Identification of b jets in boosted event topologies with CMS

Dinko Ferenček Ruđer Bošković Institute, Zagreb, Croatia on behalf of the CMS Collaboration

BOOST 2016 July 19, 2016 Zürich

- Many searches for new physics as well as SM measurements rely on accurate identification of jets originating from b quarks (*b tagging*)
 - SM top quark, SM Higgs boson, SUSY and many other BSM scenarios

- Many searches for new physics as well as SM measurements rely on accurate identification of jets originating from b quarks (*b tagging*)
 - SM top quark, SM Higgs boson, SUSY and many other BSM scenarios
- What about boosted event topologies?

- Many searches for new physics as well as SM measurements rely on accurate identification of jets originating from b quarks (*b tagging*)
 - SM top quark, SM Higgs boson, SUSY and many other BSM scenarios
- What about boosted event topologies?

- Many searches for new physics as well as SM measurements rely on accurate identification of jets originating from b quarks (*b tagging*)
 - SM top quark, SM Higgs boson, SUSY and many other BSM scenarios
- What about boosted event topologies?

• *b* tagging, using information largely complementary to the jet substructure, can greatly improve the sensitivity of tagging algorithms for boosted objects

b jets and b tagging

- b tagging tries to "determine" whether a jet originated from the hadronization of a b quark by looking for signatures of b hadrons inside the jet
- Exploits distinctive properties of b hadrons:
 - Long lifetime
 - Large mass
 - Decays with high track multiplicities (~5 on average)
 - Relatively large semileptonic branching fraction (≈20% for electron or muons with cascade decays included)
 - Hard fragmentation function

Jet-track association (JTA):

• Cone-based JTA, e.g. ΔR(track,jet)<0.3

•

Jet-track association (JTA):

- Cone-based JTA, e.g. ΔR(track,jet)<0.3
- Explicit JTA based on tracks linked to charged constituents of PF jets (default for subjets)

Track selection:

• Consists of applying a set of track quality criteria

٠

SV reconstruction:

- Adaptive vertex ٠ reconstruction (AVR) from tracks associated to the jet
- Inclusive Vertex Finder • (IVF) secondary vertices reconstructed from all tracks independently from jets (current default)

Misidentification probability

 10^{-3}

0

Boosted b tagging in CMS

- 3 b tagging scenarios considered:
 - Fat jet b tagging: CSVv2 w/o dedicated retraining and w/ relaxed track and SV association criteria applied to a fat jet (anti-k_T R=0.8)

Boosted b tagging in CMS

- 3 b tagging scenarios considered:
 - Fat jet b tagging: CSVv2 w/o dedicated retraining and w/ relaxed track and SV association criteria applied to a fat jet (anti-k_τ R=0.8)
 - Subjet b tagging: Standard CSVv2 w/ explicit JTA and ghost-associated SVs applied to subjets (soft drop, pruned,...) of a fat jet

Boosted b tagging in CMS

- 3 b tagging scenarios considered:
 - Fat jet b tagging: CSVv2 w/o dedicated retraining and w/ relaxed track and SV association criteria applied to a fat jet (anti-k_τ R=0.8)
 - Subjet b tagging: Standard CSVv2 w/ explicit JTA and ghost-associated SVs applied to subjets (soft drop, pruned,...) of a fat jet
 - Double-b tagger: Dedicated b tagging algorithm targeting boosted resonances decaying into a pair of b quarks (e.g. $H \rightarrow b\overline{b}$)

Boosted b tagging performance

- Both subjets required to pass the same CSVv2 cut
- Fat jet b tagging not optimal for this topology \rightarrow Poor discrimination against $g \rightarrow b\overline{b}$
- Fat jet and subjet b tagging complementary → Prompted development of a dedicated double-b tagger

Boosted b tagging performance (cont'd)

- Double-b tagger performance improvement wrt other approaches increases at high $\ensuremath{p_{\tau}}$

Boosted b tagging performance (cont'd)

- Subjet b tagging an integral part of the top tagging algorithms commissioned in CMS [*]
 - Helps to improve the tagging performance

[*] http://cds.cern.ch/record/2126325/files/JME-15-002-pas.pdf

• Why performance measurements in data?

- Why performance measurements in data?
- Simulation does not perfectly reproduce b tagging performance in data (imperfect physics modeling, detector simulation,...) → Need to correct simulation by introducing and applying scale factors

$$\mathrm{SF} = \frac{\varepsilon_{\mathrm{DATA}}}{\varepsilon_{\mathrm{MC}}}$$

- Why performance measurements in data?
- Simulation does not perfectly reproduce b tagging performance in data (imperfect physics modeling, detector simulation,...) → Need to correct simulation by introducing and applying scale factors

$$\mathrm{SF} = \frac{\varepsilon_{\mathrm{DATA}}}{\varepsilon_{\mathrm{MC}}}$$

 Entire program of performance measurements using inclusive and muonenriched multijet and tt-enriched event samples defined

- Why performance measurements in data?
- Simulation does not perfectly reproduce b tagging performance in data (imperfect physics modeling, detector simulation,...) → Need to correct simulation by introducing and applying scale factors

$$\mathrm{SF} = \frac{\varepsilon_{\mathrm{DATA}}}{\varepsilon_{\mathrm{MC}}}$$

- Entire program of performance measurements using inclusive and muonenriched multijet and tt-enriched event samples defined
- Muon-enriched multijet sample obtained by muon-tagging jets

Performance measurements in data (cont'd)

 Subjet CSVv2: Efficiency measured using muon-tagged subjets and mistag rate using subjets from an inclusive multijet sample

Performance measurements in data (cont'd)

 Subjet CSVv2: Efficiency measured using muon-tagged subjets and mistag rate using subjets from an inclusive multijet sample

• **Double-b tagger:** Efficiency measured using double-muon-tagged fat jets and mistag rate from a tt-enriched sample

Performance measurements in data (cont'd)

 Subjet CSVv2: Efficiency measured using muon-tagged subjets and mistag rate using subjets from an inclusive multijet sample

• **Double-b tagger:** Efficiency measured using double-muon-tagged fat jets and mistag rate from a tt-enriched sample

Enriched in gluon splitting jets with signal-like topology \rightarrow Serves as proxy for H/Z \rightarrow bb which have low cross section and are difficult to select with high purity

Measurements for subjet CSVv2

Efficiency SFs measured using template fits (LT method) to JP tagger distributions for muontagged subjets

Measurements for subjet CSVv2

- Efficiency SFs measured using template fits (LT method) to JP tagger distributions for muontagged subjets
- Mistag rate SFs measured using negative tag method applied to subjets of inclusive fat jets

Measurements for subjet CSVv2

- Efficiency SFs measured using template fits (LT method) to JP tagger distributions for muontagged subjets
- Mistag rate SFs measured using negative tag method applied to subjets of inclusive fat jets
- Good agreement with SFs for the "standard" anti-k_τ R=0.4 jets

Efficiency SFs measured using template fits (LT method) to JP tagger distributions for doublemuon-tagged fat jets

- Efficiency SFs measured using template fits (LT method) to JP tagger distributions for doublemuon-tagged fat jets
- SFs consistent with unity but with sizable uncertainties due to limited sample size

- Efficiency SFs measured using template fits (LT method) to JP tagger distributions for doublemuon-tagged fat jets
- SFs consistent with unity but with sizable uncertainties due to limited sample size
- SFs for boosted top quarks faking boosted Higgs bosons measured in a sample enriched in semileptonic tt events (results in the backup slides)

July 19, 2016

Summary and outlook

- CMS has developed a powerful set of tools for boosted b tagging
- Subjet b tagging successfully commissioned during Run 1 with subjet scale factors now included in the standard list of deliverables of the b tagging group
- Dedicated double-b tagger algorithm developed and now commissioned for the first time using 13 TeV collision data recorded in 2015
- Growing base of analyses using boosted b tagging (primarily searches)
- More precise performance measurements expected using 2016 data
- Further developments and improvements possible, especially in light of the **Phase I** upgrade of the CMS pixel detector

Summary and outlook

- CMS has developed a powerful set of tools for boosted b tagging
- Subjet b tagging successfully commissioned during Run 1 with subjet scale factors now included in the standard list of deliverables of the b tagging group
- Dedicated double-b tagger algorithm developed and now commissioned for the first time using 13 TeV collision data recorded in 2015
- Growing base of analyses using boosted b tagging (primarily searches)
- More precise performance measurements expected using 2016 data
- Further developments and improvements possible, especially in light of the **Phase I** upgrade of the CMS pixel detector

Summary and outlook

- CMS has developed a powerful set of tools for boosted b tagging
- Subjet b tagging successfully commissioned during Run 1 with subjet scale factors now included in the standard list of deliverables of the b tagging group
- Dedicated double-b tagger algorithm developed and now commissioned for the first time using 13 TeV collision data recorded in 2015
- Growing base of analyses using boosted b tagging (primarily searches)
- More precise performance measurements expected using 2016 data
- Further developments and improvements possible, especially in light of the **Phase I** upgrade of the CMS pixel detector
- More information about the current b tagging performance and results, including selection details, can be found in
 - <u>http://cds.cern.ch/record/2138504/files/BTV-15-001-pas.pdf</u>
 - <u>http://cds.cern.ch/record/2195743/files/BTV-15-002-pas.pdf</u>

Backup Slides

cMVAv2 p_{T} dependence

More details about the cMVAv2 algorithm in http://cds.cern.ch/record/2138504/files/BTV-15-001-pas.pdf

CSV algorithm

Run 1 CSV algorithm:

- Likelihood-ratio-based discriminator
- Based on the variables listed below

	Vertex category			
Variable	RecoVertex	PseudoVertex	NoVertex	
trackSip3dSig	×	×	×	
trackSip2dSigAboveCharm	¥	~	×	
trackEtaRel	¥	~	×	
vertexMass	¥	~	×	
vertexNTracks	¥	~	×	
vertexEnergyRatio	¥	~	×	
flightDistance2dSig	v	×	×	

Improved CSVv2 algorithm:

- MLP-based discriminator
- Based on the variables listed below

Vertex category				
/ertex PseudoVer	rtex NoVertex			
 ✓ 	 			
· · · ·	v			
· · · ·	v			
· · ·	×			
e e e e e e e e e e e e e e e e e e e	×			
· ·	×			
· ·	×			
· ·	×			
× ×	×			
×	×			
	Vertex categ /ertex PseudoVer			

Double-b tagger input variables

Variable Variable 1. trackSip3dSig 0 15. tau1 trackEtaRel 0 tau1 trackEtaRel 1 2. trackSip3dSig 1 16. 3. trackSip3dSig 2 tau1 trackEtaRel 2 17. trackSip3dSig 3 tau2 trackEtaRel 0 4. 18. trackSip2dSigAboveCharm 0 5. 19. tau2 trackEtaRel 1 trackSip2dSigAboveBottom 0 tau2 trackEtaRel 2 6. 20. 7. trackSip2dSigAboveBottom 1 21 tau1 vertexMass 8. jetNTracks 22. tau2 vertexMass 9. jetNSecondaryVertices 23. tau1 vertexEnergyRatio 10. tau1 trackSip3dSig 0 24. tau2 vertexEnergyRatio 11. tau1 trackSip3dSig 1 25. tau1 flightDistance2dSig 12. tau2 trackSip3dSig 0 26. tau2 flightDistance2dSig tau1 vertexDeltaR 13. tau2 trackSip3dSig 1 27. 14. z ratio

LT method

• JP template fits before and after tagging

$$\varepsilon_{\rm b}^{\rm tag} = \frac{C_{\rm b} \cdot f_{\rm b}^{\rm tag} \cdot N_{\rm data}^{\rm tag}}{f_{\rm b}^{\rm before \ tag} \cdot N_{\rm data}^{\rm before \ tag}}$$

Negative tag method

• Scale factors for boosted top quarks faking boosted Higgs bosons

$p_{\rm T}$ bin (GeV)	300 - 400	400 - 550	550 - 700	inclusive (300 - 700 GeV)
loose double-b				
ϵ (Data)	$0.40 {\pm} 0.04$	$0.40{\pm}0.05$	$0.47 {\pm} 0.09$	$0.41{\pm}0.03$
ϵ (MC)	$0.33 {\pm} 0.01$	$0.36 {\pm} 0.0.01$	$0.34{\pm}0.01$	$0.34{\pm}0.01$
SF	$1.24{\pm}0.13$	$1.12{\pm}0.13$	$1.40 {\pm} 0.32$	1.20 ± 0.09 (stat.) ± 0.05 (syst.)
medium double-b				
ϵ (Data)	$0.26 {\pm} 0.04$	$0.25{\pm}0.04$	$0.25 {\pm} 0.03$	$0.26 {\pm} 0.03$
ϵ (MC)	$0.23 {\pm} 0.01$	$0.25{\pm}0.01$	$0.22 {\pm} 0.01$	$0.24{\pm}0.01$
SF	$1.14{\pm}0.16$	$1.01{\pm}0.17$	$1.13 {\pm} 0.39$	1.09 ± 0.11 (stat.) ±0.05 (syst.)
$p_{\rm T}$ bin (GeV)	300 - 400	400 - 500		inclusive (300 - 500 GeV)
tight double-b				
ϵ (Data)	$0.10 {\pm} 0.02$	$0.08 {\pm} 0.02$		$0.06 {\pm} 0.01$
ϵ (MC)	$0.07 {\pm} 0.01$	$0.06 {\pm} 0.01$		$0.09 {\pm} 0.02$
SF	$1.54{\pm}0.36$	$1.41 {\pm} 0.39$		1.49 ± 0.27 (stat.) ± 0.05 (syst.)

Limitations of the Run 1 setup

- Run 1 boosted b-tagging setup based on the software framework and tagging algorithms designed for R=0.5 jets
 - Facilitated commissioning studies and early adoption in physics analyses
 - However, certain aspects suboptimal for boosted topologies
- Jet-track association:
 - Based on a fixed-size cone
 - Can lead to double-counting of tracks at high p_T and subjet tag correlations (problematic for the application of data/MC scale factors)
 - Default cone size also not optimal for fat jet b tagging
- Jet flavor assignment:
 - Also based on a fixed-size cone ($\Delta R < 0.3$)
 - Can lead to subjet flavor ambiguities
- Secondary vertex reconstruction:
 - Using tracks associated to jets (not optimal when the fraction of shared tracks becomes significant)

Run 2 developments

- Improved (sub)jet flavor definition [1]
 - Using b and c hadrons instead of b and c quarks
 - Based on ghost association of hadrons/partons instead of ΔR matching → Subjet flavor ambiguities eliminated
- Explicit jet-track association
 - Uses tracks linked to charged constituents of particleflow jets
 - Eliminates the problem of shared tracks
- Inclusive Vertex Finder (IVF) secondary vertices
 - Does not require jets and instead uses all tracks to reconstruct secondary vertices → By construction independent of the jet size and significantly reduces possible track sharing
 - Ghost association used to assign SVs to jets and then to the closest (sub)jets based on rapidity-based ΔR
- Improved CSV algorithm (CSVv2)

[1] https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideBTagMCTools

Subjet flavor

- Subjet flavor definition:
 - "Ghost" hadrons/partons clustered inside a fat jet are later assigned to the closest subjet in rapidity-based ΔR

→ In order to assign subjet flavor, need external fat jet collections (to avoid flavor inconsistencies between subjets and fat jets)

Inclusive Vertex Finder SV reconstruction

- 1. Coarse track pre-clustering around displaced seed tracks
 - Based on track distances and angles
- Vertex reconstruction/fitting from the track clusters obtained in step 1 (using "adaptive vertex fit")
- 3. Vertex merging
 - Check vertices for shared tracks
 - Remove vertex if shared fraction >0.7 and distance significance <2
- 4. Track-vertex arbitration
 - Trade off tracks between PV and SV based on their compatibility with vertices
 - Refit vertices with new track selection
- 5. Vertex merging
 - Same as step 3 with max. shared fraction of 0.2 and min. distance significance of 10

SubJet2 et = 194.54

SecondaryVertex2

eta = -0.530

phi = 0.662

Boosted top candidate

