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BN
Background: Boosted H — bb

... for the sake of example

Calorimeter

» EW scale particle V recoils against something

» Two-pronged energy deposit in the calorimeter — “fat jet”
» Use jet moments as discriminants
> To1, 027 D2 etc. ..

Tracking 5M\o_'\e‘

» We expect two b jets

» Find subjets s .
ub.
et

» Run flavor tagging
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Boosted H — bb: Algorithmic Overview

Tracking / Vertex

Fat Calo Jet

» Many levels of filtering / compression
» Are we missing something?

» Lots of BDTs/NNs already
» Can we simplify this?
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Calorimeter

Part 1: The Calorimeter

Track Jet 2
Tracking / Vertex

Fat CaJoJet

Cuts

» The idea: replace jet moments with “jet images”
» Original paper: arXiv:1407.5675
» NN addition: arXiv:1511.05190
» This talk: arXiv:1603.09349
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https://arxiv.org/abs/1511.05190
http://arxiv.org/abs/1603.09349

Calorimeter

What is this “Image”?

One Jet
» The idea: a jet is just an
image in the calorimeter -
» Discretized as 32 x 32 = 1024 + o e

pixel image
» We assume rotational

symmetry (but don’t have to)

» We can use standard image 100,000 Jets

recognition
» Deep neural networks have
shown the best results E t

» See previous talk!
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orimeter

What to compare images to? Jet Moments
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Calorimeter

Adding Realism

0.06- — W=dq

— Qcb

------ W->qq < u >=50
0.04- i e QCD < u >=50

0.02

Fraction of Events
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» We can get (halfway) to reality with Delphes
» Detector response smears hadron momentum
» Pileup interactions make a huge difference

» ...even with pileup suppression applied
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Calorimeter

Our Setup

v

Used Delphes, /s = 14 TeV, (u) = 50
Signal: pp > WW — qqqq

Cao Towers

v

v

Background: pp — qq,q, gg

Anti-kr jets AR =1.2

300 GeV < pp < 400 GeV

Apply pileup suppression (trimming)

v

v

Jet
Moments

v

The Question

If we compare
» A BDT on engineered variables, to

» A deep network on the jet image
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Calorimeter

Training

» 10M Jets (500k for validation)
» Used Spearmint Bayesian optimization (arXiv:1206.2944)

Deep NN BDT
Range Optimum Range Optimum
T . . Hyperparameter Min Max No pileup Pileup
Hyperparameter Min Max No pileup Pileup
Hidden wnits per layer 100 500 15 500 e depth 1575 49 49
Fully-connected layers 1 5 4 5 Learning rate 0.01  1.00 0.07  0.07
Locally//fconnected layers 0 5 4 3 Minimum split percent 0.0001 0.1000 0.0021 0.0021
> s eir
> 4 x 4 locally connected Training: Scikit-Learn
— fully connected » 750k free parameters
» Training: Theano + Keras
» ADAM optimizer
» 750k free parameters
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https://github.com/JasperSnoek/spearmint
http://arxiv.org/abs/1206.2944

Calorimeter

Results
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» Image NN outperforms moment BDT (slightly)
» Both seem to use more information than single moments

» Are they using the same information?
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Calorimeter

Moment Sculpting in Background

» Initially, background doesn’t look look like signal
» Cut on discriminant background — signal

» ...unless the NN learns different information

00511 T T 1 T T

Pile-up <u>=50 —W-qq
— QCD, rej=20

> : bgjets starts to T o= ]
peak 0.03 -
» Rej = 20 looks a lot like signal — BDT(expery

0.02— ---- DNN(image) 7]

» BDTs similar to NN

Fraction of Selected Events

0.01

» NNs learn mass, 721, etc

5 N N N P
20 40 60 80 100 120 140 160 180 200

Jet Mass [Gev]
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Calorimeter

Calorimeter Conclusions

» Deep Network on image works slightly better than moment BDT

» But moments do very well
» Most of the information seems to be encoded in 6 variables
» Good job QCD theorists!
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Tracking

What About Tracking?

Flavor tagging based discriminants

<@ <@

Tracking / Vertex

Jet ments

» We can replace jet moments with raw inputs
» Can we do something similar for tracks?
» ML is more standard in flavor-tagging
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Tracking

Flavor Tagging is Complicated
Based on (simplified) ATLAS framework

=/

Engineered
Variables

Jet Momentum

Impact Parameter

o Engineered
Likelihood

» Basically two algorithms + dimensionality reduction
» Each new feature — better discrimination
» We still haven’t found the right basis

» Hard to optimize, can we simplify this?
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Tracking

Our (even more) Simplified Setup

Details will appear on arXiv very soon

v

pp — (qq,bb) — Delphes
Anti-k7 jets AR =04
Start with

» Usually < 15
Fit vertices

v

v

v

Engineered
Variables

» ~ two or three
Build HI, Features
» Always 14

v

» HL is strictly derived from Vertex and Tracks
» Showing: 20 GeV < pr < 100 GeV

» More boosted studies ongoing
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Challenges

Why hasn’t someone already done this?

» No FASTJET for vertices
» use Rave (thanks CMS)
» High (variable) dimensional input space
» 15 tracks x 5 parameters = 75 inputs (but usually more)

» That’s a lot for HEP ML
» But not bad for modern image / text processing

Input Hidden Hidden Hidden Output
Tayer layer 1 Tayer 2 layer N
Track 1 { MLP
: Output LSTM
States
Track N { S
R/_/
Shared Input
weights Sequence
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Results
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» Low level information helps
» ...but tracks + vertices + expert features still beats all
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Conclusions, Part 2

» Compared to the calo problem:
» The tracking problem is more difficult for neural nets:

» NN with track inputs doesn’t beat expert features ...
> ...even though the expert features are derived from tracks

» The expert features gain more from the tracks
» Something like FASTVERTEX would be useful

» Rave is a good start (bit hard to compile...)
» Recent Delphes branch includes crude vertex algorithms
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conclusions

Conclusions and Ongoing Work

Summary

» Calo image as good as jet moments

» Raw tracks help the more traditional flavor tagging approach
Next Steps

» Many questions applying flavor tagging to H — bb

» How should subjets be selected? (if at all)
» How much do we gain by including track + calo in one NN?
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Light Jet Rejection
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