Factorization and resummation of nonglobal observables within SCET

Ding Yu Shao
University of Bern

Boost2016 20.07.2016 Zurich

In collaboration with T. Becher, M. Neubert & L. Rothen (PRL116(2016)192001, arXiv:1605.02737, work in progress)

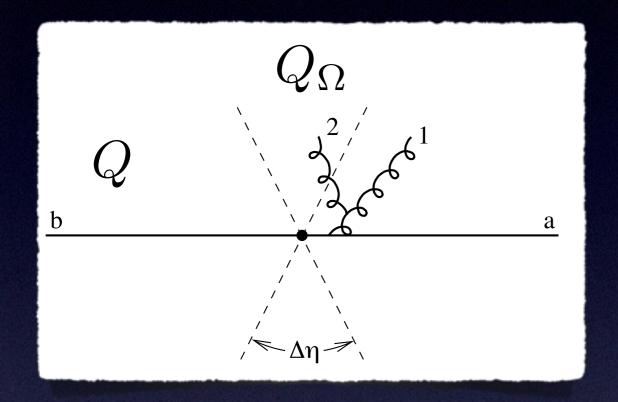
Non-global logarithms (NGLs)

(Dasgupta & Salam 2001,2002)

Observables which are insensitive to emissions into certain regions of phase space involve additional NGLs not captured by the usual resummation formula

GLS:
$$\exp\left[-4C_F\Delta\eta\int_{\alpha(Q_\Omega)}^{\alpha(Q)}\frac{d\alpha}{\beta(\alpha)}\frac{\alpha}{2\pi}\right] = 1 + 4\frac{\alpha_s}{2\pi}C_F\Delta\eta\ln\frac{Q_\Omega}{Q}$$

$$+\left(\frac{\alpha_s}{2\pi}\right)^2\left(8C_F^2\Delta\eta^2 - \frac{22}{3}C_FC_A\Delta\eta + \frac{8}{3}C_FT_Fn_f\Delta\eta\right)\ln^2\frac{Q_\Omega}{Q}$$



NGLs:

$$\left(\frac{\alpha_s}{2\pi}\right)^2 C_F C_A \left[-\frac{2\pi^2}{3} + 4\operatorname{Li}_2\left(e^{-2\Delta\eta}\right) \right] \ln^2 \frac{Q_\Omega}{Q}$$

Leading-Log resummation

Banfi, Marchesini & Smye 2002

 The leading logarithms arise from configuration in which the emitted gluons are strongly ordered

$$E_1 \gg E_2 \gg \cdots \gg E_m$$

• In the large-Nc limit, multi-gluon emission amplitudes become simple:

$$N_c^m g^{2m} \sum_{(1\cdots m)} \frac{p_a \cdot p_b}{(p_a \cdot p_1)(p_1 \cdot p_2)\cdots(p_m \cdot p_b)}$$

 Based on this structure, Banfi, Marchesini & Smye derive an integral-differential equation for resuming NG logarithms at LL level in the large-Nc limit:

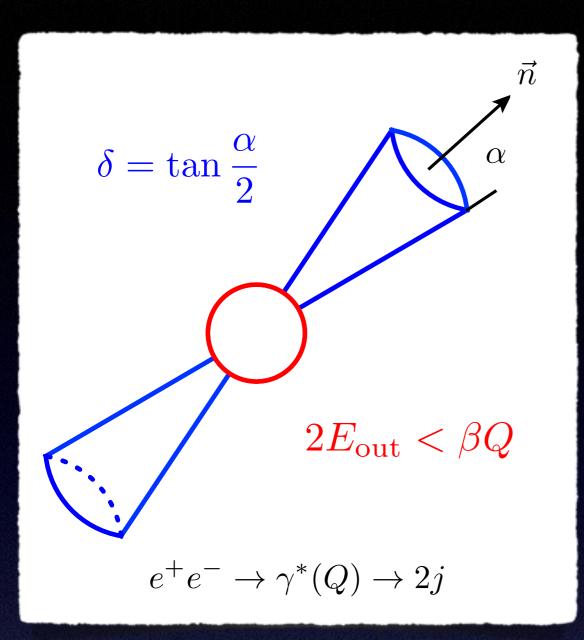
BMS equation:
$$\partial_L G_{ab}(L) = \int \frac{d\Omega_j}{4\pi} W_{ab}^j \left[\Theta_{\rm in}^{n\bar{n}}(j) G_{aj}(L) G_{jb}(L) - G_{ab}(L)\right]$$

Some recent progress

- Resummation of LL NGLs beyond large Nc Hatta Ueda '13 + Hagiwara '15;
- Fixed-order results
 - two-loop hemisphere soft function Kelley, Schwartz, Schabinger & Zhu '11; Horning, Lee, Stewart, Walsh & Zuberi '11
 - with jet-cone Kelley, Schwartz, Schabinger & Zhu '11; von Manteuffel, Schabinger & Zhu '13
 - LL NGLs (5-loop large Nc & 4-loop finite Nc) Schwartz, Zhu '14; Delenda, Khelifa-Kerfa '15
- Color density matrix (two-loop anomalous dimension) Caron-Huot '15
- Expansion in dressed gluons Larkoski, Moult & Neill '15; Neill '15; Laroski, Moult '15
- Avoid NGLs Dasgupta, Fregoso, Marzani & Powling '13; Dasgupta, Fregoso, Marzani & Salam '13; Larkoski, Marzani, Soyez & Thaler '14; Frye, Larkoski, Matthew & Yan '16;

Sterman-Weinberg dijets

(Sterman & Weinberg 1977)



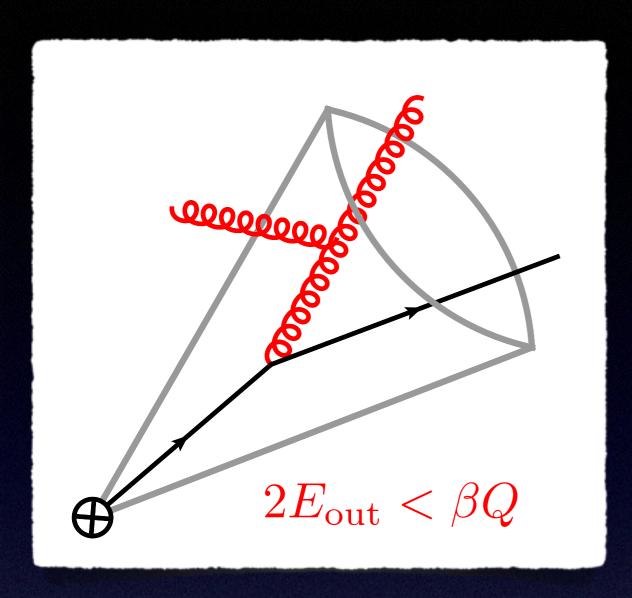
$$\frac{\sigma(\beta,\delta)}{\sigma_0} = 1 + \frac{\alpha_s}{3\pi} \left[-16\ln\delta\ln\beta - 12\ln\delta + 10 - \frac{4\pi^2}{3} \right]$$

IR finite, but problems for small β , δ

- Large log can spoil perturbative expansion
- Scale choice?

$$\mu = Q, \ Q\beta, \ Q\delta, \ Q\beta\delta$$
?

NGLs in jet observables



Jet observables involve NGLs because they are insensitive to emissions inside the cone

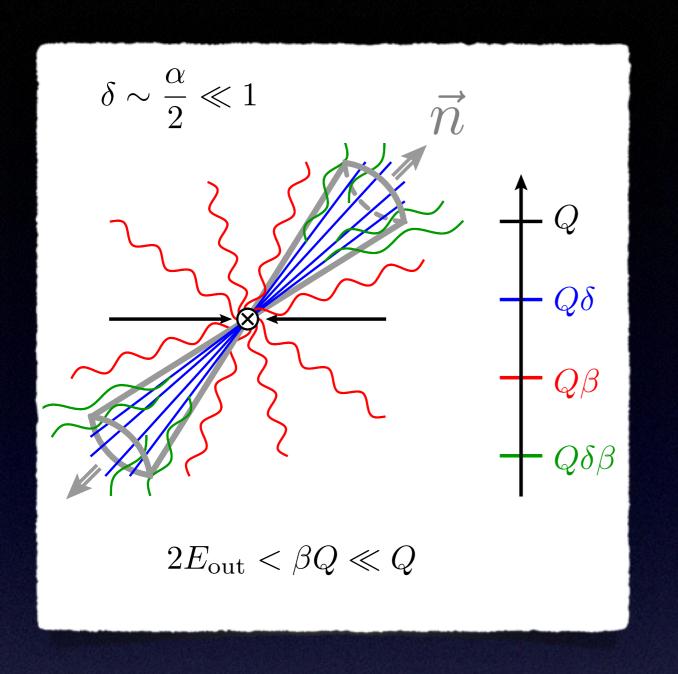
$$\alpha_s^2 C_F C_A \pi^2 \ln^2 \beta$$

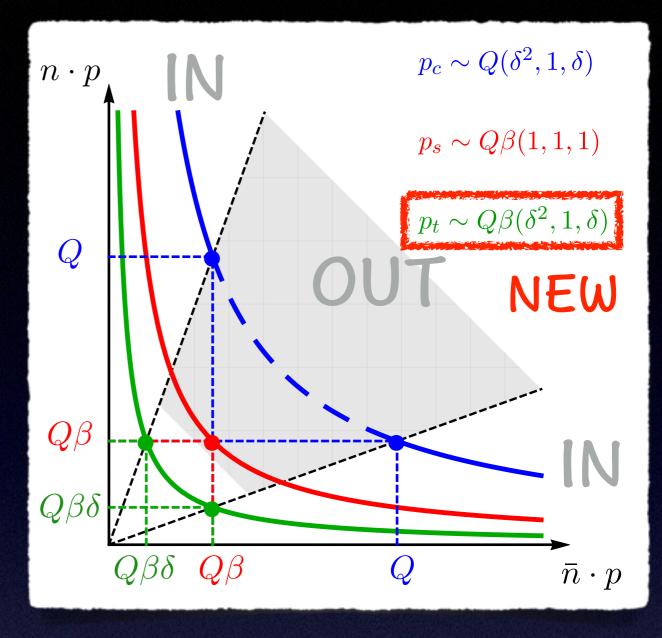
These types of logarithm do not exponentiate in the usual way

EFT for Sterman-Weinberg dijets

(Becher, Neubert, Rothen & DYS, PRL116(2016)192001)

$$p \sim (n \cdot p, \bar{n} \cdot p, \vec{p}_{\perp})$$





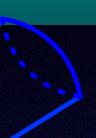
One-loop Region Analysis

$$\Delta \sigma_h = \frac{\alpha_s C_F}{4\pi} \,\sigma_0 \left(\frac{\mu}{Q}\right)^{2\epsilon} \left(-\frac{4}{\epsilon^2} - \frac{6}{\epsilon} + \frac{7\pi^2}{3} - 16\right)$$

$$\Delta \sigma_{c+\bar{c}} = \frac{\alpha_s C_F}{4\pi} \, \sigma_0 \left(\frac{\mu}{Q\delta}\right)^{2\epsilon} \left(\frac{4}{\epsilon^2} + \frac{6}{\epsilon} + c_0\right)$$

"Soft"
$$\Delta \sigma_s = \frac{\alpha_s C_F}{4\pi} \sigma_0 \left(\frac{\mu}{Q\beta}\right)^{2\epsilon} \left(\frac{8}{\epsilon} \ln \delta - 8 \ln^2 \delta - \frac{2\pi^2}{3}\right)$$

(Cheung, Luke, Zuberi 2009.....)



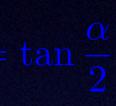
$$\Delta \sigma^{\text{tot}} = \frac{\alpha_s C_F}{4\pi} \,\sigma_0 \left(-16 \ln \delta \ln \beta - 12 \ln \delta + c_0 + \frac{5\pi^2}{3} - 16 \right)$$

stant c_0 depends on the definition of jet axis:

$$c_0 = -3\pi^2 + 26$$

(Sterman-Weinberg)

$$c_0 = -5\pi^2/3 + 14 + 12\ln 2$$
 (thrust axis)



One-loop Region Analysis

$$\Delta \sigma_h = \frac{\alpha_s C_F}{4\pi} \,\sigma_0 \left(\frac{\mu}{Q}\right)^{2\epsilon} \left(-\frac{4}{\epsilon^2} - \frac{6}{\epsilon} + \frac{7\pi^2}{3} - 16\right)$$

$$\Delta \sigma_{c+\bar{c}} = \frac{\alpha_s C_F}{4\pi} \,\sigma_0 \left(\frac{\mu}{Q\delta}\right)^{2\epsilon} \left(\frac{4}{\epsilon^2} + \frac{6}{\epsilon} + c_0\right)$$

$$\Delta \sigma_s = \frac{\alpha_s C_F}{4\pi} \,\sigma_0 \left(\frac{\mu}{Q\beta}\right)^{2\epsilon} \left(\frac{4}{\epsilon^2} - \pi^2\right)$$

$$\Delta \sigma_{t+\bar{t}} = \frac{\alpha_s C_F}{4\pi} \,\sigma_0 \left(\frac{\mu}{Q\delta\beta}\right)^{2\epsilon} \left(-\frac{4}{\epsilon^2} + \frac{\pi^2}{3}\right)$$

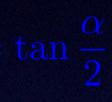
$$\Delta \sigma^{\text{tot}} = \frac{\alpha_s C_F}{4\pi} \,\sigma_0 \left(-16 \ln \delta \ln \beta - 12 \ln \delta + c_0 + \frac{5\pi^2}{3} - 16 \right)$$

stant c_0 depends on the definition of jet axis:

$$c_0 = -3\pi^2 + 26$$

(Sterman-Weinberg)

$$c_0 = -5\pi^2/3 + 14 + 12\ln 2$$
 (thrust axis)



Soft Radiation

Large-angle soft radiation off a jet of collinear particles does not resolve individual energetic patrons

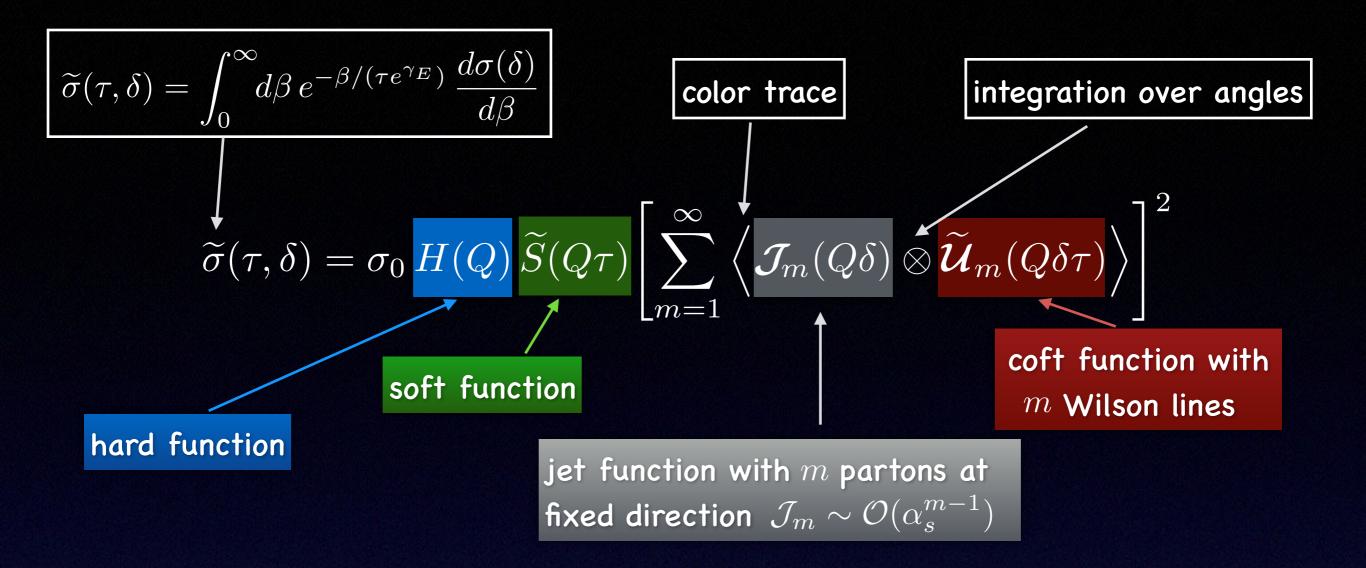
$$\sum_{i} Q_{i} \frac{p_{i} \cdot \epsilon}{p_{i} \cdot k} \approx Q_{\text{tot}} \frac{n \cdot \epsilon}{n \cdot k}$$

This approximation breaks down for soft radiation collinear to the jet!!!

$$k^{\mu} = \omega n^{\mu}$$

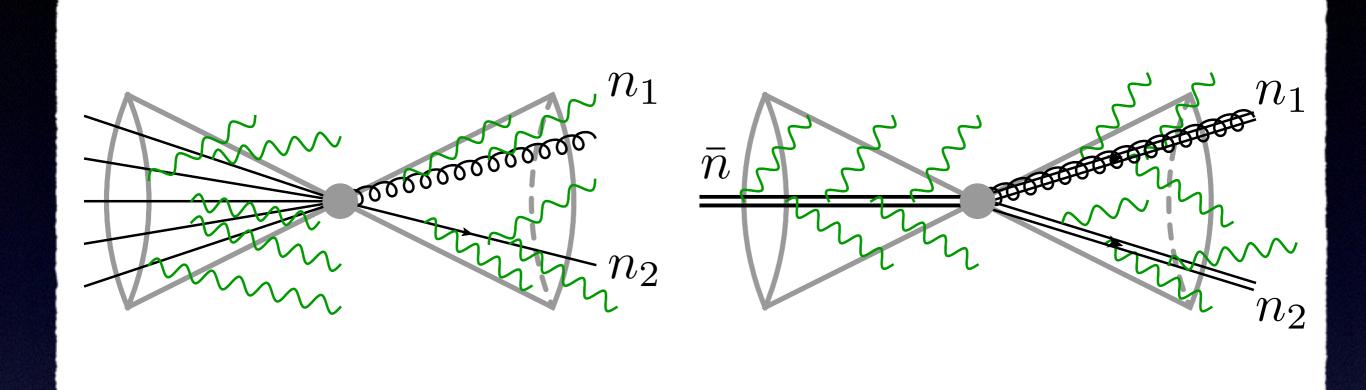
Typically this small region of phase space does not give an $\mathcal{O}(1)$ contribution. However it does for non-global observables!

Factorization formula



First all-order factorization theorem for non-global observable. Achieves full scale separation!

$$\widetilde{\sigma}(\tau,\delta) = \sigma_0 H(Q,\epsilon) \widetilde{S}(Q\tau,\epsilon) \langle \mathcal{J}_1(\{n_1\},Q\delta,\epsilon) \otimes \widetilde{\mathcal{U}}_1(\{n_1\},Q\delta\tau,\epsilon) + \mathcal{J}_2(\{n_1,n_2\},Q\delta,\epsilon) \otimes \widetilde{\mathcal{U}}_2(\{n_1,n_2\},Q\delta\tau,\epsilon) + \mathcal{J}_3(\{n_1,n_2,n_3\},Q\delta,\epsilon) \otimes \mathbf{1} + \dots \rangle^2$$



$$\frac{\sigma(\beta,\delta)}{\sigma_0} = 1 + \frac{\alpha_s}{2\pi} A(\beta,\delta) + \left(\frac{\alpha_s}{2\pi}\right)^2 B(\beta,\delta) + \dots$$

$$\begin{split} B(\beta,\delta) &= C_F^2 \left[\left(32 \ln^2 \beta + 48 \ln \beta + 18 - \frac{16 \pi^2}{3} \right) \ln^2 \delta + \left(-2 + 10 \zeta_3 - 12 \ln^2 2 + 4 \ln 2 \right) \ln \beta \right. \\ &\quad + \left(\left(8 - 48 \ln 2 \right) \ln \beta + \frac{9}{2} + 2 \pi^2 - 24 \zeta_3 - 36 \ln 2 \right) \ln \delta + c_2^F \right] \\ &\quad + C_F C_A \left[\left(\frac{44 \ln \beta}{3} + 11 \right) \ln^2 \delta - \frac{2 \pi^2}{3} \ln^2 \beta + \left(\frac{8}{3} - \frac{31 \pi^2}{18} - 4 \zeta_3 - 6 \ln^2 2 - 4 \ln 2 \right) \ln \beta \right. \\ &\quad + \left(\frac{44 \ln^2 \beta}{3} + \left(-\frac{268}{9} + \frac{4 \pi^2}{3} \right) \ln \beta - \frac{57}{2} + 12 \zeta_3 - 22 \ln 2 \right) \ln \delta + c_2^A \right] \\ &\quad + C_F T_F n_f \left[\left(-\frac{16 \ln \beta}{3} - 4 \right) \ln^2 \delta + \left(-\frac{16}{3} \ln^2 \beta + \frac{80 \ln \beta}{9} + 10 + 8 \ln 2 \right) \ln \delta \right. \\ &\quad + \left(-\frac{4}{3} + \frac{4 \pi^2}{9} \right) \ln \beta + c_2^f \right]. \end{split}$$

Consistent with EVENT2

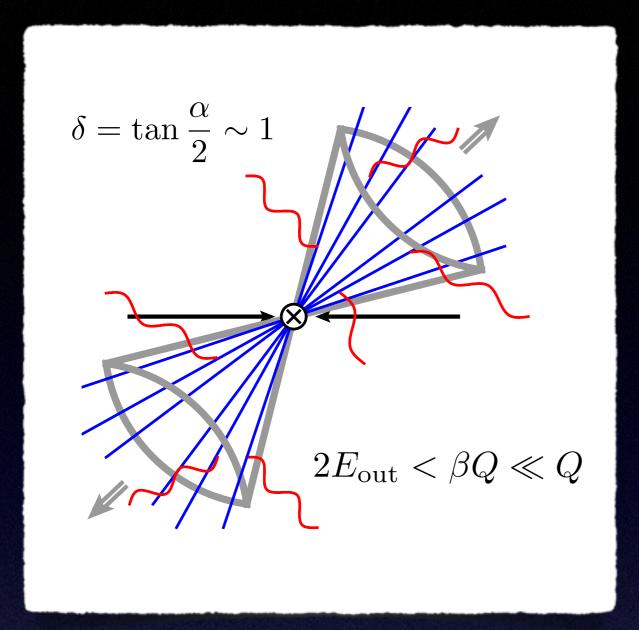
$$\frac{\sigma(\beta,\delta)}{\sigma_0} = 1 + \frac{\alpha_s}{2\pi} A(\beta,\delta) + \left(\frac{\alpha_s}{2\pi}\right)^2 B(\beta,\delta) + \dots$$

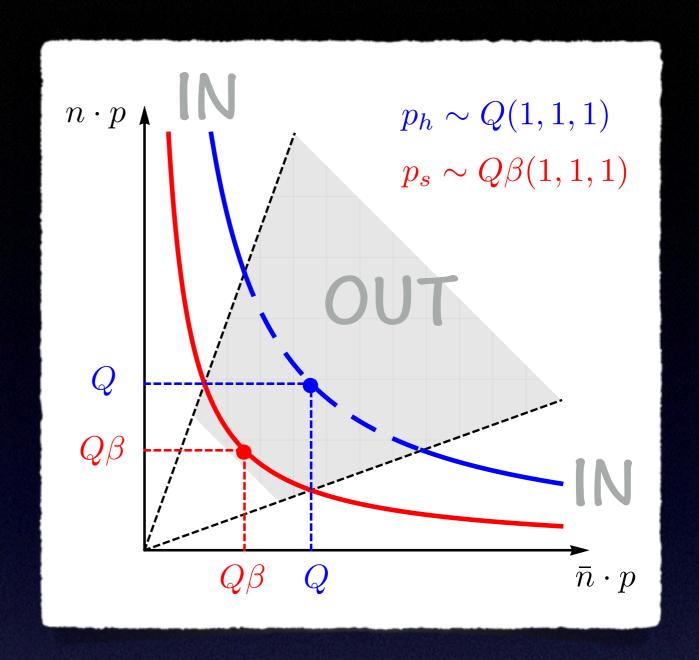
$$B(\beta,\delta) = C_F^2 \left[\left(32 \ln^2 \beta + 48 \ln \beta + 18 - \frac{16\pi^2}{3} \right) \ln^2 \delta + \left(-2 + 10\zeta_3 - 12 \ln^2 2 + 4 \ln 2 \right) \ln \beta \right. \\ \left. + \left(\left(8 - 48 \ln 2 \right) \ln \beta + \frac{9}{2} + 2\pi^2 - 24\zeta_3 - 36 \ln 2 \right) \ln \delta + c_2^F \right] \\ \left. + C_F C_A \left[\left(\frac{44 \ln \beta}{3} + 11 \right) \ln^2 \delta \right] - \frac{2\pi^2}{3} \ln^2 \beta \right] \left(\frac{8}{3} - \frac{31\pi^2}{18} - 4\zeta_3 - 6 \ln^2 2 - 4 \ln 2 \right) \ln \beta \right. \\ \left. + \left(\frac{44 \ln^2 \beta}{3} + \left(-\frac{268}{9} + \frac{4\pi^2}{3} \right) \ln \beta - \frac{57}{2} + 12\zeta_3 - 22 \ln 2 \right) \ln \delta + c_2^A \right] \\ \left. + C_F T_F n_f \left[\left(-\frac{16 \ln \beta}{3} - 4 \right) \ln^2 \delta + \left(-\frac{16}{3} \ln^2 \beta + \frac{80 \ln \beta}{9} + 10 + 8 \ln 2 \right) \ln \delta \right. \\ \left. + \left(-\frac{4}{3} + \frac{4\pi^2}{9} \right) \ln \beta + c_2^f \right].$$
 Leading NGLs

Consistent with EVENT2

EFT for interjet energy flow

(Becher, Neubert, Rothen, DYS 1605.02737)



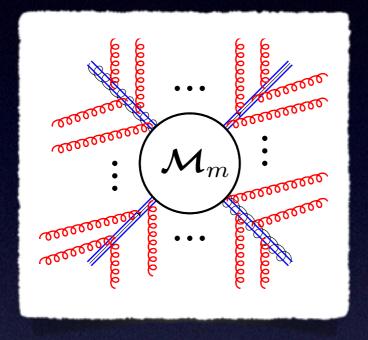


Factorization

- Hard parton -> collinear fields $\Phi_i \in \{\chi_i, \bar{\chi}_i, \mathcal{A}^\mu_{i\perp}\}$ along $n_i^\mu = (1, \vec{n}_i)$
- ullet performing SCET decoupling transformation: $\Phi_i = S_i(n_i)\,\Phi_i^{(0)}$

$$S_i(n_i) = \mathbf{P} \exp\left(ig_s \int_0^\infty ds \, n_i \cdot A_s^a(sn_i) \, T_i^a\right)$$

The operator for the emission from an amplitude with m hard partons



hard scattering amplitude with m particles (vector in color space)

$$S_1(n_1) S_2(n_2) \ldots S_m(n_m) | \mathcal{M}_m(\{p\}) \rangle$$

soft Wilson lines along the directions of the energetic particles (color matrices)

Factorization

• Then the cross section can be written in factorized form as,

$$\sigma(\beta, \delta) = \sum_{m=2}^{\infty} \left\langle \mathcal{H}_m(\{\underline{n}\}, Q, \delta) \otimes \mathcal{S}_m(\{\underline{n}\}, Q\beta, \delta) \right\rangle$$

We define the squared matrix element of this operator as

$$S_m(\{\underline{n}\}, Q\beta, \delta) = \sum_{X} \langle 0|S_1^{\dagger}(n_1) \dots S_m^{\dagger}(n_m)|X_s\rangle\langle X_s|S_1(n_1) \dots S_m(n_m)|0\rangle \theta (Q\beta - 2E_{\text{out}})$$

 The hard functions are obtained by integrating over the energies of the hard particles, while keeping their direction fixed

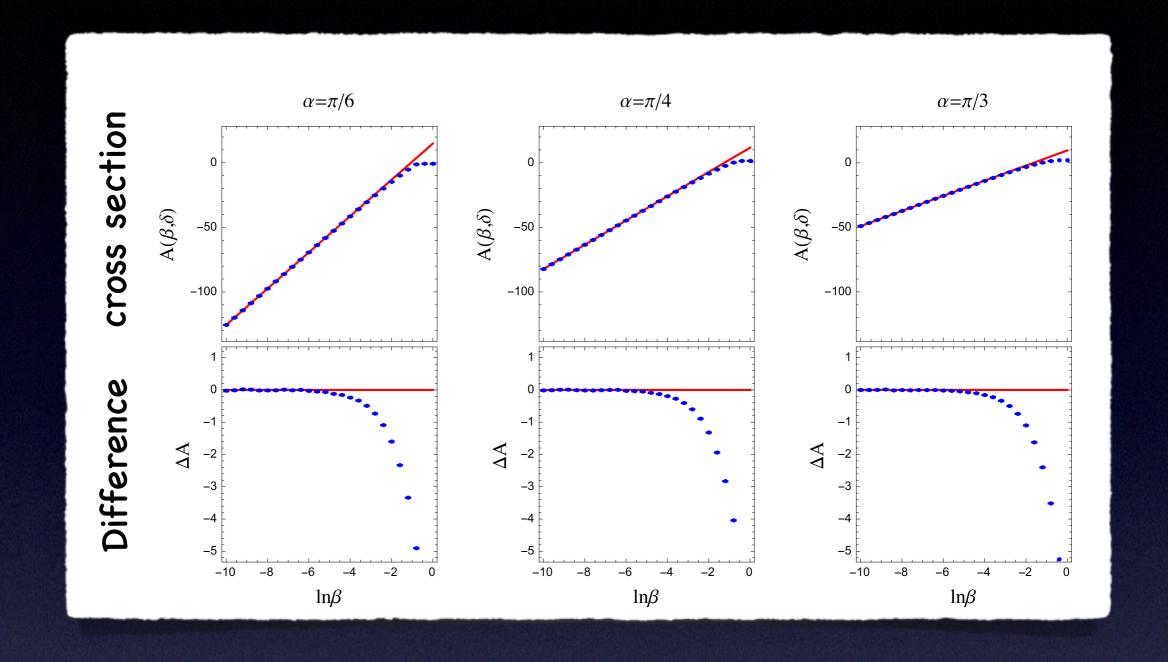
$$\mathcal{H}_m(\{\underline{n}\}, Q, \delta) = \frac{1}{2Q^2} \sum_{\text{spins}} \prod_{i=1}^m \int \frac{d\omega_i \, \omega_i^{d-3}}{(2\pi)^{d-2}} |\mathcal{M}_m\rangle \langle \mathcal{M}_m | \delta \left(Q - \sum_{i=1}^m \omega_i\right) \delta^{d-1}(\vec{p}_{\text{tot}}) \, \Theta_{\text{in}}^{n\bar{n}}(\{\underline{p}\})$$

ullet indicates integration over the direction of the energetic partons

$$\mathcal{H}_m(\{\underline{n}\}, Q, \delta) \otimes \mathcal{S}_m(\{\underline{n}\}, Q\beta, \delta) = \prod_{i=1}^m \int \frac{d\Omega(n_i)}{4\pi} \, \mathcal{H}_m(\{\underline{n}\}, Q, \delta) \, \mathcal{S}_m(\{\underline{n}\}, Q\beta, \delta)$$

One-loop coefficient v.s. EVENT2

$$A(\beta, \delta) = C_F \left[-8 \ln \delta \ln \beta - 1 + 6 \ln 2 - 6 \ln \delta - 6 \delta^2 + \left(\frac{9}{2} - 6 \ln 2 \right) \delta^4 - 4 \operatorname{Li}_2(-\delta^2) + 4 \operatorname{Li}_2(\delta^2) \right]$$



Two-loop coefficient

$$B(\beta, \delta) = C_F^2 B_F + C_F C_A B_A + C_F T_F n_f B_f$$

$$\begin{split} B_A &= \left[\frac{44}{3} \ln \delta - \frac{2\pi^2}{3} + 4 \operatorname{Li}_2(\delta^4)\right] \ln^2 \beta + \left[\frac{4}{3\left(1 - \delta^4\right)} - \frac{16 \ln \delta}{3\left(1 - \delta^4\right)} + \frac{16 \ln \delta}{3\left(1 - \delta^4\right)^2} \right. \\ &- \frac{4}{3} \ln^3 \left(1 - \delta^2\right) - \frac{20}{3} \ln^3 \left(1 + \delta^2\right) + 32 \ln \delta \ln^2 \left(1 - \delta^2\right) - 4 \ln \left(1 + \delta^2\right) \ln^2 \left(1 - \delta^2\right) \\ &- 4 \ln^2 \left(1 + \delta^2\right) \ln \left(1 - \delta^2\right) + 64 \ln \delta \ln^2 \left(1 + \delta^2\right) - 64 \ln^2 \delta \ln \left(1 + \delta^2\right) \\ &+ \frac{88}{3} \ln \delta \ln \left(1 - \delta^2\right) - \frac{16}{3} \pi^2 \ln \left(1 - \delta^2\right) + 44 \ln \delta \ln \left(1 + \delta^2\right) + \frac{16}{3} \pi^2 \ln \left(1 + \delta^2\right) \\ &+ \frac{44 \ln^2 \delta}{3} - \frac{16}{3} \pi^2 \ln \delta - \frac{268 \ln \delta}{9} + \frac{88 \operatorname{Li}_2 \left(\delta^4\right)}{3} - 4 \operatorname{Li}_3 \left(\delta^4\right) + 8 \operatorname{Li}_3 \left(-\frac{\delta^4}{1 - \delta^4}\right) \\ &+ 8 \ln 2 \operatorname{Li}_2 \left(\delta^4\right) - \frac{88 \operatorname{Li}_2 \left(\delta^2\right)}{3} - \frac{22}{3} \operatorname{Li}_2 \left(\frac{1}{1 + \delta^2}\right) + \frac{22}{3} \operatorname{Li}_2 \left(\frac{\delta^2}{1 + \delta^2}\right) + 32 \operatorname{Li}_3 \left(1 - \delta^2\right) \\ &+ 32 \operatorname{Li}_3 \left(\frac{\delta^2}{1 + \delta^2}\right) + 32 \ln \left(1 - \delta^2\right) \operatorname{Li}_2 \left(\delta^2\right) + 32 \ln \delta \operatorname{Li}_2 \left(\delta^2\right) - 32 \ln \left(1 + \delta^2\right) \operatorname{Li}_2 \left(\delta^2\right) \\ &+ 32 \ln \delta \operatorname{Li}_2 \left(\frac{1}{1 + \delta^2}\right) - 32 \ln \left(1 + \delta^2\right) \operatorname{Li}_2 \left(\frac{1}{1 + \delta^2}\right) - 32 \ln \delta \operatorname{Li}_2 \left(\frac{\delta^2}{1 + \delta^2}\right) \\ &+ 32 \ln \left(1 + \delta^2\right) \operatorname{Li}_2 \left(\frac{\delta^2}{1 + \delta^2}\right) - 8 \ln \left(1 - \delta^2\right) \operatorname{Li}_2 \left(\delta^4\right) + 8 \ln \left(1 + \delta^2\right) \operatorname{Li}_2 \left(\delta^4\right) - 24 \zeta_3 \\ &- \frac{2}{3} - \frac{4}{3} \pi^2 \ln 2 - M_A^{[1]}(\delta) \right] \ln \beta + c_2^A(\delta), \end{split}$$

Two-loop coefficient

Leading NGLs
$$B(\beta,\delta) = C_F^2 B_F + C_F C_A B_A + C_F T_F n_f B_f$$

$$\begin{split} B_A &= \left[\frac{44}{3}\ln\delta - \frac{2\pi^2}{3} + 4\operatorname{Li}_2(\delta^4)\right] \ln^2\beta + \left[\frac{4}{3(1-\delta^4)} - \frac{16\ln\delta}{3(1-\delta^4)} + \frac{16\ln\delta}{3(1-\delta^4)^2} \right. \\ &- \frac{4}{3}\ln^3\left(1-\delta^2\right) - \frac{20}{3}\ln^3\left(1+\delta^2\right) + 32\ln\delta\ln^2\left(1-\delta^2\right) - 4\ln\left(1+\delta^2\right)\ln^2\left(1-\delta^2\right) \\ &- 4\ln^2\left(1+\delta^2\right)\ln\left(1-\delta^2\right) + 64\ln\delta\ln^2\left(1+\delta^2\right) - 64\ln^2\delta\ln\left(1+\delta^2\right) \\ &+ \frac{88}{3}\ln\delta\ln\left(1-\delta^2\right) - \frac{16}{3}\pi^2\ln\left(1-\delta^2\right) + 44\ln\delta\ln\left(1+\delta^2\right) + \frac{16}{3}\pi^2\ln\left(1+\delta^2\right) \\ &+ \frac{44\ln^2\delta}{3} - \frac{16}{3}\pi^2\ln\delta - \frac{268\ln\delta}{9} + \frac{88\operatorname{Li}_2\left(\delta^4\right)}{3} - 4\operatorname{Li}_3\left(\delta^4\right) + 8\operatorname{Li}_3\left(-\frac{\delta^4}{1-\delta^4}\right) \\ &+ 8\ln2\operatorname{Li}_2\left(\delta^4\right) - \frac{88\operatorname{Li}_2\left(\delta^2\right)}{3} - \frac{22}{3}\operatorname{Li}_2\left(\frac{1}{1+\delta^2}\right) + \frac{22}{3}\operatorname{Li}_2\left(\frac{\delta^2}{1+\delta^2}\right) + 32\operatorname{Li}_3\left(1-\delta^2\right) \\ &+ 32\operatorname{Li}_3\left(\frac{\delta^2}{1+\delta^2}\right) + 32\ln\left(1-\delta^2\right)\operatorname{Li}_2\left(\delta^2\right) + 32\ln\delta\operatorname{Li}_2\left(\delta^2\right) - 32\ln\left(1+\delta^2\right)\operatorname{Li}_2\left(\delta^2\right) \\ &+ 32\ln\delta\operatorname{Li}_2\left(\frac{1}{1+\delta^2}\right) - 32\ln\left(1+\delta^2\right)\operatorname{Li}_2\left(\frac{1}{1+\delta^2}\right) - 32\ln\delta\operatorname{Li}_2\left(\frac{\delta^2}{1+\delta^2}\right) \\ &+ 32\ln\left(1+\delta^2\right)\operatorname{Li}_2\left(\frac{\delta^2}{1+\delta^2}\right) - 8\ln\left(1-\delta^2\right)\operatorname{Li}_2\left(\delta^4\right) + 8\ln\left(1+\delta^2\right)\operatorname{Li}_2\left(\delta^4\right) - 24\zeta_3 \\ &- \frac{2}{3} - \frac{4}{3}\pi^2\ln2 - M_A^{[1]}(\delta)\right]\ln\beta + c_2^A(\delta), \end{split}$$

Renormalization

We renormalise the bare hard function

$$\mathcal{H}_m(\{\underline{n}\}, Q, \delta, \epsilon) = \sum_{l=2}^{m} \mathcal{H}_l(\{\underline{n}\}, Q, \delta, \mu) \, \boldsymbol{Z}_{lm}^H(\{\underline{n}\}, Q, \delta, \epsilon, \mu)$$

e.g.
$$\mathcal{H}_2(\epsilon) = \mathcal{H}_2(\mu) oldsymbol{Z}_{22}^H(\epsilon,\mu)$$

$$\mathcal{H}_m \sim \mathcal{O}(\alpha_s^{m-2})$$

$$\mathcal{H}_3(\epsilon) = \mathcal{H}_2(\mu) \mathbf{Z}_{23}^H(\epsilon, \mu) + \mathcal{H}_3(\mu) \mathbf{Z}_{33}^H(\epsilon, \mu)$$

The Z-factor has the form

Renormalization

• By consistency, matrix Z^H must render the soft function finite

$$\boldsymbol{\mathcal{S}}_{l}(\{\underline{n}\},Q\beta,\delta,\mu) = \sum_{m=l}^{\infty} \boldsymbol{Z}_{lm}^{H}(\{\underline{n'}\},Q,\delta,\epsilon,\mu) \,\hat{\otimes}\, \boldsymbol{\mathcal{S}}_{m}(\{\underline{n'}\},Q\beta,\delta,\epsilon)$$

• We verify that ZH renormalises the two-loop soft function

$$S_2(\mu) = Z_{22}^H S_2(\epsilon) + Z_{23}^H \hat{\otimes} S_3(\epsilon) + Z_{24}^H \hat{\otimes} 1 + \mathcal{O}(\alpha_s^3)$$

and the general one-loop soft function

$$\frac{\alpha_s}{4\pi} \boldsymbol{z}_{m,m}^{(1)}(\{\underline{n}\}, Q, \delta, \epsilon, \mu) + \frac{\alpha_s}{4\pi} \int \frac{d\Omega(n_{m+1})}{4\pi} \boldsymbol{z}_{m,m+1}^{(1)}(\{\underline{n}, n_{m+1}\}, Q, \delta, \epsilon, \mu) + \boldsymbol{\mathcal{S}}_m(\{\underline{n}\}, Q\beta, \delta, \epsilon) = \text{finite}$$

Resummation

Therefore the resumed cross section

$$\sigma(\beta, \delta) = \sum_{l=2}^{\infty} \left\langle \mathcal{H}_{l}(\{\underline{n}\}, Q, \delta, \mu_{h}) \otimes \sum_{m \geq l} U_{lm}^{S}(\{\underline{n'}\}, \delta, \mu_{s}, \mu_{h}) \otimes \mathcal{S}_{m}(\{\underline{n'}\}, Q\beta, \delta, \mu_{s}) \right\rangle$$

with the formal evolution matrix

$$U^{S}(\{\underline{n}\}, \delta, \mu_{s}, \mu_{h}) = \mathbf{P} \exp \left[\int_{\mu_{s}}^{\mu_{h}} \frac{d\mu}{\mu} \mathbf{\Gamma}^{H}(\{\underline{n}\}, \delta, \mu) \right]$$

Leading Log Resummation

At LL level,

$$\mathcal{S}^T = (1,1,\cdots,1)$$
 $\mathcal{H} = (\sigma_0,0,\cdots,0)$ $\Gamma^{(1)} = \begin{pmatrix} V_2 & R_2 & 0 & 0 & \dots \\ 0 & V_3 & R_3 & 0 & \dots \\ 0 & 0 & V_4 & R_4 & \dots \\ 0 & 0 & 0 & V_5 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$

V_m: div. of one-loop virtual correction to m-legs amplitude

R_m: div. from additional radiation

$$\sigma_{\mathrm{LL}}(\delta,\beta) = \sigma_0 \left\langle \mathbf{S}_2(\{n,\bar{n}\},Q\beta,\delta,\mu_h) \right\rangle = \sigma_0 \sum_{m=2}^{\infty} \left\langle \mathbf{U}_{2m}^S(\{\underline{n}\},\delta,\mu_s,\mu_h) \,\hat{\otimes}\, \mathbf{1} \right\rangle$$

The symbol $\hat{\otimes}$ indicates that one has to integrate over the additional directions present in the higher-multiplicity anomalous dimensions R_m and V_m

Leading Log Expansion

Expand RG equation order by order

$$W_{ij}^k = \frac{n_i \cdot n_j}{n_i \cdot n_k \, n_j \cdot n_k}$$

$$\begin{split} \boldsymbol{\mathcal{S}}_{2}^{(1)} &= - \left(4N_{c} \right) \int_{\Omega} \mathbf{3}_{\mathrm{Out}} \, W_{12}^{3} \,, \\ \boldsymbol{\mathcal{S}}_{2}^{(2)} &= \frac{1}{2!} \left(4N_{c} \right)^{2} \int_{\Omega} \left[-\mathbf{3}_{\mathrm{In}} \, \mathbf{4}_{\mathrm{Out}} \left(P_{12}^{34} - W_{12}^{3} \, W_{12}^{4} \right) + \mathbf{3}_{\mathrm{Out}} \, \mathbf{4}_{\mathrm{Out}} \, W_{12}^{3} \, W_{12}^{4} \right] \,, \\ \boldsymbol{\mathcal{S}}_{2}^{(3)} &= \frac{1}{3!} \left(4N_{c} \right)^{3} \int_{\Omega} \left[\mathbf{3}_{\mathrm{In}} \, \mathbf{4}_{\mathrm{Out}} \, \mathbf{5}_{\mathrm{Out}} \left[P_{12}^{34} \left(W_{13}^{5} + W_{32}^{5} + W_{12}^{5} \right) - 2W_{12}^{3} \, W_{12}^{4} \, W_{12}^{5} \right] \right. \\ &\left. - \, \mathbf{3}_{\mathrm{In}} \, \mathbf{4}_{\mathrm{In}} \, \mathbf{5}_{\mathrm{Out}} \, W_{12}^{3} \left[\left(P_{13}^{45} - W_{13}^{4} \, W_{13}^{5} \right) + \left(P_{32}^{45} - W_{32}^{4} \, W_{32}^{5} \right) - \left(P_{12}^{45} - W_{12}^{4} \, W_{12}^{5} \right) \right] \right. \\ &\left. - \, \mathbf{3}_{\mathrm{Out}} \, \mathbf{4}_{\mathrm{Out}} \, \mathbf{5}_{\mathrm{Out}} \, W_{12}^{3} \, W_{12}^{4} \, W_{12}^{5} \right] \end{split}$$

Agrees with order-by-order expansion of BMS equation

$$\partial_L G_{12}(L) = \int \frac{d\Omega_j}{4\pi} W_{12}^j \left[\Theta_{\text{in}}^{n\bar{n}}(j) G_{1j}(L) G_{j2}(L) - G_{12}(L) \right]$$

Schwartz, Zhu '14

Leading Log Expansion



LL resummation

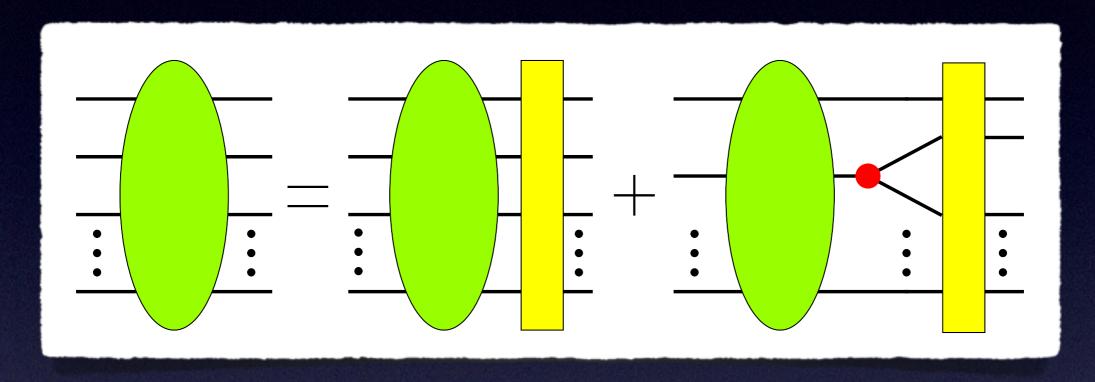
LL evolution equation: $\frac{d}{dt}\mathcal{H}_n(t) = \mathcal{H}_n(t)V_n + \mathcal{H}_{n-1}(t)R_{n-1}$

$$t = \int_{\alpha(\mu_h)}^{\alpha(\mu_s)} \frac{d\alpha}{\beta(\alpha)} \frac{\alpha}{4\pi}$$

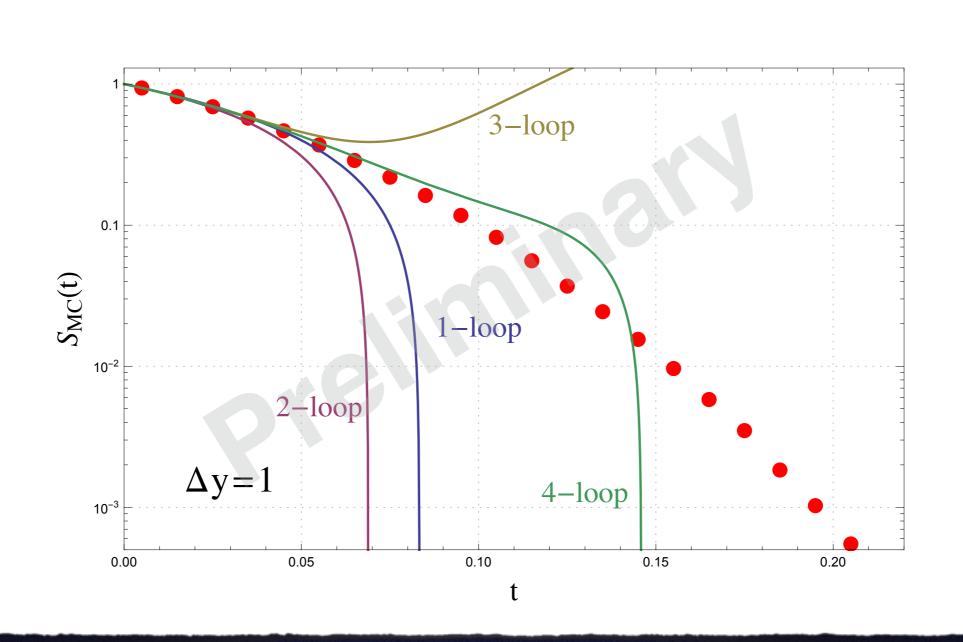
Solution:

$$\mathcal{H}_n(t) = \mathcal{H}_n(t_1)e^{(t-t_1)V_n} + \int_{t_1}^t dt' \mathcal{H}_{n-1}(t')R_{n-1}e^{(t-t')V_n}$$

This form is exactly what is implemented in a standard parton shower MC



MC numerical results



Conclusion

 We have derived a factorization formula for NG observables: Sterman-Weinberge di-jet cross section and interjet energy flow

$$\widetilde{\sigma} = \sigma_0 \, H \, \widetilde{S} iggl[\sum_{m=1}^{\infty} iggl\langle \mathcal{J}_m \otimes \widetilde{\mathcal{U}}_m iggr
angle iggr]^2$$

$$\sigma = \sum_{m} \langle \mathcal{H}_m \otimes \mathcal{S}_m \rangle$$

- In both case we have checked the factorization up to NNLO and reproduce full QCD results
- All the scales are separated -> RG evolution can be used to resum all large logarithms
- We apply MC method to solve the associated RG equations at LL level (next step: NLL)
- Numerous possible applications: jet cross sections, jet substructure, jet veto,.....

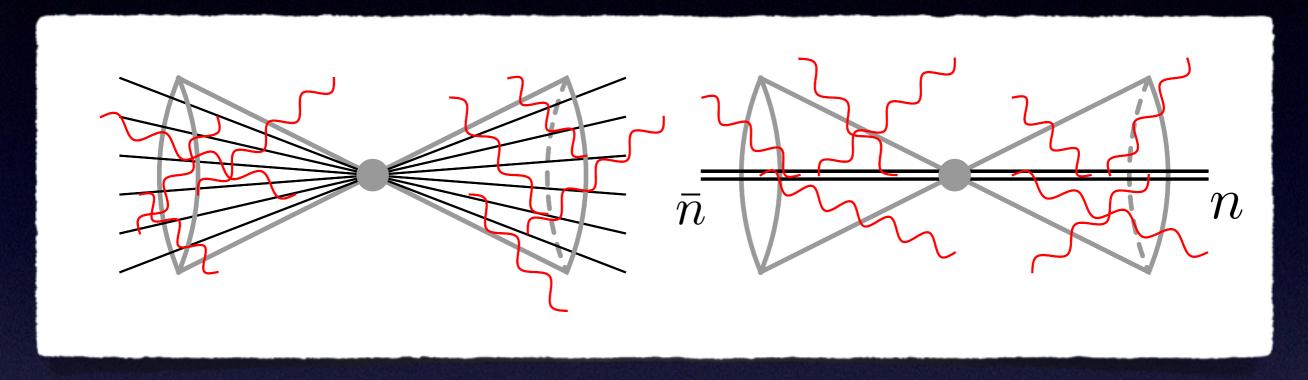
Thank you

Extra Slides

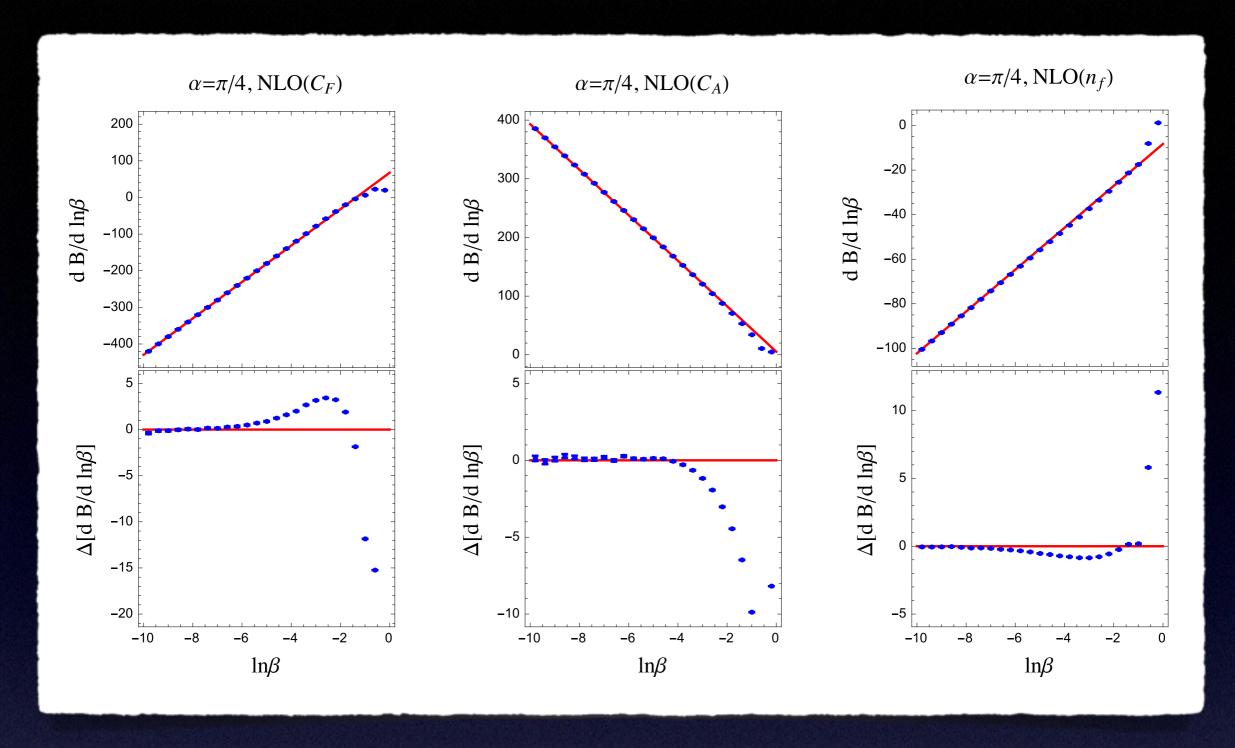
$$\widetilde{\sigma}(\tau,\delta) = \sigma_0 H(Q,\epsilon) \widetilde{S}(Q\tau,\epsilon) \left\langle \mathcal{J}_1(\{n_1\},Q\delta,\epsilon) \otimes \widetilde{\mathcal{U}}_1(\{n_1\},Q\delta\tau,\epsilon) + \mathcal{J}_2(\{n_1,n_2\},Q\delta,\epsilon) \otimes \widetilde{\mathcal{U}}_2(\{n_1,n_2\},Q\delta\tau,\epsilon) + \mathcal{J}_3(\{n_1,n_2,n_3\},Q\delta,\epsilon) \otimes \mathbf{1} + \dots \right\rangle^2$$

Soft function:

$$S(Q\beta) \mathbf{1} = \sum_{X_s} \langle 0| S^{\dagger}(\bar{n}) S(n) | X_s \rangle \langle X_s | S^{\dagger}(n) S(\bar{n}) | 0 \rangle \theta(Q\beta - 2E_{X_s})$$



Two-loop coefficient v.s. EVENT2



> We reproduce ALL logs at two loops

Comparison to BMS

Consider real and virtual together, all collinear divergences drop out. Leading soft divergence obtained by the soft approximation for the emitted (real or virtual) gluon

$$V_{m} = \Gamma_{m,m}^{(1)} = -4 \sum_{(ij)} \frac{1}{2} (T_{i,L} \cdot T_{j,L} + T_{i,R} \cdot T_{j,R}) \int \frac{d\Omega(n_{k})}{4\pi} W_{ij}^{k} \left[\Theta_{\text{in}}^{n\bar{n}}(k) + \Theta_{\text{out}}^{n\bar{n}}(k) \right],$$

$$R_{m} = \Gamma_{m,m+1}^{(1)} = 4 \sum_{(ij)} T_{i,L} \cdot T_{j,R} W_{ij}^{k} \Theta_{\text{in}}^{n\bar{n}}(k)$$

Virtual has the same form as the real-emission contribution, because the principal-value part of the propagator of the emission does not contribute.

LL resummation

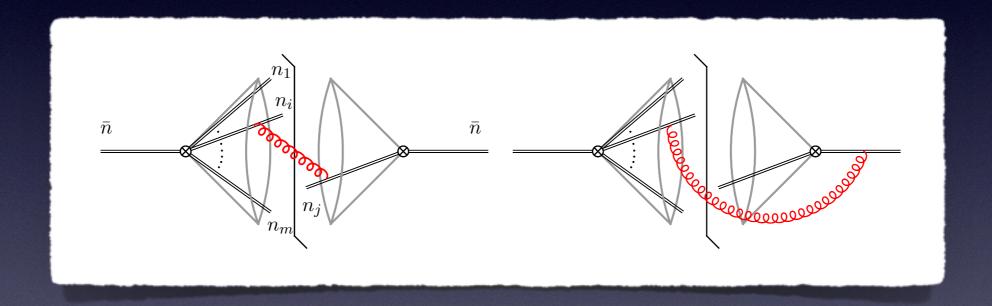
In the large N_C limit the color structure becomes trivial

$$R_{m} \left[\begin{array}{c|c} & 1 & \\ & i_{3} & \\ & \vdots & \\ & \vdots & \\ & i_{m} & \end{array} \right] = \begin{array}{c|c} & 1 & \\ & i_{3} & \\ & \vdots & \\ & \vdots & \\ & \vdots & \\ & 2 & \end{array} \right] + \left[\begin{array}{c|c} & \\ & \\ & \\ & \end{array} \right] + \cdots + \left[\begin{array}{c|c} & \\ & \\ & \\ & \end{array} \right]$$

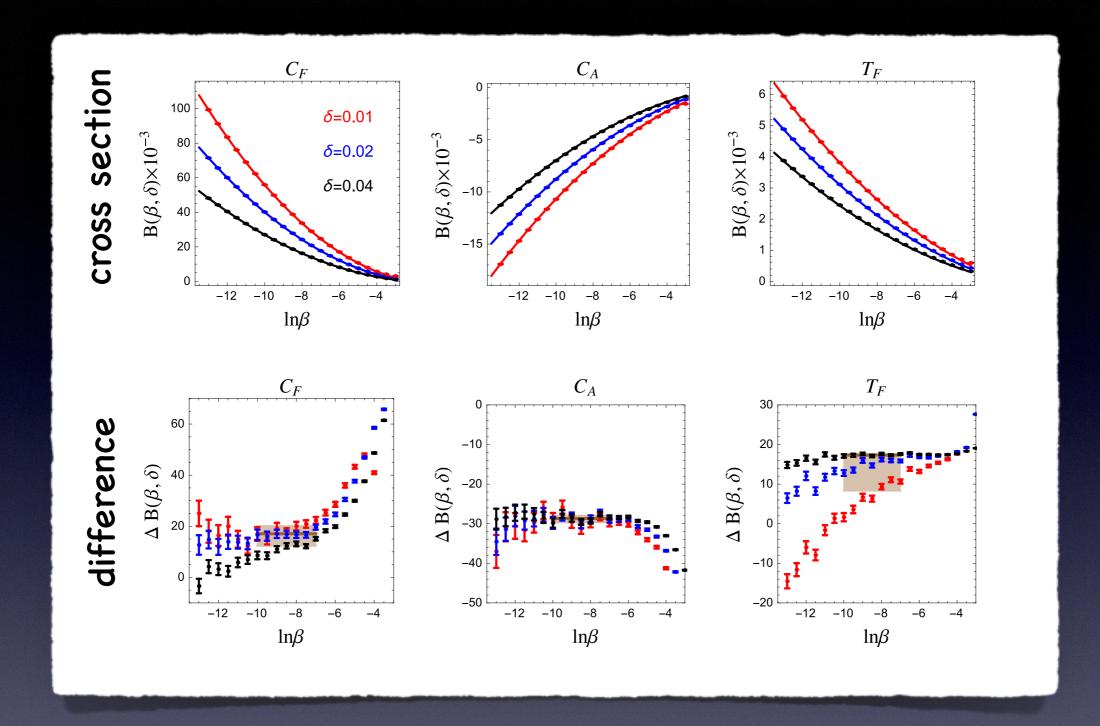
$$2V_{m} \left[\begin{array}{c|c} & 1 & \\ & i_{3} & \\ & \vdots & \\ & \vdots & \\ & \vdots & \\ & 2 & \end{array} \right] = \begin{array}{c|c} & 1 & \\ & i_{3} & \\ & i_{4} & \\ & \vdots & \\ & \vdots & \\ & 2 & \end{array} \right] + \cdots + \left[\begin{array}{c|c} & \\ & \\ & \\ & \end{array} \right] + \left[\begin{array}{c|c} & \\ & \\ & \\ & \end{array} \right] + \left[\begin{array}{c|c} & \\ & \\ & \\ & \end{array} \right]$$

One-loop renormalization for the narrowangle jet process

$$\frac{1}{2}\mathcal{H}^{(1)} \cdot \mathbf{1} + \frac{1}{2}\widetilde{\mathcal{S}}^{(1)} \cdot \mathbf{1} + \boldsymbol{z}_{m,m}^{(1)} + \boldsymbol{z}_{m,m+1}^{(1)} + \widetilde{\boldsymbol{\mathcal{U}}}_{m}^{(1)} = \text{fin.}$$



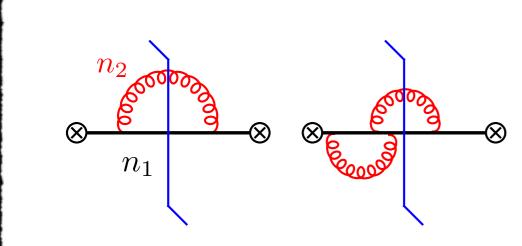
$$\widetilde{\mathcal{U}}_{m}^{(1)}(\{\underline{n}\},\epsilon) = -\frac{1}{\epsilon} \sum_{(ij)} \mathbf{T}_{i} \cdot \mathbf{T}_{j} \left[\ln \left(1 - \hat{\theta}_{i}^{2} \right) + \ln \left(1 - \hat{\theta}_{j}^{2} \right) - \ln \left(1 - 2\cos\phi_{j}\hat{\theta}_{i}\hat{\theta}_{j} + \hat{\theta}_{i}^{2}\hat{\theta}_{j}^{2} \right) \right]$$
$$-\frac{2}{\epsilon} \sum_{i=1}^{l} \mathbf{T}_{0} \cdot \mathbf{T}_{i} \ln \left(1 - \hat{\theta}_{i}^{2} \right) + \mathbf{T}_{0} \cdot \mathbf{T}_{0} \left(-\frac{2}{\epsilon^{2}} + \frac{4L_{Q\tau\delta}}{\epsilon} \right)$$



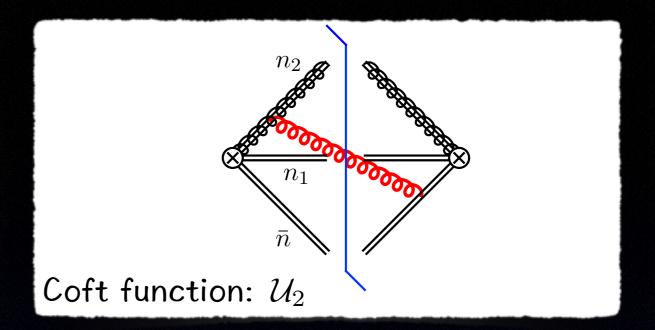
Data point from EVENT2, solid lines are our prediction. Difference yields unknown constants

$$c_2^F = 17.1_{-4.7}^{+3.0}, c_2^A = -28.7_{-1.0}^{+0.7}, c_2^f = 17.3_{-9.0}^{+0.3}.$$

Note: EVENT2 suffers from numerical instability in $\overline{n_f}$ channel.

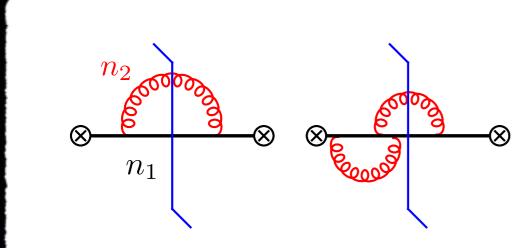


Jet function: \mathcal{J}_2

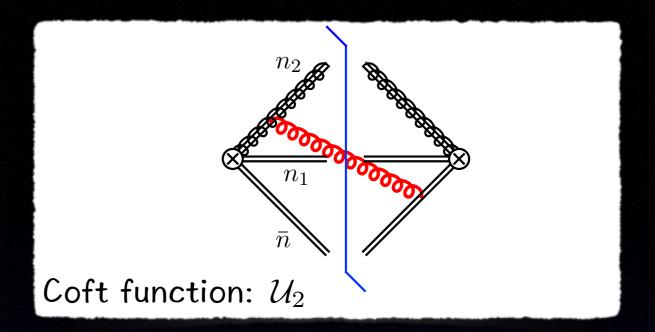


$$\mathcal{J}_{2}^{(1)}(\hat{\theta}_{1}, \hat{\theta}_{2}, \phi_{2}, Q\delta, \epsilon) = C_{F} \,\delta(\phi_{2} - \pi) \,e^{-2\epsilon L_{c}} \\
\times \left\{ \left(\frac{2}{\epsilon^{2}} + \frac{3}{\epsilon} + 7 - \frac{5\pi^{2}}{6} + 6\ln 2 \right) \delta(\hat{\theta}_{1}) \,\delta(\hat{\theta}_{2}) - \frac{4}{\epsilon} \,\delta(\hat{\theta}_{1}) \left[\frac{1}{\hat{\theta}_{2}} \right]_{+} + 8 \,\delta(\hat{\theta}_{1}) \left[\frac{\ln \hat{\theta}_{2}}{\hat{\theta}_{2}} \right]_{+} \\
+ 4 \,\frac{dy}{d\hat{\theta}_{2}} \left[\frac{1}{\hat{\theta}_{1}} \right]_{+} \frac{1 + 2y + 2y^{2}}{(1 + y)^{3}} \,\theta(\hat{\theta}_{1} - \hat{\theta}_{2}) \\
+ 4 \,\frac{dy}{d\hat{\theta}_{1}} \left[\frac{1}{\hat{\theta}_{2}} \right]_{+} \left(2 \left[\frac{1}{y} \right]_{+} - \frac{4 + 5y + 2y^{2}}{(1 + y)^{3}} \right) \theta(\hat{\theta}_{2} - \hat{\theta}_{1}) + \mathcal{O}(\epsilon) \right\} \mathbf{1}$$

$$\widetilde{\mathcal{U}}_2(\hat{\theta}_1, \hat{\theta}_2, \phi_2, Q\tau\delta, \epsilon) = \mathbf{1} + \frac{\alpha_0}{4\pi} e^{-2\epsilon L_t} \left[C_F u_F(\hat{\theta}_1) + C_A u_A(\hat{\theta}_1, \hat{\theta}_2, \phi_2) \right] \mathbf{1}$$



Jet function: \mathcal{J}_2



$$\langle \mathcal{J}_{2}^{(1)} \otimes \widetilde{\mathcal{U}}_{2}^{(1)} \rangle = e^{-2\epsilon(L_{c}+L_{t})} \left(C_{F}^{2} M_{F} + C_{F} C_{A} M_{A} \right)$$

$$M_{F} = -\frac{4}{\epsilon^{4}} - \frac{6}{\epsilon^{3}} + \frac{1}{\epsilon^{2}} \left(-14 + \frac{2\pi^{2}}{3} - 12 \ln 2 \right) + \frac{1}{\epsilon} \left(-26 - \pi^{2} + 10 \zeta_{3} - 32 \ln 2 \right)$$

$$-52 - \frac{10\pi^{2}}{3} - 27\zeta_{3} + \frac{11\pi^{4}}{30} - \frac{4}{3} \ln^{4} 2 - 8 \ln^{3} 2 - 4 \ln^{2} 2 + \frac{4\pi^{2}}{3} \ln^{2} 2$$

$$-52 \ln 2 + 4\pi^{2} \ln 2 - 28\zeta_{3} \ln 2 - 32 \operatorname{Li}_{4} \left(\frac{1}{2} \right) ,$$

$$M_{A} = \frac{2\pi^{2}}{3\epsilon^{2}} + \frac{1}{\epsilon} \left(-2 + \frac{\pi^{2}}{2} + 12 \zeta_{3} + 6 \ln^{2} 2 + 4 \ln 2 \right) - 4 + \frac{7\pi^{2}}{6} - 24\zeta_{3} - \frac{\pi^{4}}{6} + \frac{8}{3} \ln^{4} 2$$

$$-4 \ln^{3} 2 + 6 \ln^{2} 2 - \frac{8\pi^{2}}{3} \ln^{2} 2 - 4 \ln 2 + 9\pi^{2} \ln 2 + 56\zeta_{3} \ln 2 + 64 \operatorname{Li}_{4} \left(\frac{1}{2} \right)$$

Coft Scale

We emphasize that the coft modes have very low virtuality $p_t^2 = \Lambda_t^2 = (Q\beta\delta)^2$, much lower than the virtuality of the collinear and soft modes. The presence of this low physical scale might have important implications for the relevance of non-perturbative effects. These are suppressed by the ratio $\Lambda_{\rm QCD}/\Lambda_t$, where $\Lambda_{\rm QCD}\sim 0.5\,{\rm GeV}$ is a scale associated with strong QCD dynamics. Non-perturbative corrections to jet processes can thus be much larger than the naive expectation $\Lambda_{\rm QCD}/Q$. For example, for a jet opening angle $\alpha=10^\circ$ ($\delta\approx 0.09$) and 5% of the collision energy outside the jets ($\beta=0.1$), one obtains $\Lambda_t\approx 1\,{\rm GeV}$ for $Q=100\,{\rm GeV}$. It would be interesting to explore phenomenological consequences of this low-scale physics.