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Background: Boosted H → bb
. . . for the sake of example

Calorimeter

I EW scale particle V recoils against something

I Two-pronged energy deposit in the calorimeter → “fat jet”

I Use jet moments as discriminants
I τ21, C2, D2 etc. . .

Tracking

I We expect two b jets

I Find subjets

I Run flavor tagging

Jet Substructure

sub-jet

sub-jet

fat jet

V
Recoil
object

Dan Guest (UCI) DNNs for Jet Tagging July 21, 2016 2 / 19



Boosted H → bb: Algorithmic Overview

Jet Moments

Tracking / Vertex

Fat Calo Jet

n-subjetinessC2, D2Massothers?

Cuts

Track Jet 1

B Tagging

Track Jet 2

B Tagging

ML Tagger ML Tagger

I Many levels of filtering / compression
I Are we missing something?

I Lots of BDTs/NNs already
I Can we simplify this?
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Calorimeter

Part 1: The Calorimeter

Tracking / Vertex

Jet Moments

Fat Calo Jet

n-subjetinessC2, D2Massothers?

Cuts

Track Jet 1

B Tagging

Track Jet 2

B Tagging

ML Tagger ML Tagger

I The idea: replace jet moments with “jet images”
I Original paper: arXiv:1407.5675
I NN addition: arXiv:1511.05190
I This talk: arXiv:1603.09349
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Calorimeter

What is this “Image”?

I The idea: a jet is just an
image in the calorimeter

I Discretized as 32× 32 = 1024
pixel image

I We assume rotational
symmetry (but don’t have to)

I We can use standard image
recognition

I Deep neural networks have
shown the best results

I See previous talk!

One Jet 3
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.

Neural networks consisted of hidden layers of tanh
units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9, �2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.

We explore the use of locally-connected layers, where
each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the

100,000 Jets
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.

tan(✓) =
X

i

�i ⇥ Ei

Ri

�X

i

⌘i ⇥ Ei

Ri
(1)

Ri =
q
⌘2

i + �2
i . (2)

Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.

Neural networks consisted of hidden layers of tanh
units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9, �2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.

We explore the use of locally-connected layers, where
each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the
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Calorimeter

What to compare images to? Jet Moments

I Which one to use?

I One, many?

I Combinations?

I For the sake of
argument feed
them all to a
BDT

3
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.

Neural networks consisted of hidden layers of tanh
units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9, �2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.

We explore the use of locally-connected layers, where
each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the
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Calorimeter

Adding Realism 3
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.

Neural networks consisted of hidden layers of tanh
units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9, �2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.

We explore the use of locally-connected layers, where
each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the

I We can get (halfway) to reality with Delphes
I Detector response smears hadron momentum
I Pileup interactions make a huge difference

I . . . even with pileup suppression applied
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Calorimeter

Our Setup

I Used Delphes,
√
s = 14 TeV, 〈µ〉 = 50

I Signal: pp→WW → qqqq

I Background: pp→ qq, q, gg

I Anti-kT jets ∆R = 1.2

I 300 GeV < pT < 400 GeV

I Apply pileup suppression (trimming)

The Question

If we compare

I A BDT on engineered variables, to

I A deep network on the jet image

which one is a better classifier?

Calo Towers

Deep NN

Jet
Moments

Final Discriminant

BDT

Dan Guest (UCI) DNNs for Jet Tagging July 21, 2016 8 / 19



Calorimeter

Training

I 10M Jets (500k for validation)
I Used Spearmint Bayesian optimization (arXiv:1206.2944)

Deep NN

4

receptive fields are shared. Fully-connected layers were
stacked on top of the locally-connected layers to aggre-
gate information from di↵erent regions of the detector
image. The network architecture — the number of layers
of each type, plus the width of the fully-connected layers
— was optimized using Spearmint. Out of the 25 net-
work architectures explored on the no-pile-up task, the
best had four locally-connected layers followed by four
fully-connected layers of 425 units. This network has
roughly 750,000 tunable parameters, while the best shal-
low network (one hidden layer of 1000 units) had over
1 million parameters. On the pile-up data, 19 di↵erent
network architectures were tested; the best was again an
8-hidden-layer architecture, with 3 locally-connected lay-
ers, five fully-connected layers, and 500 hidden units in
each layer.

BDTs were trained on the six high-level variables us-
ing Scikit-Learn [43]. The maximum depth of each es-
timator, the minimum number of examples required to
constitute an internal node (parameterized as a fraction
of the training set), and the learning rate were separately
optimized for the datasets with and without pileup us-
ing Spearmint (110 and 140 experiments, respectively).
The number of estimators was fixed to 500; when eval-
uating the marginal improvement of performance with
the addition of each estimator, we observed that in the
best model, performance plateaued after inclusion of less
than 100 estimators. This suggests that the number of
estimators was not limiting. The minimum number of ex-
amples required to form a leaf node was fixed to be one
fourth of that required to constitute an internal node. In
both cases, the best BDT classifier had a maximum tree
depth of 49, a minimum split requirement of 0.0021, and
a learning rate of 0.07. The best BDT trained on the
no-pileup data had approximately 700,000 tunable pa-
rameters, while the best BDT trained on the pileup data
had approximately 750,000.

RESULTS

Deep networks with locally-connected layers showed
the best performance. For example, the best network
with 5 hidden layers has two locally-connected layers fol-
lowed by three fully-connected layers of 300 units each;
this architecture performs better than a network of five
fully-connected layers of 500 units each.

Final results are shown in Table III. The metric used
is the Area Under the Curve (AUC), calculated in sig-
nal e�ciency versus background e�ciency, where a larger
AUC indicates better performance. In Fig 4, the signal
e�ciency is shown versus backround rejection, the inverse
of background e�ciency. In the case without pile-up, as
studied in Ref. [28], the deep network modestly outper-
forms the physics domain variables, demonstrating first
that successful classification can be performed without

TABLE I: Hyperparameter support for Bayesian optimization
of deep neural network architectures. For the no-pileup case,
networks with a single hidden layer were allowed to have up
to 1000 units per layer, in order to remove the possibility of
the deep networks performing better simply because they had
more tunable parameters.

Range Optimum

Hyperparameter Min Max No pileup Pileup

Hidden units per layer 100 500 425 500

Fully-connected layers 1 5 4 5

Locally-connected layers 0 5 4 3

TABLE II: Hyperparameter support for BDTs trained on 6
high-level features, and the best combinations in 110 and 140
experiments, respectively, for the no-pileup and pileup tasks.
Minimum leaf percent was constrained to be one fourth of the
minimum split percent in all cases.

Range Optimum

Hyperparameter Min Max No pileup Pileup

Tree depth 15 75 49 49

Learning rate 0.01 1.00 0.07 0.07

Minimum split percent 0.0001 0.1000 0.0021 0.0021

expert-designed features and that there is some loss of
information in the dimensional reduction such features
provide. See the discussion below, however, for comments
on the continued importance of expert features.

Our results also demonstrate for the first time that
such performance holds up under the more di�cult and
realistic conditions of many pileup interactions; indeed,
the gap between the deep network and the expert vari-
ables in this case is more pronounced. This is likely due
to the fact that the physics-inspired variables rest on ar-
guments motivated by idealized pictures.

TABLE III: Performance results for BDT and deep networks.
Shown for each method are both the signal e�ciency at back-
ground rejection of 10, as well as the Area Under the Curve
(AUC), the integral of the background e�ciency versus signal
e�ciency. For the neural networks, we report the mean and
standard deviation of three networks trained with di↵erent
random initializations.

Performance

Technique Signal e�ciency AUC

at bg. rejection=10

No pileup

BDT on derived features 86.5% 95.0%

Deep NN on images 87.8%(0.04%) 95.3%(0.02%)

With pileup

BDT on derived features 81.5% 93.2%

Deep NN on images 84.3%(0.02%) 94.0%(0.01%)

I 4× 4 locally connected
→ fully connected

I Training: Theano + Keras

I ADAM optimizer

I 750k free parameters

BDT

4

receptive fields are shared. Fully-connected layers were
stacked on top of the locally-connected layers to aggre-
gate information from di↵erent regions of the detector
image. The network architecture — the number of layers
of each type, plus the width of the fully-connected layers
— was optimized using Spearmint. Out of the 25 net-
work architectures explored on the no-pile-up task, the
best had four locally-connected layers followed by four
fully-connected layers of 425 units. This network has
roughly 750,000 tunable parameters, while the best shal-
low network (one hidden layer of 1000 units) had over
1 million parameters. On the pile-up data, 19 di↵erent
network architectures were tested; the best was again an
8-hidden-layer architecture, with 3 locally-connected lay-
ers, five fully-connected layers, and 500 hidden units in
each layer.

BDTs were trained on the six high-level variables us-
ing Scikit-Learn [43]. The maximum depth of each es-
timator, the minimum number of examples required to
constitute an internal node (parameterized as a fraction
of the training set), and the learning rate were separately
optimized for the datasets with and without pileup us-
ing Spearmint (110 and 140 experiments, respectively).
The number of estimators was fixed to 500; when eval-
uating the marginal improvement of performance with
the addition of each estimator, we observed that in the
best model, performance plateaued after inclusion of less
than 100 estimators. This suggests that the number of
estimators was not limiting. The minimum number of ex-
amples required to form a leaf node was fixed to be one
fourth of that required to constitute an internal node. In
both cases, the best BDT classifier had a maximum tree
depth of 49, a minimum split requirement of 0.0021, and
a learning rate of 0.07. The best BDT trained on the
no-pileup data had approximately 700,000 tunable pa-
rameters, while the best BDT trained on the pileup data
had approximately 750,000.

RESULTS

Deep networks with locally-connected layers showed
the best performance. For example, the best network
with 5 hidden layers has two locally-connected layers fol-
lowed by three fully-connected layers of 300 units each;
this architecture performs better than a network of five
fully-connected layers of 500 units each.

Final results are shown in Table III. The metric used
is the Area Under the Curve (AUC), calculated in sig-
nal e�ciency versus background e�ciency, where a larger
AUC indicates better performance. In Fig 4, the signal
e�ciency is shown versus backround rejection, the inverse
of background e�ciency. In the case without pile-up, as
studied in Ref. [28], the deep network modestly outper-
forms the physics domain variables, demonstrating first
that successful classification can be performed without

TABLE I: Hyperparameter support for Bayesian optimization
of deep neural network architectures. For the no-pileup case,
networks with a single hidden layer were allowed to have up
to 1000 units per layer, in order to remove the possibility of
the deep networks performing better simply because they had
more tunable parameters.

Range Optimum

Hyperparameter Min Max No pileup Pileup

Hidden units per layer 100 500 425 500

Fully-connected layers 1 5 4 5

Locally-connected layers 0 5 4 3

TABLE II: Hyperparameter support for BDTs trained on 6
high-level features, and the best combinations in 110 and 140
experiments, respectively, for the no-pileup and pileup tasks.
Minimum leaf percent was constrained to be one fourth of the
minimum split percent in all cases.

Range Optimum

Hyperparameter Min Max No pileup Pileup

Tree depth 15 75 49 49

Learning rate 0.01 1.00 0.07 0.07

Minimum split percent 0.0001 0.1000 0.0021 0.0021

expert-designed features and that there is some loss of
information in the dimensional reduction such features
provide. See the discussion below, however, for comments
on the continued importance of expert features.

Our results also demonstrate for the first time that
such performance holds up under the more di�cult and
realistic conditions of many pileup interactions; indeed,
the gap between the deep network and the expert vari-
ables in this case is more pronounced. This is likely due
to the fact that the physics-inspired variables rest on ar-
guments motivated by idealized pictures.

TABLE III: Performance results for BDT and deep networks.
Shown for each method are both the signal e�ciency at back-
ground rejection of 10, as well as the Area Under the Curve
(AUC), the integral of the background e�ciency versus signal
e�ciency. For the neural networks, we report the mean and
standard deviation of three networks trained with di↵erent
random initializations.

Performance

Technique Signal e�ciency AUC

at bg. rejection=10

No pileup

BDT on derived features 86.5% 95.0%

Deep NN on images 87.8%(0.04%) 95.3%(0.02%)

With pileup

BDT on derived features 81.5% 93.2%

Deep NN on images 84.3%(0.02%) 94.0%(0.01%)

I Training: Scikit-Learn

I 750k free parameters
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FIG. 4: Signal e�ciency versus background rejection (inverse
of e�ciency) for deep networks trained on the images and
boosted decision trees trained on the expert features, both
with (bottom) and without pile-up (top). Typical choices of
signal e�ciency in real applications are in the 0.5-0.7 range.
Also shown are the performance of jet mass individually as
well as two expert variables in conjunction with a mass win-
dow.

INTERPRETATION

Current typical use in experimental analysis is the
combination of the jet mass feature with ⌧21 or one of
the energy correlation variables. Our results show that
even a straightforward BDT-combination of all six of the
high-level variables provides a large boost in comparison.
In probing the power of deep learning, we then use as our
benchmark this combination of the variables provided by
the BDT.

The deep network has clearly managed to match or
slightly exceed the performance of a combination of the
state-of-the-art expert variables. Physicists working on

the underlying theoretical questions may naturally be cu-
rious as to whether the deep network has learned a novel
strategy for classification which could inform their stud-
ies, or rediscovered and further optimized the existing
features.

While one cannot probe the motivation of the ML al-
gorithm, it is possible to compare distributions of events
categorized as signal-like by the di↵erent algorithms in
order to understand how the classification is being accom-
plished. To compare distributions between di↵erent algo-
rithms, we study simulated events with equivalent back-
ground rejection, see Figs. 5 and 6 for a comparison of the
selected regions in the expert features for the two classi-
fiers. The BDT preferentially selects events with values
of the features close to the characteristic signal values
and away from background-dominated values. The DNN,
which has a modestly higher e�ciency for the equivalent
rejection, selects events near the same signal values, but
in some cases can be seen to retains a slightly higher frac-
tion of jets away from the signal-dominated region. The
likely explanation is that the DNN has discovered the
same signal-rich region identified by the expert features,
but has in addition found avenues to optimize the perfor-
mance and carve into the background-dominated region.
Note that DNNs can also be trained to be independent of
mass, by providing a range of mass in training, or train-
ing a network explicitly parameterized [44, 45] in mass.

DISCUSSION

The signal from massive W ! qq jets is typically ob-
scured by a background from the copiously produced low-
mass jets due to quarks or gluons. Highly e�cient classifi-
cation is critical, and even a small relative improvement
in the classification accuracy can lead to a significant
boost in the power of the collected data to make statis-
tically significant discoveries. Operating the collider is
very expensive, so particle physicists need tools that al-
low them to make the most of a fixed-size dataset. How-
ever, improving classifier performance becomes increas-
ingly di�cult as the accuracy of the classifier increases.

Physicists have spent significant time and e↵ort de-
signing features for jet-tagging classification tasks. These
designed features are theoretically well motivated, but as
their derivation is based on a somewhat idealized descrip-
tion of the task (without detector or pileup e↵ects), they
cannot capture the totality of the information contained
in the jet image. We report the first studies of the ap-
plication of deep learning tools to the jet substructure
problem to include simulation of detector and pileup ef-
fects.

Our experiments support two conclusions. First, that
machine learning methods, particularly deep learning,
can automatically extract the knowledge necessary for
classification, in principle eliminating the exclusive re-
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FIG. 4: Signal e�ciency versus background rejection (inverse
of e�ciency) for deep networks trained on the images and
boosted decision trees trained on the expert features, both
with (bottom) and without pile-up (top). Typical choices of
signal e�ciency in real applications are in the 0.5-0.7 range.
Also shown are the performance of jet mass individually as
well as two expert variables in conjunction with a mass win-
dow.

INTERPRETATION

Current typical use in experimental analysis is the
combination of the jet mass feature with ⌧21 or one of
the energy correlation variables. Our results show that
even a straightforward BDT-combination of all six of the
high-level variables provides a large boost in comparison.
In probing the power of deep learning, we then use as our
benchmark this combination of the variables provided by
the BDT.

The deep network has clearly managed to match or
slightly exceed the performance of a combination of the
state-of-the-art expert variables. Physicists working on

the underlying theoretical questions may naturally be cu-
rious as to whether the deep network has learned a novel
strategy for classification which could inform their stud-
ies, or rediscovered and further optimized the existing
features.

While one cannot probe the motivation of the ML al-
gorithm, it is possible to compare distributions of events
categorized as signal-like by the di↵erent algorithms in
order to understand how the classification is being accom-
plished. To compare distributions between di↵erent algo-
rithms, we study simulated events with equivalent back-
ground rejection, see Figs. 5 and 6 for a comparison of the
selected regions in the expert features for the two classi-
fiers. The BDT preferentially selects events with values
of the features close to the characteristic signal values
and away from background-dominated values. The DNN,
which has a modestly higher e�ciency for the equivalent
rejection, selects events near the same signal values, but
in some cases can be seen to retains a slightly higher frac-
tion of jets away from the signal-dominated region. The
likely explanation is that the DNN has discovered the
same signal-rich region identified by the expert features,
but has in addition found avenues to optimize the perfor-
mance and carve into the background-dominated region.
Note that DNNs can also be trained to be independent of
mass, by providing a range of mass in training, or train-
ing a network explicitly parameterized [44, 45] in mass.

DISCUSSION

The signal from massive W ! qq jets is typically ob-
scured by a background from the copiously produced low-
mass jets due to quarks or gluons. Highly e�cient classifi-
cation is critical, and even a small relative improvement
in the classification accuracy can lead to a significant
boost in the power of the collected data to make statis-
tically significant discoveries. Operating the collider is
very expensive, so particle physicists need tools that al-
low them to make the most of a fixed-size dataset. How-
ever, improving classifier performance becomes increas-
ingly di�cult as the accuracy of the classifier increases.

Physicists have spent significant time and e↵ort de-
signing features for jet-tagging classification tasks. These
designed features are theoretically well motivated, but as
their derivation is based on a somewhat idealized descrip-
tion of the task (without detector or pileup e↵ects), they
cannot capture the totality of the information contained
in the jet image. We report the first studies of the ap-
plication of deep learning tools to the jet substructure
problem to include simulation of detector and pileup ef-
fects.

Our experiments support two conclusions. First, that
machine learning methods, particularly deep learning,
can automatically extract the knowledge necessary for
classification, in principle eliminating the exclusive re-

I Image NN outperforms moment BDT (slightly)

I Both seem to use more information than single moments

I Are they using the same information?
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Calorimeter

Moment Sculpting in Background

I Initially, background doesn’t look look like signal

I Cut on discriminant background → signal

I . . . unless the NN learns different information

I Rej = 5 : bgjets starts to
peak

I Rej = 20 looks a lot like signal

I BDTs similar to NN

I NNs learn mass, τ21, etc
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FIG. 5: Distributions in simulated samples without pileup of
high-level jet substructure variables for pure signal (W ! qq)
and pure background (QCD) events. To explore the decision
surface of the ML algorithms, also shown are background
events with various levels of rejection for deep networks
trained on the images and boosted decision trees trained on
the expert features. Both algorithms preferentially select jets
with values near the peak signal values. Note, however, that
while the BDT has been supplied with these features as an
input, the DNN has learned this on its own.

liance on expert features. The slight improvement in
classification power o↵ered by the deep network com-
pared to the combination of expert features is likely due
to the fact that the network has succeeded in discover-
ing small optimizations of the expert features in order
to account for the detector and pileup e↵ects present in
the simulated samples. This marks another demonstra-
tion of the power of deep networks to identify important
features in high-dimensional problems. In practice, while
deep network classification can boost jet tagging perfor-
mance, expert features o↵er powerful insight [24] into the
validity of the simulation models used to train these net-
works. We do not claim that these results make expert
features obsolete. However, it suggests that deep net-
works can provide similar performance on a variety of
related problems where the theoretical tools are not as
mature. For example, current tools do not always in-
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FIG. 6: Distributions in simulated samples with pileup of
high-level jet substructure variables for pure signal (W ! qq)
and pure background (QCD) events. To explore the decision
surface of the ML algorithms, also shown are background
events with various levels of rejection for deep networks
trained on the images and boosted decision trees trained on
the expert features. Both algorithms preferentially select jets
with values near the peak signal values. Note, however, that
while the BDT has been supplied with these features as an
input, the DNN has learned this on its own.

clude information from tracking detectors, nor do they
o↵er performance parameterized [44, 45] in the mass of
the decaying heavy state.

Second, we conclude that the current set of expert fea-
tures when used in combination (via BDT or other shal-
low multi-variate approach) appear to capture nearly all
of the relevant information in the high-dimensional low-
level features describe by the jet image. The power of
the networks described here is limited by the accuracy
of these models, and expert features may be more ro-
bust to variation among the several existing simulation
models [46]. In experimental applications, this reliance
on simulation can be mitigated by using training sam-
ples from real collision data, where the labels are derived
using orthogonal information.

Data in high energy physics can often be formulated
as images. Thus, these results reported on the repre-
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Calorimeter

Calorimeter Conclusions

I Deep Network on image works slightly better than moment BDT

I But moments do very well

I Most of the information seems to be encoded in 6 variables
I Good job QCD theorists!
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Tracking

What About Tracking?
Flavor tagging based discriminants

Jet Moments

Tracking / Vertex

Fat Calo Jet

n-subjetinessC2, D2Massothers?

Cuts

Track Jet 1

B Tagging

Track Jet 2

B Tagging

ML Tagger ML Tagger

I We can replace jet moments with raw inputs
I Can we do something similar for tracks?
I ML is more standard in flavor-tagging
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Tracking

Flavor Tagging is Complicated
Based on (simplified) ATLAS framework

Impact ParameterSecondary Vertex

Tracks

Track Perigee
CoordinatesSingle Vertex Multi Vertex

Jet Momentum

Engineered
Variables

Engineered
Variables

NN/BDT

Likelihood

I Basically two algorithms + dimensionality reduction
I Each new feature → better discrimination

I We still haven’t found the right basis

I Hard to optimize, can we simplify this?
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Tracking

Our (even more) Simplified Setup
Details will appear on arXiv very soon

I pp→ (qq, bb)→ Delphes

I Anti-kT jets ∆R = 0.4

I Start with tracks
I Usually < 15

I Fit vertices
I ∼ two or three

I Build HL Features
I Always 14

Tracks

Vertices

Engineered
Variables

Many NNs
(Different Inputs)

I HL is strictly derived from Vertex and Tracks

I Showing: 20 GeV < pT . 100 GeV
I More boosted studies ongoing
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Tracking

Challenges
Why hasn’t someone already done this?

I No FastJet for vertices
I use Rave (thanks CMS)

I High (variable) dimensional input space
I 15 tracks × 5 parameters = 75 inputs (but usually more)
I That’s a lot for HEP ML
I But not bad for modern image / text processing

..
.

..
.

..
.

..
.. . . Output

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer N

Track 1

Track N

Shared
weights

S1 S2 Sn. . .

I1 I2 In. . . Input
Sequence

LSTM
States

MLP

Output
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Tracking

Results

Signal efficiency
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I Low level information helps
I . . . but tracks + vertices + expert features still beats all
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Tracking

Conclusions, Part 2

I Compared to the calo problem:
I The tracking problem is more difficult for neural nets:

I NN with track inputs doesn’t beat expert features . . .
I . . . even though the expert features are derived from tracks

I The expert features gain more from the tracks

I Something like FastVertex would be useful
I Rave is a good start (bit hard to compile. . . )
I Recent Delphes branch includes crude vertex algorithms
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conclusions

Conclusions and Ongoing Work

Summary

I Calo image as good as jet moments

I Raw tracks help the more traditional flavor tagging approach

Next Steps

I Many questions applying flavor tagging to H → bb
I How should subjets be selected? (if at all)
I How much do we gain by including track + calo in one NN?
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conclusions

BACKUP
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conclusions

Flavor Tagging Inputs
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