

- Standard **B&D + Al alloy shell** (70 mm thick)
- Tapered **shim** on the midplane
- Ti nose **undercuts**

<table>
<thead>
<tr>
<th>Layer</th>
<th>σ_θ – layer (MPa)</th>
<th>σ_θ – winding (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>layer 1</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>layer 2</td>
<td>101</td>
<td>125</td>
</tr>
<tr>
<td>layer 3</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>layer 4</td>
<td>160</td>
<td></td>
</tr>
</tbody>
</table>
3.3 Mechanical design – accept. criteria

- The acceptance criteria are:
 - Pole-coil contact in pole-turns midpoint: $p_{\text{cont}} \geq 2 \text{ MPa}$
 - Max bladder pressure $< 50 \text{ Mpa}$
 - $\sigma_{\text{equiv coil}} \max \leq 150 \text{ MPa at } 293 \text{ K and } \leq 200 \text{ MPa at } 4.2 \text{ K}$
 - All components $\sigma_{\text{equiv}} \leq$ stress limit
 - For iron at 4.2 K (brittle) $\sigma_1 \leq \sim 200 \text{ MPa}$

<table>
<thead>
<tr>
<th>Material</th>
<th>Stress limit (MPa)</th>
<th>E (GPa)</th>
<th>ν</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>293 K</td>
<td>4.2 K</td>
<td>293 K</td>
<td>293 K</td>
</tr>
<tr>
<td></td>
<td>4.2 K</td>
<td></td>
<td></td>
<td>4.2 K</td>
</tr>
<tr>
<td></td>
<td>293 K/4.2 K</td>
<td></td>
<td></td>
<td>293 K/4.2 K</td>
</tr>
<tr>
<td>Coil</td>
<td>150</td>
<td>200</td>
<td>EX=52</td>
<td>EX=52</td>
</tr>
<tr>
<td></td>
<td>EY=44</td>
<td>GXY=21</td>
<td>EY=44</td>
<td>GXY=21</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X=3.1E-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y=3.4E-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austenitic steel 316LN</td>
<td>350</td>
<td>1050</td>
<td>193</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.8E-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al 7075</td>
<td>480</td>
<td>690</td>
<td>70</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2E-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferromagnetic iron</td>
<td>180</td>
<td>720</td>
<td>213</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0E-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pole (Ti6Al4V)</td>
<td>800</td>
<td>1650</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.7E-3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.4 Mechanical design – pole-coil contact

- The plots represent the contact pressure [MPa] at the pole-coil interfaces
 - Third layer is not optimal, even if in its midpoint \(p_{\text{cont}} \geq 5 \text{ MPa} \)

![Pressure plots](image)

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Cool-down</th>
<th>Energization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure [MPa]</td>
<td>Pressure [MPa]</td>
<td>Pressure [MPa]</td>
</tr>
</tbody>
</table>

Vittorio Marinozzi, FCC week, 13/04/2016, Rome
3.5 Mechanical design – Von Mises stress

- The stress in the windings has **not been optimized** yet

 - The grey regions **overcome** 150 MPa at 293 K and 200 MPa at 4.2 K
3.6 Mechanical design – σ_1 in iron yoke

- At cold iron is supposed to become **brittle**. A safe condition is $\sigma_1 < 200$ Mpa
 - The resulting stress can be limited by **increasing the curvature** radius where the peaks are located
3.7 Mechanical design –
Von Mises stress in components

- Except iron, the Von Mises stress of all material is **below** the corresponding stress limit

<table>
<thead>
<tr>
<th>Material</th>
<th>Assembly [MPa]</th>
<th>Cool-down [MPa]</th>
<th>Energization [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titanium</td>
<td>668</td>
<td>1150</td>
<td>613</td>
</tr>
<tr>
<td>Iron</td>
<td>381</td>
<td>451</td>
<td>553</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>734</td>
<td>859</td>
<td>1010</td>
</tr>
<tr>
<td>Al alloy</td>
<td>47</td>
<td>168</td>
<td>167</td>
</tr>
</tbody>
</table>
4.1 Protection

- Main assumptions:
 - **No** energy extraction
 - Quench induced in the whole magnet 40 ms after initial quench start
 - Inductance dependence on the current
 - Material properties from NIST

- Results (105% of \(I_{op} \)):
 - Hot spot temperature: \(~330\,\text{K}\)
 - Maximum voltage to ground: \(~1400\,\text{V}\)

More details in the Tiina Salmi talk
5.1 Conclusions

- The presented 16 T cosine-theta **accomplishes** the Eurocirccol design constraints
 - Margin on the load-line is **90%** at 4.2 K
 - Good **field quality**
 - Hot spot temperature **below 350 K** @ 105% I_{op}

- Main **cosine-theta advantage**: **less conductor area, less costs**
 - 168.1 cm²
 - Possibility of using **pure copper strands** in order to save **~20%** of SC strands

- **Bladders and key** mechanical structure
 - Needed **pre-stress** can be **hardly achieved** @ I_{op}
 - Stress on the conductor **too high** in some zones, mainly during **assembly**
 - To be **improved**, **work in progress**