Boosted Object Tagging With Deep Networks

Dan Guest¹ Kevin Bauer¹ Shih-Chieh Hsu³ Clara Eng²
Peter Sadowski¹ Julian Collado¹ Gergor Urban¹
Pierre Baldi¹ Daniel Whiteson¹

¹UC Irvine

 $^2 {
m UC}$ Berkeley

³University of Washington

July 21, 2016

Background: Boosted $H \to bb$

... for the sake of example

Calorimeter

- ► EW scale particle V recoils against something
- ► Two-pronged energy deposit in the calorimeter → "fat jet"
- ▶ Use jet moments as discriminants
 - \bullet $\tau_{21}, C_2, D_2 \text{ etc.}..$

Tracking

- \blacktriangleright We expect two b jets
- ► Find subjets
- ► Run flavor tagging

Boosted $H \to bb$: Algorithmic Overview

- ► Many levels of filtering / compression
 - ► Are we missing something?
- ► Lots of BDTs/NNs already
 - ► Can we simplify this?

Part 1: The Calorimeter

- ► The idea: replace jet moments with "jet images"
 - ightharpoonup Original paper: <u>arXiv:1407.5675</u>
 - ▶ NN addition: <u>arXiv:1511.05190</u>
 - ► This talk: arXiv:1603.09349

What is this "Image"?

- ► The idea: a jet is just an image in the calorimeter
- ▶ Discretized as $32 \times 32 = 1024$ pixel image
- ► We assume rotational symmetry (but don't have to)
- ► We can use standard image recognition
 - ► Deep neural networks have shown the best results
- ► See previous talk!

One Jet

100,000 Jets

What to compare images to? Jet Moments

- ▶ Which one to use?
- ▶ One, many?
- ► Combinations?
- ► For the sake of argument feed them *all* to a BDT

Adding Realism

- ▶ We can get (halfway) to reality with Delphes
- ▶ Detector response smears hadron momentum
- \blacktriangleright Pileup interactions make a huge difference
 - ... even with pileup suppression applied

Our Setup

- Used Delphes, $\sqrt{s} = 14 \, \text{TeV}, \langle \mu \rangle = 50$
- ▶ Signal: $pp \to WW \to qqqq$
- ▶ Background: $pp \rightarrow qq, q, gg$
- Anti- $k_{\rm T}$ jets $\Delta R = 1.2$
- ▶ $300 \,\mathrm{GeV} < p_{\mathrm{T}} < 400 \,\mathrm{GeV}$
- ► Apply pileup suppression (trimming)

The Question

If we compare

- ► A BDT on engineered variables, to
- ► A deep network on the jet image

which one is a better classifier?

Training

- ▶ 10M Jets (500k for validation)
- ▶ Used Spearmint Bayesian optimization (<u>arXiv:1206.2944</u>)

Deep NN

	Range		Optimum	
Hyperparameter	${\rm Min}$	$_{\mathrm{Max}}$	No pileup	Pileup
Hidden units per layer	100	500	425	500
Fully-connected layers	1	5	4	5
$\underline{\hbox{Locally-connected layers}}$	0	5	4	3

BDT

טט.	<u> </u>		
Range		Optimum	
Min	Max	No pileup	Pileup
15	75	49	49
0.01	1.00	0.07	0.07
0.0001	0.1000	0.0021	0.0021
	Ra Min 15 0.01	Range Min Max 15 75	Min Max No pileup 15 75 49 0.01 1.00 0.07

- ► 4 × 4 locally connected → fully connected
- ► Training: Theano + Keras
- ► ADAM optimizer
- ▶ 750k free parameters

- ► Training: Scikit-Learn
- ▶ 750k free parameters

Results

- ► Image NN outperforms moment BDT (slightly)
- ▶ Both seem to use more information than single moments
- ▶ Are they using the same information?

Moment Sculpting in Background

- ► Initially, background doesn't look look like signal
- ightharpoonup Cut on discriminant background ightharpoonup signal
- ▶ ... unless the NN learns different information

- Rej = 5: bgjets starts to peak
- ightharpoonup Rej = 20 looks a lot like signal
- ► BDTs similar to NN
- ▶ NNs learn mass, τ_{21} , etc

Calorimeter Conclusions

- ▶ Deep Network on image works slightly better than moment BDT
- ▶ But moments do very well
- ▶ *Most* of the information seems to be encoded in 6 variables
 - ▶ Good job QCD theorists!

What About Tracking?

Flavor tagging based discriminants

- ▶ We can replace jet moments with raw inputs
- ► Can we do something similar for tracks?
- ► ML is more standard in flavor-tagging

Flavor Tagging is Complicated

Based on (simplified) ATLAS framework

- ▶ Basically two algorithms + dimensionality reduction
- \blacktriangleright Each new feature \rightarrow better discrimination
 - ► We still haven't found the right basis
- ▶ Hard to optimize, can we simplify this?

Our (even more) Simplified Setup

Details will appear on arXiv very soon

- ▶ $pp \rightarrow (qq, bb) \rightarrow Delphes$
- Anti- $k_{\rm T}$ jets $\Delta R = 0.4$
- ► Start with tracks
 - ▶ Usually < 15
- ► Fit vertices
 - \triangleright ~ two or three
- ► Build **HL Features**
 - ▶ Always 14

- ▶ HL is strictly derived from Vertex and Tracks
- ► Showing: $20 \,\mathrm{GeV} < p_{\mathrm{T}} \lesssim 100 \,\mathrm{GeV}$
 - ► More boosted studies ongoing

Challenges

Why hasn't someone already done this?

- ► No FastJet for vertices
 - ▶ use Rave (thanks CMS)
- ► High (variable) dimensional input space
 - ▶ 15 tracks × 5 parameters = 75 inputs (but usually more)
 - ► That's a lot for HEP ML
 - ▶ But not bad for modern image / text processing

Results

- ► Low level information helps
- ▶ ... but tracks + vertices + expert features still beats all

Conclusions, Part 2

- ► Compared to the calo problem:
 - ► The tracking problem is more difficult for neural nets:
 - ▶ NN with track inputs doesn't beat expert features . . .
 - ... even though the expert features are derived from tracks
 - ▶ The expert features gain more from the tracks
- ► Something like FASTVERTEX would be useful
 - ► Rave is a good start (bit hard to compile...)
 - ▶ Recent Delphes branch includes crude vertex algorithms

Conclusions and Ongoing Work

Summary

- ► Calo image as good as jet moments
- ▶ Raw tracks help the more traditional flavor tagging approach

Next Steps

- ▶ Many questions applying flavor tagging to $H \rightarrow bb$
 - ▶ How should subjets be selected? (if at all)
 - ▶ How much do we gain by including track + calo in one NN?

BACKUP

Flavor Tagging Inputs

