Α MULITPLICITY JUMP B-TAGGER **TODD HUFFMAN, OXFORD UNIVERSITY**

J. PHYS. G: NUCL. PART. PHYS 43 (2016) 085001

PROBLEM: TAG HIGH P_T B-JET

Next: Why it happens

B-TAGGERS FIGHT EINSTEIN

Small cone sizes are prevalent. $\Delta R \approx 0.04$ for a B in a 500+ GeV Jet.

200 GeV B baryon $\gamma = 40$ $\gamma c\tau = 18 \text{ mm}$ 1 TeV B baryon $\gamma = 200$ $\gamma c \tau = 90 \text{ mm}$ Radius 1st layer = 25 mm

AND NOW FOR SOMETHING COMPLETELY DIFFERENT

IDEA – NOT QUITE SO WILD

Had been tried in the 80's and early 90's in fixed target experiments at Hadron machines.

- ~400 GeV proton or pion beams
- Energy sufficient to make Bottom and Charm baryons
- Place detector "Downstream" of target; leave gap; second detector even further "downstream"
 - Detectors Scintillators or course resolution silicon detectors
 - Relied on integrating the ionization signal
 - Mica detector relied upon jump in amount of Cherenkov light
- Look for "Jump" in signal (<u>details here</u>)
- Did not work very well \rightarrow Tails in signals
- Modern Si pixel detectors have very high granularity. Do better?

ENERGY-FRACTION OF B BARYONS? DOES IT DEPEND ON JET ENERGY?

Energy fraction of B baryons as Jet energy increases

- x_B Logarithmic?
- x_B Non-linear?
- x_B Constant?
- If Jet energy → more tracks
 - Helps taggers

Let's at least find out what simulations say!

B BARYON ENERGY FRACTION

(PYTHIA+FASTJET)

The energy of B hadrons in our simulation

As Jet energy increases, B-taggers less efficient.

And more B baryons will decay inside the detector volume.

However; Fraction of Jet energy each B baryon has does not strongly depend on energy of the jet.

SIMULATION DETAILS

Generator level simulation \rightarrow Pythia 8

- pp collider with $\sqrt{s} = 13 \text{ TeV}$
- Generate Z' at 2.5 and 5 TeV
- Let the Z' decay only into u, d, s, c, and b quarks
- Use EvtGen to get B hadron decays correct

Jet simulation \rightarrow FastJet 3

- Anti-Kt algorithm for forming jets
- Can set jet cone size
 - We've used R = 0.2

Detector simulation \rightarrow GEANT4

- Volume \rightarrow Cylinder 1.4 m radius filled with air, 2T mag. Field
- Silicon layers
 - Active at radii 25, 50, 88, and 122 mm
 - Small slabs 50 x 400 x 300 μm (φ x z x r)
 - inner layer 50 x 250 x 300 $\mu m \rightarrow$ IBL-like
 - Passive cylinders 2.5 mm thick to get to $X_0=2.5\%$ per layer

\triangle HIT FRACTION \rightarrow $\mathbf{F}_{\mathbf{I}}$

We *define* a quantity we call "Hit-difference Ratio" or "Hit-ratio" for short \rightarrow "f_i".

- Use cone $\Delta R < 0.04$ around jet axis from Fastjet.
 - **from i**th **layer** \rightarrow **f**_i = (Nhits_{i+1} Nhits_i)/Nhits_i
 - Can only have positive or zero hits, so:
 - **f**_i is bounded from below by -1. & unbounded from above.

• Have a look at the **f**_i distribution.

• Note: This sample \rightarrow 0.5 to 2.5 TeV jets.

$\triangle \text{HIT FRACTION} = \mathbf{F}_{\mathbf{I}} - 2.5 \text{ TEV } \mathbf{Z'}$

This looked promising \rightarrow next use it as a cut variable

$\textbf{APPLYING } \triangle \textbf{HIT}_{\textbf{F}} \textbf{ CUT}$

Start at f_i= -1.0 (i.e. no cut at all)

And Start increasing the cut.

At each cut value, Plot (Number of Events passing cut)/(number of starting events)

NOTE! Only count B hadron jets where B decayed inside the layers!

• Later: cut less effective with 5 TeV Z'. ΔR = 0.04 might be too big??

The "ALL Layers" plot is logical OR of individual layers, if any one of the Δ Hit_f between any pair of layers passes the cut, the event passes.

Charm not included.

all gaps

EFFICIENCY VS. JET ENERGY

By itself: Less than impressive tagger.

$MAX(F_{1,}F_{2},F_{3}) > \triangle HIT$

Completeness **Charm jets** Efficiency of c-jets Efficiency of light-quark jets 2.5 TeV 0.8 Same set of conditions Efficiency 0.4 0.2 0 Hit fraction Cut, $(f_1, f_2 \text{ or } f_3) > F$ 2 0

SUMMARY

Technique works!

- There are (many) caveats; clearly more work is needed.
 - For example....

More realistic detector simulation (wish list)

- Full Detector simulation
- Maybe include Si strip detectors as well
- Many Technical Difficulties to overcome
 - Detector overlaps
 - Getting raw hit information

Employ Neural net or other multi-variant techniques.

- Variable weights on layers
- Variable cone size, use fat-jets, include jumps that account for sequential charm decays??

Conclusion: Combine with conventional tagger → Looking for help!

THANK YOU!

BACKUP

SLIDE

18

EFF. AND PURITY M_z, = 10 TEV

19