

Quench protection of the 16T dipoles for the FCC

TAMPERE

ERSITY OF

ECHNOLOGY

Tiina Salmi and Antti Stenvall, Tampere University of technology, Finland

In collaboration with EuroCirCol wp 5 members (CERN, CEA, INFN, CIEMAT)

FCCW2016 Roma, April 13th , 2016

How to design 16 T dipoles that can be protected? And keep the magnets as compact as possible.

Quench protection analysis was integrated into the magnet design:

1. Assumptions about the safe temperatures and voltages

Maximum allowed hotspot temperature: <u>350 K</u>

- Same reference than HiLumi
- + For justification, see G. Ambrosio, WAMSDO 2013

• Maximum voltages inside the coil: <u>2 kV</u>

+ Design choice, based on insulation thickness.

2. Assumptions about the protection system

- Quench detection by measurement the resistive voltage
 - Assumed detection delay = 20 ms (based on the LHC)
- Quenching magnet by-passed using a diode, like in LHC:

$$L_{mag}(l) \quad R_{mag}(t)$$

$$I_{mag}(t) = I_0 e^{-\frac{t}{\tau}}$$

$$\tau(t) = R_{mag}(t) / L_{mag}$$

- Protection by either quench heaters or/and CLIQ, which quench the coil and drive the current decay
 - + Quench delay estimated based on HiLumi technologies

2. Obtainable quench delay

- Assuming HiLumi heater technology applied to FCC dipole
 - Assumed improvement: All coil surface can be covered

3. Methods and tools for quench analysis

Two new tools developed for fast feedback during the magnet design

"Temperature calculation work sheet" and "Coodi"

Adiabatic temperature calculation:

3. Calculation of voltages

1. Total voltage computed is at each turn:

A sum of resistive and inductive component.

$$V_i = V_{res,i} + V_{ind,i}$$

$$V_{res,i} = R_i I_{mag}$$

The turn resistance is based on the Cu resistivity and area and turn length.

$$V_{ind,i} = L_{eff,i} \frac{\Delta I_{mag}}{\Delta t}$$

The "effective inductance" accounts the turn self inductance and the mutual inductances with the other turns.

7

3. Calculation of voltages

2. Potential to ground is obtained by summing the turn voltages (in the order of current flow).

3. Calculation of voltages

3. Critical peak values are defined from the potential:

A	В	C	D	E	F	G	Н		J	K	L	10
INPUT			Ca	ble para	meters			Factor for twist pitch	1.035	1	5	10
Only modify cells shaded with	this color!									Calculation		
Cable ID	SC mat. (1 = Nb3Sn, 2 = Nbti)	Width bare (mm)	Mid thickn.bare (mm)	Ins. Mat. (1 = 610, 2 = Kapton)	Ins. Thickn (mm)	Nstrands	strand diam (mm)	strand Cu/SC	RRR	Jcu after quench (A/mm2)	ACu	
1	1	15.3	2	1	0.15	26	1.1	1	110	738.9	12.790	
2	1	9.8	2	1	0.15	16	1.1	17	110	953.4	9.911	
3	1	12	19	1	0.15	14	1.05	3.5	110	968.1	9.761	
4	1	8.35	19	1	0.15	14	1.05	4	110	941.2	10.040	
	397		17.32605			Calculation					•	
Block #	Nturns	Cable ID	B peak @Inom (T)	B min @ Inom (N	B ave @Inom (T)	Tcs ave (K)	Tcs for T Margin (K)	Heater delay (ms)				
1	33	1	17 32605	11.24151	14.3	7.5	53	20	B (m		
2	5	1	16.855125	13.120275	15.0	7.0	5.7	20				
3	39	1	17.15553	8.3895	12.8	8.5	5.5	20		16.41		
4	37	2	14.53242	9.848685	12.2			20		15.54 14.68		
5	4	2	13.92258	10.498005	12.7 T C	s calci	ulated 1	20		13.82		
9	হা	2	13.42005	<u>8 91387</u>	11.2	o ouroi		20		12.10		
Coil b	locks: #	fof turns, ca	able, fiel	d		sed on	the	20 20		11.23 10.37 9.515		1
u .	50		10.01 0400	2.000000	6.3		- fit	20	- °-	7.792		
10	30	3	9.2421	1.26357	<u>5.3</u> ag	reea J	C-III.	20		6.930 6.068		
11	36	4	9.49074	0.061635	4.8			20		5.206		
12	26	4	8.616825	0.347025	4.5	11.0	7.4	20		3.483		
13	27	4	10.143315	2.77872	6.5	9.3	5.9	20		2.621		
14	1/	4	5.83296	1.682415	3.8	11.6	9.8	20		0.897		
15	U	0	0	U	0.0	0.0	0.0	10000		0.035		
17	0	0	0	0	0.0	0.0	0.0	10000	RU RU	AIE 10.2		
17	0	0	0	0	0.0	0.0	0.0	10000				
10	0	0	0	0	0.0	0.0	0.0	10000	<u> </u>			
20	0	0	0	n	0.0	0.0	0.0	10000				
			-							Field min ar	nd max fron	n roxie
Magnet length (m)	14	Calculation					3	"heate	r"	1	16.501	
Inductance (mH/m)	1.10E+02	Stored energy (MJ/m)	4.91					neute		2	16.0525	
Op. current (A)	9450	Stored energy (J/mm3 of ins. Cond.)	0.134		imag_nom (A)	9000		velob		3	16.3386	
Op. temperature (K)	4.5	Sored energy (J/g of ins. Cond. (estim.))	19.71		P	105		uelay			10.0101	
Number of egile	2				scaling factor	1.05				4	13.8404	
MUTTER OF COLLS	2									6	12 791	
Detection delau (ms)	20	lon indu	at dat							7	10.55	
Bdumn (Ohm)	0	l iop, mau	JL., UEL.							8	10.2853	<u> </u>
indump (orm)										9	10.0747	
		delay								10	8.802	
						Wors	t case ho	otspot				
OUTPUT										11	9.0388	
						upda	tes in se	conds w	vher	12	8.2065	
MIITS (MAAS)	16.61	HOTSPO	T TEMPERATURE (K)	305.2	chan	ging the	input.				
	20102		in a line fit		00012	•				13	9.6603	
										14	5.5552	
	Tma	ax after quench (K)										
Block #	Duenched bu heater	Initial normal zone						T ONET 10	11 / 5			
tut_qpspreads	neet / Temp calc -blo	ocks PH quenched / Temp calc -b	iocks Hotspots 🔏 Tcs f	tt Nb3Sn - average field	C I cs fit Nb3Sn - pea	k field / Tcs fit N	bii - average field	I cs fit Nb I i - peak fie	ald Ca			
ady 🛅											70% (-)	_

4. Analysis of the designed magnets

Design, cabl	e A _{ins.} (mm²)	f _{Cu} F _{Nb3S} f _{G1}		f _{G10}	Block (v26_b)	CommonC (v1h_intragrad_t2)			
Block, 1 (HF)	32.5	0.36	0.36	0.27	7				
Block, 2 (LF)	21.9	0.34	0.34	0.33	3				
Cosθ, 1 (HF)	38.0	0.36	0.36	0.28	3				
Cosθ, 2 (LF)	22.4	0.45	0.22	0.32	2				
CC, 1 (HF)	33.9	0.36	0.36	0.29	CosT (16T v28b-38-opt5d)	0 2083 41.67 62.5 83.33 10			
CC, 2 (HMF)	23.2	0.43	0.25	0.32	2				
CC, 3 (LMF)	19.0	0.51	0.15	0.34	4 1/1				
CC, 4 (LF)	19.0	0.53	0.13	0.34	4				
	I _{mag,nom} (A)	L	(mH/m))					
Block	8440	4	2.5 x 2						
Cosθ	10275		26.0						
CommonC	9000		110						

11

4. Simulated hotspot temperatures assuming uniform protection delay

All the coil resistive after the protection delay

Assume worst-case location for hotspot

All designs valid from hotspot temperature point of view (< 350 K with 40 ms protection delay).

4. Simulation with distributed heater delays

Heater delay simulation assuming

- + 25 um thick stainless steel heaters with 75 um polyimide insulation to coil
- Peak power 100 W/cm², circuit time constant 50 ms
- + Heaters cover all the coil turns entirely

4. Results at 105% of lop

Γdelay = 40 ms								
	T max (K)	V to gnd (kV)	V turn-to-turn (V)	V layer-to-layer (kV)				
Block	308	-1.2+1.2	82	1.1				
CosT	328	-1.4 0.4	103	1.8				
CommonC 315		-2.3 1.4	75	3.3				
Distributed heater delays (+ detection 20 ms,								
	T max	V to gnd	V turn-to-turn	V layer-to-layer				
	(K)	(kV)	(V)	(V)				
Block	291	1.6	107	1.6				
CosT	305	1.4	123	2.2				
CommonC	293	2.7	93	4.1				

Conclusion

Integrated quench protection analysis applied to 16 T dipole design

- ✦ Goal was to ensure temperatures stay < 350 K</p>
- The protection efficiency, 40 ms delay, was based on LHC and HiLumi experience and foreseeable improvements in the technology
- + Goal was obtained by fast feedback loop and team work
- Voltages need more analysis
- During the magnet design phase focus was on nominal cases to ensure it is not impossible to protect

+ Future analysis includes more details and failure scenarios

