

Wireless readout

MULTI-GIGABIT WIRELESS DATA TRANSFER USING THE 60 GHZ BAND

Hans Kristian Soltveit

On behave of the WADAPT Working Group

Wireless Allowing Data And Power Transmission

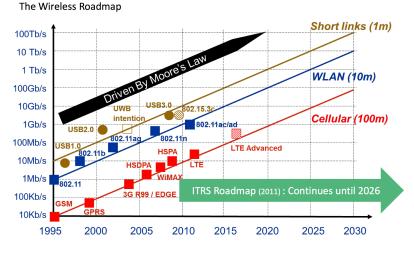
FCC-Week Rome 14-04-2016

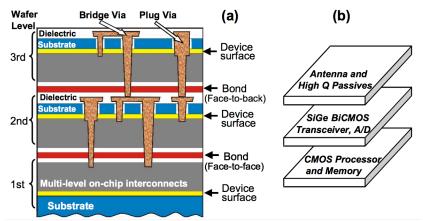

OUTLINE

- \diamond Introduction to millimeter Wave
- \diamond Features of the 60 GHz Band
- \diamond Practical Opportunities
- \diamond Application in HEP
- ♦ Proposed Readout Concept
- \diamond Current Development
- \diamond Summary and Outlook

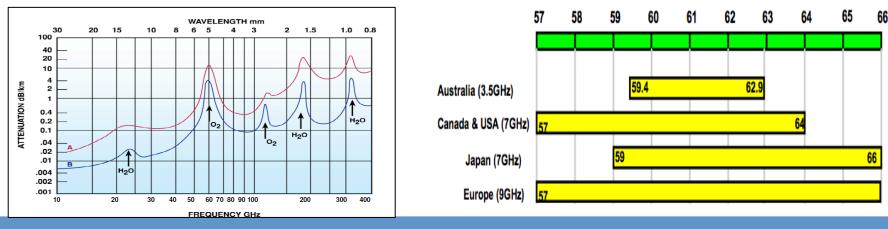
The mm-Waveband

- \diamond The mm-Wave is defined as the band between 30 GHz (10mm) to 300 GHz (1mm)
- ♦ In 2001, the Federal Communication Commission (FCC) opened up the 57 66 GHz band. In 2003 several other bands followed (Automotive 77 GHz Radar, 94 GHz imaging, THz spectroscopy > 100 GHz and so on....).
- ♦ This due to the "technological advance" and in order to "facilitate the commercialization of the millimeter Wave Band"
- \diamond Triggered huge interest from Industry and Research center/Universities etc.
- ♦ Energy propagation in the 60 GHz band has some unique characteristic that makes some interesting features.
- ♦ This allows a higher Effective Isotropic Radiated Power (EIRP)


H.K. Soltveit, Universität Heidelberg.


Wireless readout

The mm-Waveband


- ♦ Demand for high capacity continues to increase with an incredible speed.
- An ongoing race: technology and application developers have pushed into higher and higher bandwidth.
- Performance driven applications and high level of integration:
- ♦ Heterogeneous Integration advantage
 - Allow to use technology optimized according to their function

Features of the 60 GHz Band

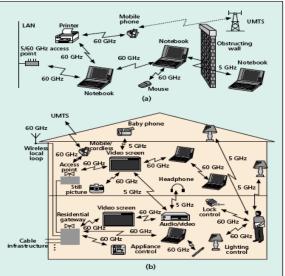
- ♦ Unlicensed Spectrum: 4-9 GHz bandwidth available world-wide
- \diamond Can send Gigabits/s of data over short distance (0-10m)
- ♦ Highly secure and low interference probability: Short transmission distance, oxygen absorption, narrow beam width and attenuation through materials.
 ♦ Reuse of frequency
- ♦ Placement: High flexibility, reduced complexity of cabling, material budget.
- \diamond High frequency: Small form factor.
- ♦ High transmit power: 40 dBm EIRP
- \diamond Mature techniques: Long history in being used for secure communication.

H.K. Soltveit, Universität Heidelberg.

Wireless readout

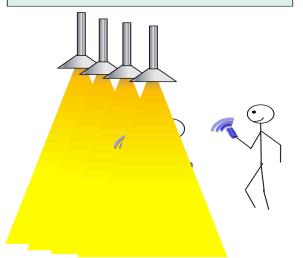
Features of the 60 GHz Band

- ♦ Unlicensed Spectrum: 4-9 GHz bandwidth available world-wide
- ♦ Can send Gigabits/s of data over short distance (0-100m)
- Highly secure and low interference probability: Short transmission distance, oxygen absorption, narrow beam width and attenuation through materials.
 - \diamond Reuse of frequency
- ♦ Placement: High flexibility, reduced complexity of cabling, material budget.
- \diamond High frequency: Small form factor.
- ♦ High transmit power: 40 dBm EIRP
- \diamond Mature techniques: Long history in being used for secure communication.


These Features:

Narrow beam-width, high bandwidth, high interference immunity, high security, high frequency reuse, high density of users, high penetration loss, ultra low latency, low material budget and radiation hardness

makes the 60 GHz band an <u>excellent choice</u> for high data transfer in a closed short range environment as the <u>detector environment</u>.

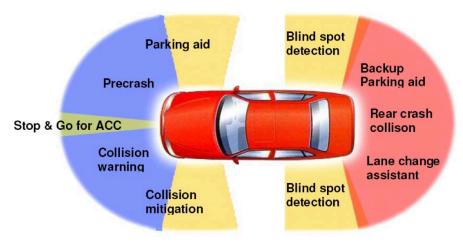

Practical Opportunities

- \diamondsuit Interconnectivity of media devices
- \diamond High data rates, fast file transfers
- \diamond Streaming uncompressed HD content

Replace Gigabit Ethernet Cables

"Showered" with information

♦ Access points could be mounted on ceilings, walls, doorways, vehicles
♦ Massive Gbps data transfer while moving through a small area


Wireless readout

Practical Opportunities

Automotive and the medicine industry plays a more and more important role for this kind of development

Automotive radar: 77 GHz

In-flight Entertainment:

• Do not interfere with other aircraft communications

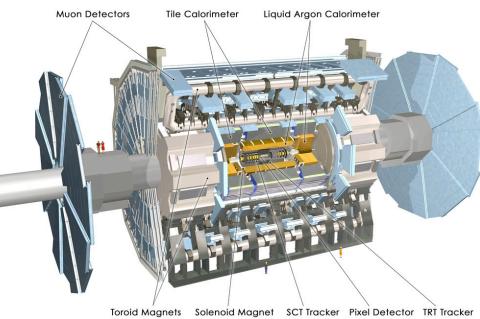
Satellite communication:

- Outside atmosphere
 - No free space path loss
 - Line-Of-Sight

Intra vehicle communication:

• Inability to penetrate and interfere with other vehicle networks

Vehicle to Vehicle:

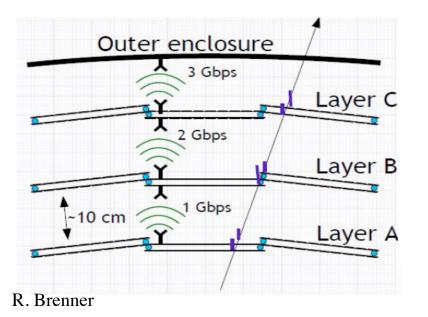

Applications in HEP

ATLAS Silicon Micro-strip Tracker upgrade would require:

- ♦ Bandwidth of 50 -100 Tb/s ♦ 20 000 links at 5 Gb/s
 - without increasing the
- \diamond Material budget
- \diamond Power consumption
- \diamond Space for services

and in addition

 \diamond Contribute to the fast trigger decision

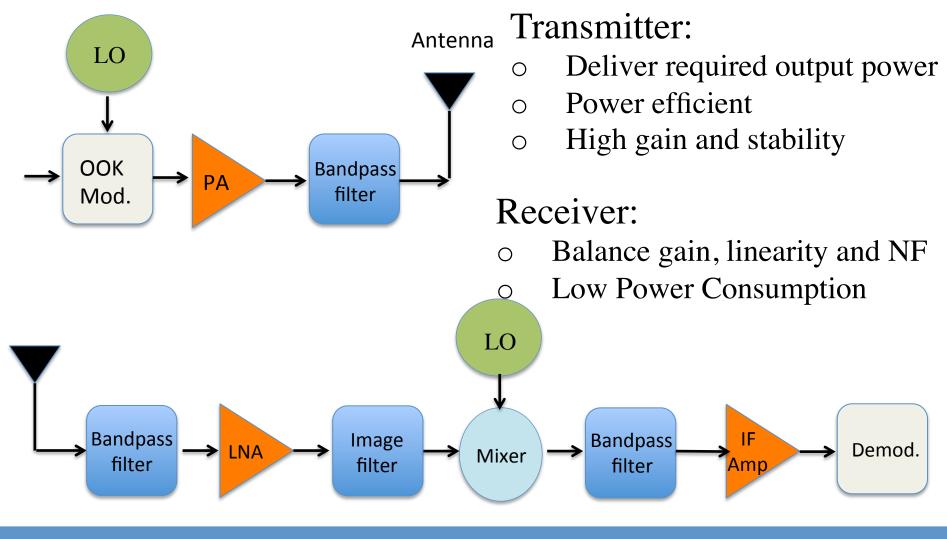


Applications in HEP

 \diamond Today the data are readout perpendicular to the particle path.

- \diamond Static system with Line-of-Sight (LOS) data transfer communication
- Approach: Readout radially by sending the data through the layer(s) by wire/via connection, with an antenna on both sides.

Less cables and Connectors Reduce Material Budget



H.K.Soltveit, Universität Heidelberg.

Wireless readout

Heidelberg Chip

H.K. Soltveit, Universität Heidelberg.

Wireless readout

Technology

♦ 130 nm SiGe-Bi-CMOS

♦ SiGe NPNs, We = 120 nm, ft = 200 GHz, BVceo = 1.8V
 ♦ 130 nm CMOS FETs 1.5/2.5V

High Integration level

 ♦ Fully-characterized Millimeter Wave Passive Elements
 ♦ Resistors, Varactors, MOS, MIM-caps, inductors, Transmissions lines, etc.

♦ Silicon On Insulator (SOI)
♦ Isolation in the gigahertz range

For the future development and final choice of technology will depend on given specifications

Increase data rate: \diamond Spectral Efficiency

bps, as a function of the available bandwidth and the SNR

- Complexity, Power consumption \diamond Bandwidth (B)
- \diamond Signal-to-Noise-Ratio (SNR)

$$C = B \cdot \log_2\left(1 + \frac{S}{N}\right)$$

C = Channel capacity in b/s

 \mathbf{C}

B = Bandwidth in Hz

$$S = Signal in Watts$$

N = Noise power in watts

High Bandwidth:

Spectral efficiency not a dominant factor

Can trade bandwidth for complexity

Wireless readout

Fundamental Data Capacity

Shannon's theorem gives an upper bound to the capacity of a link, in

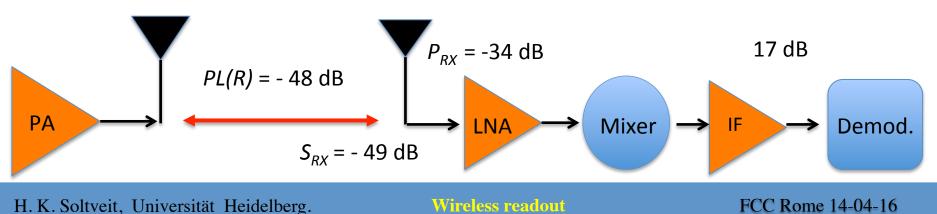
Shannon's Theorem

System Specifications

System SNR_{min} is determined by the Bit-Error-Rate (BER) of a given Modulation scheme.

For OOK: $BER = 10^{-12} \rightarrow SNR_{min} \approx 17 dB$	Specifications	Value
	Frequency band	57-66 GHz
<i>Noisefloor</i> = $-174dBm + 10\log_{10}(9G) = -75 dBm$	Bandwidth	9 GHz
	Data Rate	4.5 Gbps
NF _{tot} chosen to be 9 dB	Modulation	OOK
$S_{RX} = Noisefloor + SNR_{min} + NF_{tot} = -49 \text{ dBm}$	Minimum sensitivity S _{rx(min)}	- 49 dBm
Minimum power level that the system can detect producing an acceptable signal SNR at the output.	Bit Error Rate (BER)	10-12
	Target Power consumption	150 mW
	Transmission Range	20 cm (1m)

Wireless readout

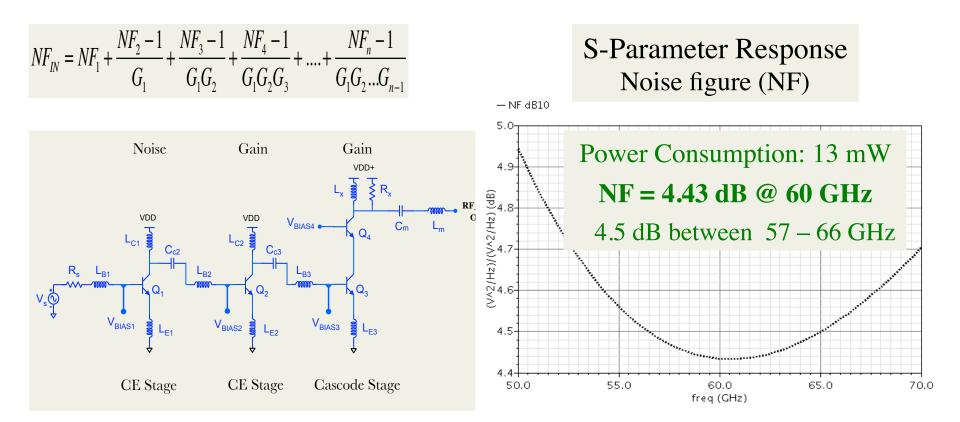

Link-Budget

$$P_{RX} = P_{TX} + G_{TX} + G_{RX} - L_{TX} - PL(R) - L_{RX} - FM$$

- $P_{RX} = RX Power (dBm)$
- $P_{TX} = \text{TX Power} (5 \text{ dBm})$
- G_{TX} = Transmitter antenna gain (10 dBi)
- G_{RX} = Receiver antenna gain (10 dBi)
- L_{TX} = Transmitter losses (4 dB)
- L_{RX} = Receiver losses (4 dB)
- FM = Fading Margin (3 dBm)

PL(R) = Free space loss@20 cm(1m)= 48 (68 dB)

System operating margin: 15 dB



Low noise Amplifier

H.K. Soltveit

Sets the lower limit of the systemOptimized for NF and Gain

H.K.Soltveit, Universität Heidelberg.

Wireless readout

Power Amplifier

S21: 16.5 dB

61.6 GHz

BW: 9 GHz

65.0

70.0

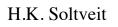
60.0

freq (GHz)

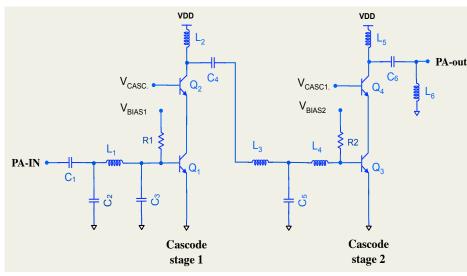
17.0

16.5

16.0


o-Param (d S-Param

15.0


50 O

Gain 15.8 dB

55.0

- Drives the antenna
- Isolation
- Power Added Efficiency
- Provide the required power^{4.5}
 level

Peak Frequency: 61.6 GHz

50.0

- ✓ S12 and S22 << -10 dB (57 66 GHz) ✓ S11 = - 8 dB
- ✓ S21 = 16.5 dB with +- 0.8 dB
- \checkmark P1dB = 5 dBm
- ✓ Power consumption 60 mW

dB20(aa SP(1-1)) dB20(aa SP(1-2)) dB20(aa SP(2-2))

-10.0

-20.0

-50.0

S11: -19 dB

S12: -42 dB

S22: -44 dB

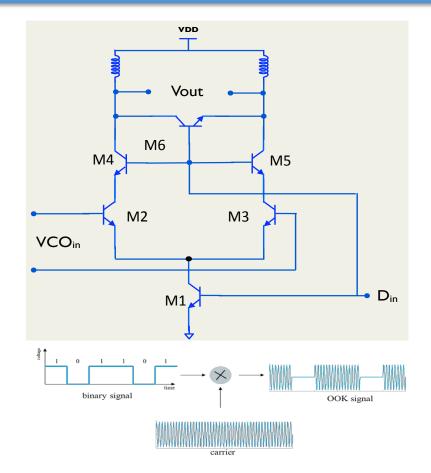
55.0

60.0

frea (GHz)

65.0

-30.0 -30.0 61.6 GHz



On-Off keying Modulation

- ♦ System bandwidth♦ Sensitivity
- \diamond Spectral efficiency
- \diamond Complexity
- Spectral efficiency: 0.5 bps/Hz

But

- \diamond Non-coherent demodulation
- \diamond Simple implementation
- \diamond Use non-linear PA
- \diamond Little power consumption
 - Constant envelope (no Amplitude Var.)

Preliminary Power Estimate

More blocks under development, too early to show their characteristic behavior.

- Low Noise Amplifier:
- Gilbert Mixer:
- Local Oscillator:
- Intermediate Amplifier:
- Modulation Scheme:
- Demodulation Scheme:
- Power Amplifier:

Total Power Consumption:

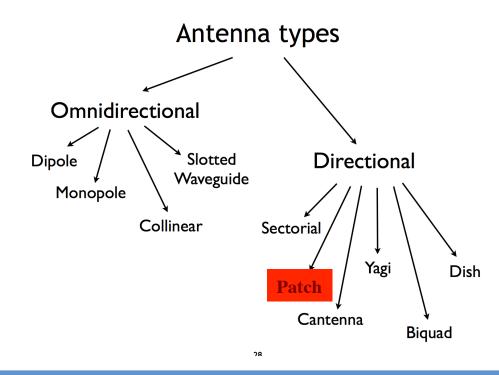
13 mW 7 mW 20 mW 10 mW 20 mW 20 mW <u>60 mW</u>

<u>150 mW</u>

Data rate: BER: Bandwidth: Distance:

4.5 Gbps 10⁻¹² 9 GHz 20 cm (1m)

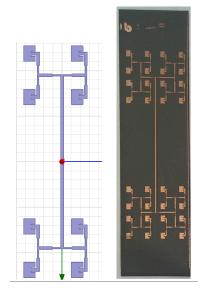
Still room for Power Consumption optimization


H.K.Soltveit, Universität Heidelberg.

Wireless readout

Antenna Design

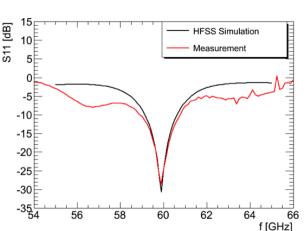
- \diamond Passive component and do not generate power
- \diamond Rely on antenna gain to close the link budget
- \diamond Largest part of the transceiver

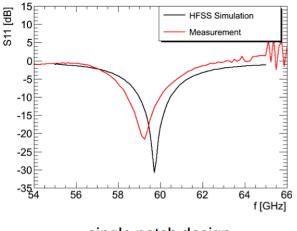

Antenna requirement:

- ♦ Light weight
- \diamond Compact
- ♦ Reproducibility
- \diamond Easy to fabricate
- ♦ Cost

Antenna Design

Started to design and produce patch antennas

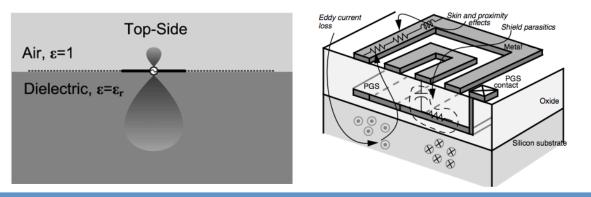


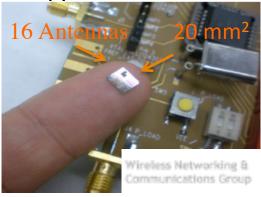

- Single and antenna arrays
- Can be produced on PCB material
 - Etching and milling.
 - Rogers, Dupont PCB material

1, 4 and 16 patch design

- Patches are connected by micro-st $\frac{1}{5}$ transformations (Imp. Matching)
- Antenna arrays are connected by micro-strip

single patch design


H.K.Soltveit, Universität Heidelberg.


Wireless readout

On-chip Antenna

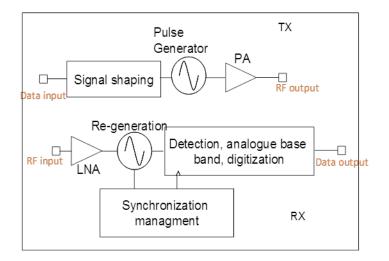
- ♦ Small wavelengths at 60 GHz (5mm $\lambda/4=1.25$ mm)
- \diamond Possible to integrate receive and transmit antenna(s) on chip.
- \diamond Multiple metal layers on ICs available
 - Can be used to fabricate mm-wave antennas.
- \diamond Eliminate cable/connectors loss and the need for ESD protection
- \diamond Cost effective compared to a packaged solution with off-chip antenna
- \diamond Issue: On-chip antenna in silicon has a very low radiation efficiency
 - High dielectric constant (11.7) and low substrate resistivity (10 Ohm-cm)
 - Energy loss due to magnetically induced current
 - Ohmic loss can be high, small skin depth (300nm) of copper at 60 GHz.

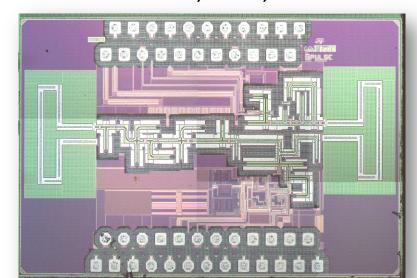
H.K. Soltveit, Universität Heidelberg.

Wireless readout

CEA Leti mmW developments

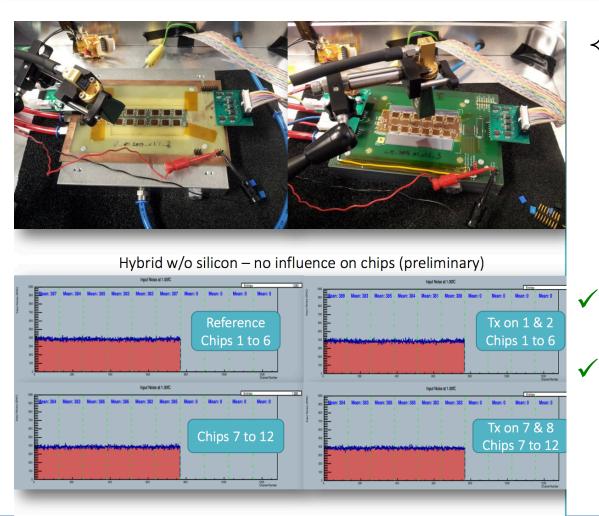
Chip	Standard	Range	Data rate	Power consumption	Maturity
Frequency domain 60GHz transceiver	802.11ad WiHD	0,5-2m	1-4Gbps	~400mW	prototype
Time domain 60GHz transceiver	No standard	5-20cm (2-5m with lens)	500Mbps-2 Gbps	~70-100mW	prototype
E-band Backhaul	No standard	100-200m with lens	1-8Gbps	NA	Some IPs


H.K.Soltveit, Universität Heidelberg.


Wireless readout

Time Domain 60GHz transceiver

Power consumption @ 2.5Gbps (RFFE +DBB): TX 30mW, RX 70mW Range 0.2m meter with single antenna Scalable data rate from 100Mbps to 2.5Gbps Integrated 4dBi 60GHz antenna (thanks to SOI 65nm HR process) Very low cost (standard QFN package)


1,9mm x 3,1mm

H.K.Soltveit, Universität Heidelberg.

Wireless readout

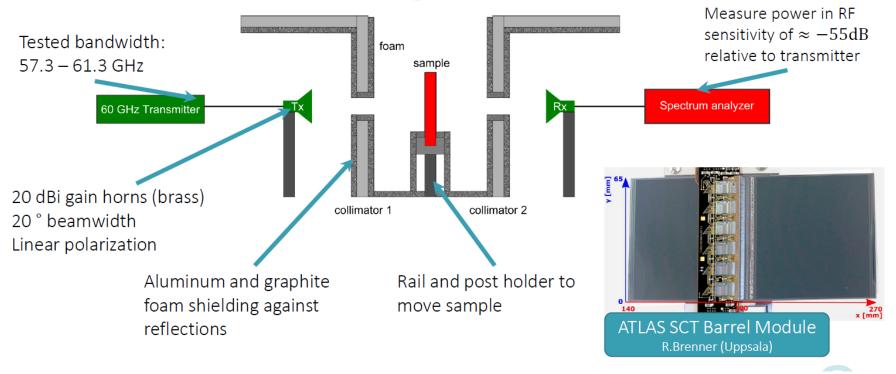
Feasibility studies @ University of Heidelberg

Detector performance under 60 GHz "Irradiation"

 Tests done using ABC-next Hybrid for the upgrade of ATLAS endcap detector

No influence of noise was measured Performance of detector <u>will not degrade</u> by 60 GHz waves

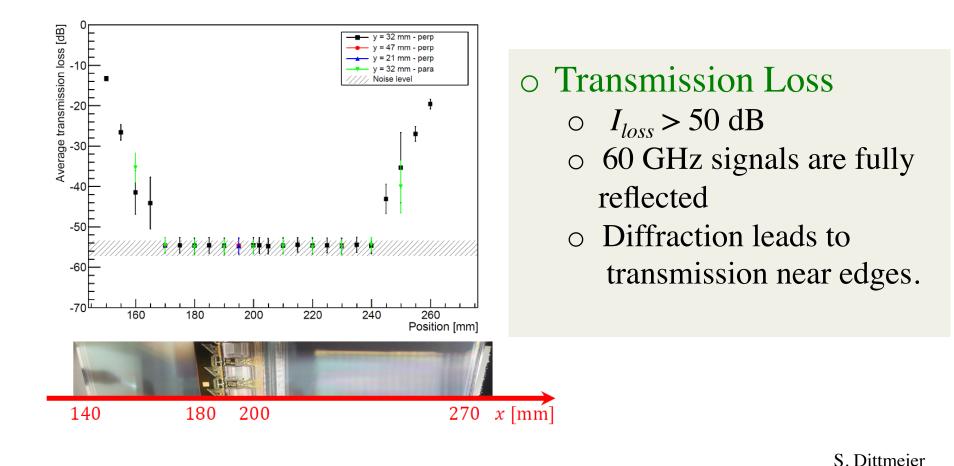
S. Dittmeier


H. K. Soltveit, Universität Heidelberg.

Wireless readout

Transmission: SCT Barrel Module

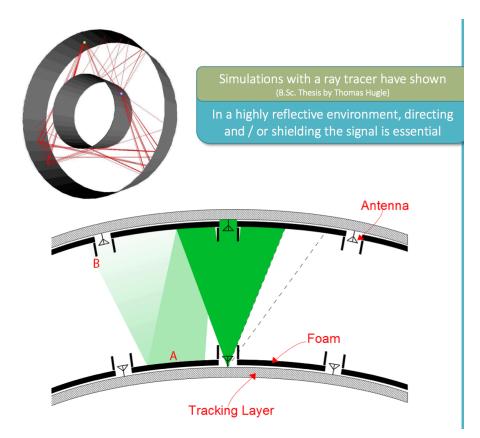
Transmission through detector modules



S. Dittmeier

Wireless readout

Transmission: SCT Barrel Module



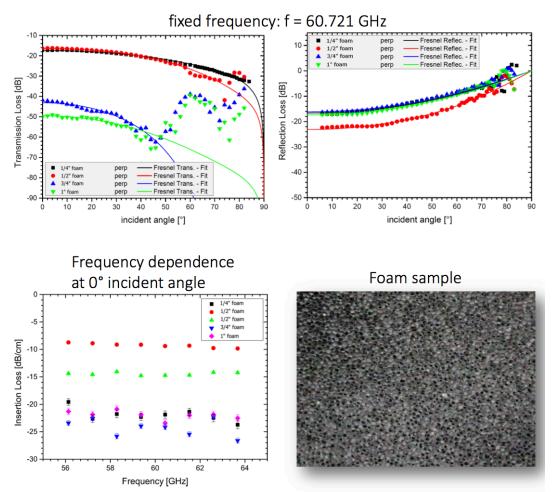
H. K. Soltveit, Universität Heidelberg.

Wireless readout

Crosstalk

 ♦ How to avoid crosstalk?
 ♦ Absorption of reflections
 ♦ Directive antennas
 ♦ Linear polarization

 \diamond Frequency channeling


♦ Signal pickup:
♦ Detector electronics
♦ Transceiver

S. Dittmeier

Wireless readout

Graphite Foam

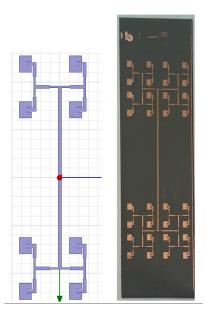
 ✓ Transmission reduced by > 15-20 dB

- ✓ Reflections reduced
 - by > 10 dB up to large angles
- ✓ Absorption (20 dB/cm) to reduce transmitted intensity, stable over frequency
- Low density material: $p = 50 - 70 \text{ mg/cm}^3$

S. Dittmeier

Summary and Outlook

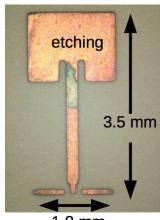
- mmWave technology presented as a possible solution for current bandwidth limitations of LHC and other detector facilities
- ✓ Feasibility studies has shown that the Performance of detector modules will not be degraded by 60 GHz waves
- ✓ Readout options: Wire, optical and **Wireless**


Heidelberg Wireless 60 GHz Chip submission is forseen Nov. 2016

Antenna Design

Started to design and produce patch antennas

- Single and antenna arrays
- Can be produced on PCB material
 - Etching and milling.
 - Rogers, Dupont PCB material


1, 4 and 16 patch design

- Patches are connected by micro-strip transformations (Imp. Matching)
- Antenna arrays are connected by micro-strip

H.K.Soltveit, Universität Heidelberg.

Wireless readout

1.8 mm

Why Modulation?

The basic principle of pass-band modulation is to encode information into a carrier signal (60 GHz) suitable for transmission

Motivation:

Simplify radiation of the signal

♦ Couple EM into space – antenna size a function of wavelength

$$\lambda = \frac{c}{f} = \frac{3.0 * 10^8}{60 * 10^9} = 5mm \qquad \qquad \lambda = \frac{c_0}{f\sqrt{\varepsilon_r}} \text{ (dielectric)}$$

Frequency assignment:
 Allows multiple radio channels to broadcast simultaneously at different carrier or translate different frequencies to different spectral locations.

Factors influencing choice of Modulation

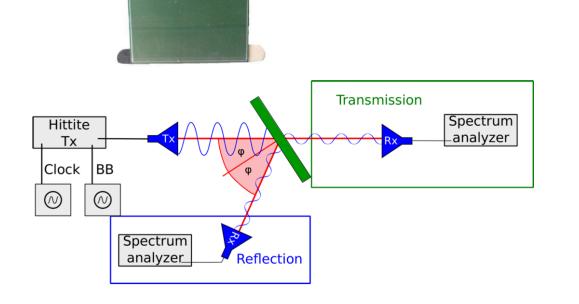
- \diamond Spectral efficiency
 - How effectively the allocated bandwidth is used (B/s/Hz)
- ♦ Bit Error Rate (BER)
- ♦ Signal-to-Noise Ratio (SNR)
- ♦ Power Efficiency
 - The power efficiency expresses the "signal energy over the noise energy" ratio (Eb/No) required at the receiver to guaranty a certain BER
- \diamond Performance in multipath environment
 - Envelope fluctuations and channel non-linearity
- \diamond Implementation cost and complexity

No modulation scheme possess all the above characteristics, so tradeoffs are made when selecting modulation/demodulation schemes.

Modulation Schemes

Several modulation techniques are available, most of them fall into one of following categories :

- 1. Spectral efficiency
- 2. Cost efficiency


3. System complexity4. Power efficiency

	Modulation circuit Complexity	Demodulation circuit Complexity	IF Circuitry Complexity	Clock Recovery	Spectral efficiency B/s/Hz
OOK	Low	Lowest	Lowest	No	0.5
FSK (Coherent)	Medium	High	Lowest	Yes	1
MSK	High	High	Low	Yes	1
OFDM	Highest	Highest	Low	Yes	3

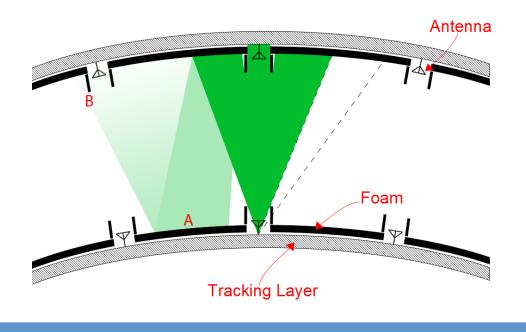
Unpowered spare ATLAS SCT

end cap module w/o ABC-chips (provided by Uni Freiburg)

Tested Properties:

- Transmission loss
- Reflection loss

Tested homogeneity of transmission depending on
o Position
o Frequency


1

Ray tracing simulation: <u>crosstalk mitigation</u> Approach:

- Directive horn antenna (12-17dBi gain), polarization diversity
- Graphite foam absorbing material (loss: 15-20dB transmission, 10dB reflection)

S. Dittmeier