

Using wavelets for pile-up mitigation

James Monk · Troels Petersen · Andreas Søgaard

University of Copenhagen \cdot University of Edinburgh

BOOST Conference · Zürich 20 July 2016

Outline

- 1. Wavelet fundamentals
- 2. Missing- and sum E_T studies
- 3. Boosted jet studies
- 4. Summary and outlook
- Bonus: Learning optimal bases

- Basis functions encoding both frequency and position
 - "Localised Fourier series"

- Basis functions encoding both *frequency* and *position*
 - "Localised Fourier series"
- Angular information at different frequency scales, or 'bands'

- Basis functions encoding both frequency and position
 - "Localised Fourier series"
- Angular information at different frequency scales, or 'bands'
- Used for de-noising in e.g. imaging and astrophysics

- Basis functions encoding both frequency and position
 - "Localised Fourier series"
- Angular information at different frequency scales, or 'bands'
- Used for de-noising in e.g. imaging and astrophysics
- For HEP purposes: Discrete 2D (y, ϕ)-input

•

•

•

Basis functions · Haar

Basis functions · Haar

- Hard scatter events:
 - Jets characterised by parton showering
 - Should be dominated by small-angle activity

- Hard scatter events:
 - Jets characterised by parton showering
 - Should be dominated by small-angle activity

	Incl. Z $\rightarrow q\overline{q}, p_{\perp} > 400 \text{ GeV}$												
φ level	7	- 6.55	6.53	7.96	10.26	13.51	17.94	23.63	30.60 —		30	s [GeV]	
	6	- 6.48	6.44	7.37	9.00	11.40	14.67	18.76	23.69 —		25	energie	
	5	— 6.66	6.60	7.12	8.14	9.75	11.93	14.67	17.99 —		20	ficient	
	4	— 7.00	6.91	7.15	7.64	8.52	9.79	11.46	13.59 —			ro coef	
	3	- 7.29	7.17	7.26	7.34	7.63	8.18	9.04	10.31 —		15	non-ze	
	2	- 7.25	7.34	7.29	7.23	7.15	7.17	7.43	8.04 —		10	RMS of	
	1	— 1.65	6.53	5.45	6.75	6.80	6.71	6.54	6.67 —		5		
	0	- 12.31	8.38	9.42	7.82	7.16	6.71	6.57	6.66 —		5		
	L	0	1	2	3	4	5	6	7 y level				

- Hard scatter events:
 - Jets characterised by parton showering
 - Should be dominated by small-angle activity

High frequency / small angles →

High frequency / small angles \rightarrow

- Hard scatter events:
 - Jets characterised by parton showering
 - Should be dominated by small-angle activity
- · Pile-up:
 - "White noise"
 - No angular structure: constant activity across frequency bands

		Incl. Z $\rightarrow q\bar{q}, p_{\perp} > 400 \text{ GeV}$										
	level	7	- 6.55	6.53	7.96	10.26	13.51	17.94	23.63	30.60 —	 30	GeV
T	÷)] Sé
High frequency / small angles		6	- 6.48	6.44	7.37	9.00	11.40	14.67	18.76	23.69 —	 25	energie
		5	— 6.66	6.60	7.12	8.14	9.75	11.93	14.67	17.99 —	20	icient e
		4	— 7.00	6.91	7.15	7.64	8.52	9.79	11.46	13.59 —	20	o coeff
		3	— 7.29	7.17	7.26	7.34	7.63	8.18	9.04	10.31 —	 15	ion-zero
		2	— 7.25	7.34	7.29	7.23	7.15	7.17	7.43	8.04 —	 10	MS of r
		1	— 1.65	6.53	5.45	6.75	6.80	6.71	6.54	6.67 —	_	Œ
		0	- 12.31	8.38	9.42	7.82	7.16	6.71	6.57	6.66 —	 5	
			0	1	2	3	4	5	6	7 y level		

High frequency / small angles \rightarrow

This difference may allow for good separation

Methods for pile-up mitigation

Methods for pile-up mitigation

Simplest approach:

 Scale (0,0) coefficient (average energy)

- Scale (0,0) coefficient (average energy)
- Cut on other coeffs.

- Scale (0,0) coefficient (average energy)
- Cut on other coeffs.

- Scale (0,0) coefficient (average energy)
- Cut on other coeffs.
- E.g. $n \ge RMS^{pileup}$, m > 0

Simplest approach:

- Scale (0,0) coefficient (average energy)
- Cut on other coeffs.
- E.g. $n \ge RMS^{pileup}$, m > 0
- Per event: Scale with $\sqrt{\mu}$

Wavelet fundamentals

Methods for pile-up mitigation

'Wavelet onset'

Wavelet fundamentals

Wavelet setup

- 128 x 128 pixel grid
- |y| < 3.2 (square)
- Haar wavelet (simplest)
- 'Wavelet onset' method with max. of 4 x pileup RMS
- Keep pixels with final-toinitial ratio > 0.75

Samples and setup

- Selection:
 - Stable, visible final state particles
 - All particles $|\eta| < 3.2$, tracks $|\eta| < 2.5$
 - $-p_T > 500 \text{ MeV}$
 - 100% tracking and vertex matching efficiency
- Signal samples (13 TeV, PYTHIA 8.205, A14-NNPDF23LO tune):
 - $-W \rightarrow Iv$ no gen. (reco.) level \hat{p}_T (p_T) cut
 - Incl. Z → q \bar{q} \hat{p}_T (p_T) > 280 (400) GeV
 - Incl. QCD 2 \rightarrow 2 multijets $\hat{p}_T (p_T) > 280 (400)$ GeV
- Minimum bias samples: PYTHIA 8.205, A2-MSTW (MB) tune:
 Overlaid using PILEMC.

Missing E_T-resolution

µ-dependence · Missing E_T-resolution

µ-dependence · Sum E⊤-resolution

Missing and sum E_T-resolution

• Samples:

– Incl. Z \rightarrow q \bar{q} and QCD 2 \rightarrow 2 multijet, p_T > 400 GeV

- Jets:
 - Anti- $k_T^{R = 1.0}$ jets clustered with FASTJET
 - Trimming, using $k_T^{R = 0.2}$ jets and p_T -fraction 0.05
 - 'Z-jet': Highest-p_T jet within dR = 0.6 of truth-level Z boson
 - 'Leading jet': Highest-p⊤ jet
- Comparison:

- Area median subtraction and SoftKiller

Z-jet mass

Z-jet mass

Z-jet mass

17 | andreas.sogaard@ed.ac.uk

Z-jet mass

Boson jet sensitivity improvement

- Motivated use of wavelets in HEP
- Showed the ability to naturally separate "white noise" pile-up from hard scatter events with small-angle structure
- Substantial potential is seen in improving measurement of both global and local inclusive observables
- Hope to implement similar methods in LHC analyses, ideally using a combination of the observables discussed today

Thank you.

Questions

- How does it compare to PuPPI?
 - Dunno.
- Have you tried PuPPI?
 - Nope.
- Any thoughts on systematics?
 - Nope.

Backup

Learning optimal bases

- Wavelet decomposition can be formulated as a deep neural network with a non-trivial architecture.
- Such a NN with 64 x 64 input in principle has 4.4 x 10⁷ weight coefficients.
- As a wavelet analysis realisation, the NN weight matrices are highly constrained.
- This means that the actual number of coefficients is N = 2, 4,
 6, ... i.e. the *filter coefficients* of the corresponding wavelet basis.

Wavelet/NN architecture

Wavelet/NN architecture

Wavelet/NN architecture

Wavelet/NN architecture

Wavelet/NN architecture

Wavelet/NN architecture

Wavelet/NN architecture

Wavelet/NN architecture

(NN output)

How to measure 'optimality'

- One can then use gradient descend with back-propagation to learn filter coefficients which are optimal wrt. some criterion.
- One such measure is *sparsity*, i.e. the ability of a basis to efficiently encode information contained in a certain type of input, e.g. jet events.
- Sparsity can be quantified by the Gini coefficient
- In addition, we need to impose five constraints on the filter coefficients, to ensure that they result in an actual wavelet basis.
- These are realised as quadratic *regularisation* terms in the combined *cost function*.

Cost function

• Regularisation:

$$R_i = \left(f_i[\{a_k\}] - d_i\right)^2 \implies R = \sum_{i=1}^{3} R_i$$

where a_k are the filter coefficients and d_i is some number.

• Sparsity (Gini coefficient):

$$G[\{c_i\}] = 1 - 2\sum_{i=1}^{N_c} \frac{c_i}{\|c_i\|_1} \frac{N_c - i + \frac{1}{2}}{N_c}$$

where c_i are the wavelet (not filter) coefficients for a single input, sorted such that $c_i \le c_{i+1}$ and N_c are the number of such coefficients.

Combined cost:

$$C = (G[\{c_i\}])^2 + \lambda R, \qquad \lambda \in [0,\infty)$$

Cost map and gradient descend paths

- Loop over e.g. incl. $W \rightarrow qq$ events, we can optimise the combined sparsity + regularisation cost function.
- Plot shows 10 random initialisations in unit circle (red dots; one of the five constraints) and the learning paths (black lines) going towards a single, global minimum of $(1,1)/\sqrt{2}$: Haar
- More than one possible minimum for N > 2 filter coeffs.

Visualising learning

- 16 filter coeffs. = 16dim. optimisation problem
- Incl. W \rightarrow qq, $\hat{p}_T >$ 280 GeV, no pile-up
- 25'000 events.
- Optimisation from random initialisation
- 1. part: Regularisation
 - Normalisation
 - Orthogonality
 - Self-similarity
- 2. part: Sparsity

Visualising learning

- 16 filter coeffs. = 16dim. optimisation problem
- Incl. W \rightarrow qq, $\hat{p}_T >$ 280 GeV, no pile-up
- 25'000 events.
- Optimisation from random initialisation
- 1. part: Regularisation
 - Normalisation
 - Orthogonality
 - Self-similarity
- 2. part: Sparsity

Use

- 1. Learn the best bases for various specialised tasks, like pile-up mitigation,
- 2. *Learn* observables for discriminating e.g. vector boson and 'QCD' jets, based on differences in their angular structure
- 3. Probe the splitting functions directly,
- 4. Possibly use these results to *learn* parton showering (and hadronisation) from data, with minimal theory input
- Perhaps even develop a jet clustering algorithm based on this type of learning — however, this is perhaps best done using recurrent neural networks like LSTM

Backup

References

- · J. Monk, Wavelet Analysis of Boosted Bosons, BOOST 2014
 - [<u>https://indico.cern.ch/event/302395/contributions/692393/</u> attachments/571643/787362/JMonk_Boost2014.pdf]
- J. Monk, Wavelet Analysis: Event De-noising, Shower Evolution
 and Jet Substructure Without Jets (2014)
 - [<u>arxiv.org/pdf/1405.5008.pdf</u>]
- NewWave, C++ library for performing wavelet analyses
 - [newwave.hepforge.org]
- A. Søgaard, Boosted Bosons and Wavelets (2015), MSc thesis
 - [cds.cern.ch/record/2055290]