Exotic searches with boosted *H* bosons

Chris Pollard University of Glasgow on behalf of the ATLAS Collaboration

Motivation

"The Higgs boson could be the gateway to BSM physics..."

Many models predict new physics resulting in final state *H* bosons.

In this talk: Dark Matter, RS Graviton, new heavy vector triplets

Boosted $H \rightarrow bb$ tagging: signal

anti-kt R = 1.0 calorimeter jet

Chris Pollard Glasgow

Boosted $H \rightarrow bb$ tagging: backgrounds

Chris Pollard Glasgow

Boosted $H \rightarrow bb$ tagging: working points

Three primary working points defined

	Loose	Medium	Tight		
	FOOR	neurum	Tigne	ļ	700/ b to action
efficiency	0.41 ± 0.07	0.32 ± 0.06	0.25 ± 0.05		· ~/0% <i>D</i> -tagging
Multi-jet rejection					efficiency per
Inclusive	260 ± 50	460 ± 90	800 ± 210		<i>b</i> -jet
Light-flavor	$O(10^5)$	$\mathcal{O}(10^5)$	$O(10^{6})$		
cl	$O(10^3)$	$\mathcal{O}(10^3)$	$O(10^4)$		• 90% efficient
bl	$O(10^2)$	$\mathcal{O}(10^2)$	$\mathcal{O}(10^3)$		iet mass cut
bc	$\mathcal{O}(10)$	$\mathcal{O}(10)$	$O(10^2)$		jet mass cut
cc	250 ± 150	480 ± 310	1200 ± 900		
bb	11 ± 2	19 ± 4	31 ± 9		· no further
Hadronic top rejection					substructure
Inclusive	67 ± 17	110 ± 30	160 ± 50		requirements
bl	360 ± 230	660 ± 460	810 ± 600		-
bc	24 ± 6	39 ± 11	53 ± 16		

ATL-PHYS-PUB-2015-035

ATLAS

Boosted *H*→*bb* tagging: performance

see **<u>Qi's earlier talk</u>** for more details and improvements for 2016 analyses

ATLAS

BOOST 2016

Chris Pollard Glasgow

Caveat

Several analyses shown have both "resolved" and "merged" strategies for reconstructing Higgs boson decays.

I'll focus mainly on the "merged" strategies, but the resulting interpretations are based on both.

BOOST 2016

ATLAS

Search for dark matter in association with a Higgs boson

Event preselection:

- $E^{T}_{miss} > 150 \text{ GeV}$
- $p^{T_{miss}} > 30 \text{ GeV}$
- zero isolated leptons
- large-*R* jet $p_T > 250 \text{ GeV}$
- categorize events by number of *b*-tags

ATLAS

BOOST 2016

ATLAS-CONF-2016-019

Chris Pollard Glasgow

high-p_T mono-H: observable

Observable: m_J

Chris Pollard Glasgow

BOOST 2016

ATLAS

mono-*H* @ high-p_T: results

ATLAS-CONF-2016-019

Chris Pollard Glasgow

10

ATLAS

Search for high-mass HH resonances

Event preselection:

- >= 2 large-*R* jets with
 - p_T > 250 GeV
 - m > 50 GeV
 - >= 2 small-*R* track jets
- leading large-*R* jet $p_T > 350 \text{ GeV}$ (reduce top background)
- $|\Delta\eta(J,J)| < 1.7$
- categorize events by number of *b*-tags

arXiv:1606.04782

Chris Pollard Glasgow

High-mass HH: background estimate

Chris Pollard Glasgow 12

High-mass *HH*: observable

arXiv:1606.04782

Dominant uncertainties:

- *b*-tagging efficiencies
- jet mass scale/resolution
- multijet normalization and shape

Chris Pollard Glasgow

High-mass *HH:* interpretation

Search for high-mass VH resonances

15

Glasgow

arXiv:1607.05621

Chris Pollard

Selection:

- >= 1 large-R jets with
 - $p_{\rm T} > 250 \; {\rm GeV}$
 - >= 1 b-tagged small-R track jets
- categorize events by number of *b*-tags associated (or not) to leading large-*R* jet
- categorize events by number of isolated charged leptons
 - $E^{T_{miss}} > 200 \text{ GeV} (0\text{-lepton})$
 - $E^{T_{miss}} > 100 \text{ GeV} (1-\text{lepton})$
 - Z-mass window (2-lepton)

BOOST 2016

ATLAS

High-mass*VH*: backgrounds I

Background estimate strategy:

define *m*_{jet} sideband regions above and below signal region (75 - 145 GeV)

several background processes with non-negligible contributions

Chris Pollard Glasgow

ATLAS BOOST 2016

High-mass*VH*: backgrounds II

Background estimate strategy:

- define *tt* control regions based on additional b-tagged track jets in event (0-, 1-lepton) or *eµ* events (2-lepton).
- maximum-likelihood fit over all sidebands and signal regions to constrain/correct background modeling

Chris Pollard Glasgow

17

BOOST 2016

ATLAS

High-mass*VH*: observable

Dominant uncertainties:

- data statistics
- b-tagging efficiencies
- *tt* normalization and modeling
- jet energy/mass scale/resolution

ATLAS BOOST 2016

Chris Pollard Glasgow

High-mass VH: results

Interpreted in a generic Heavy Vector Triplet model

Z'→ZH W'→WH arXiv:1607.05621

ATLAS

BOOST 2016

Chris Pollard Glasgow

19

Summary

- There have been several successful applications of boosted Higgs boson tagging for physics results in Atlas with the 2015 data.
- High-mass limits were improved—in some cases—by several hundred GeV largely due to the applications of these techniques.
- As was previously shown, significant improvements have been developed for future analyses: keep an eye out for more.

ATLAS

High-p_T mono-*H*: regions

Chris Pollard Glasgow

21

High-p_T mono-*H*: event display

Chris Pollard Glasgow

22

ATLAS

High-mass*HH*: regions

Chris Pollard Glasgow 23

High-mass*HH*: efficiencies

ATLAS

High-mass VH: 0 lepton SR

Chris Pollard Glasgow

25

ATLAS BOOST 2016

High-mass VH: 1 lepton SR

Chris Pollard Glasgow

26

ATLAS BOOST 2016

High-mass VH: 1 lepton SR

BOOST 2016

Chris Pollard Glasgow

High-mass VH: interpretation

ATLAS