A Search for BSM Light Bosons Decaying to Muon Pairs

BOOST 2016 2016/07/20 Zürich, Switzerland J. Rorie on behalf of the CMS Collaboration

- We look for a new light boson "a"
- Signature is ?? $\rightarrow 2a + X \rightarrow 2\mu + 2\mu + X$
 - signature is only dependent on muon pairs
 - open to many models/signatures
- Exciting possibilities: $h \rightarrow ??? \rightarrow 2a + X \rightarrow 2\mu + 2\mu + X$

Benchmark Models

- Dark SUSY
 - can have 125 GeV Higgs
 - Higgs decays to lightest 'visible' neutralino (n_1)
 - n_1 decays to dark photon (γ_D) and light hidden neutralino (n_D)
 - $\gamma_{\rm D}$ decays to $\mu\mu$
 - dark photon is possibly long-lived

- predicts multiple CP-even Higgs ($h_{1,2,3}$)
 - $h_{1,2}$ could be consistent with 125 GeV Higgs
- also predicts CP-odd Higgs (a1, a2)
 - could couple to SM leptons
- can see decay of $h_{1,2}$ to a_1 to $\mu\mu$

Event Selection

- Trigger on ≥ 2 muons, $p_T > 17$ GeV and $p_T > 8$ GeV
- Require \geq 4 muons ID'd with Particle Flow algorithm [1]
 - must be either the Tracker or Global algorithms
 - 1 muon in the barrel ($|\eta| < 0.9$) with $p_T > 17$ GeV
 - 3 muons in the barrel or endcaps ($|\eta|<$ 2.4) with $p_T>$ 8 GeV

Event Selection

- Group into muon pairs
 - opposite charge
 - tracker tracks have vertex probability > 1% or $\Delta R(\mu^+\mu^-) < 0.01$
 - invariant mass of pair < 2 GeV
- Define dimuons
 - look for muon pairs that do not have any muons in common with other muon pairs
 - classify pairs as "dimuons"
 - note: unpaired muons / muon pairs with muons in common are allowed in event

Offline Selection

Dimuons have the same parent particle type, therefore:

- Same invariant mass
 - criteria based on detector resolution
 - $|\Delta m_{\mu\mu}| < (0.13 + 0.065(m_{\mu\mu} + m_{\mu\mu})/2)$
 - 5x resolution of $m_{\mu\mu}$ measurement
 - also defines the signal region

• Common vertex - $\Delta z = |z_{\mu\mu1} - z_{\mu\mu2}| < 0.1 \text{ cm}$

Offline Selection

Isolation cut

$$Iso_{\mu\mu} = \sum_{tracks} p_T(track) < 2 \, GeV$$

- sums over all reconstructed tracks
 - p⊤(tracks) > 0.5 GeV
 - $\Delta R(\text{track}, \mu\mu) < 0.4$
 - $|z_{track} z_{\mu\mu}| < 0.1 \text{ cm}$
 - tracks forming dimuon are excluded

Vertex Finding

- Vertex finding is critical
 - required for selecting muon pairs
 - needed for valid dimuons
- Vertex finding is also challenging
 - muons can have small separation & nearly parallel tracks
 - dimuons are highly boosted
 - long displacement from IP if new boson is long-lived
- Vertex finding techniques
 - initial attempt with Kalman fitter to find a dimuon vertex
 - if Kalman fails:
 - use point of muon tracks' distance of closest approach as the dimuon's vertex
 - recalculate the dimuon's kinematics
 - improvement seen for low-mass dimuons

Pixel Hit Recovery

- Lost events with dimuons
 - fiducial volume extends to first pixel layer
 - two spatially close, parallel track muons may create a single pixel hit
 - the single pixel hit might not be assigned to either muon -
 - the event, without muon with 1st pixel layer hit, is rejected

- Pixel hit recovery
 - use muon track trajectory info to propagate back to 1st pixel layer
 - define a 0.05 mm radius about the propagated muon position -
 - look in circumscribed region areas for pixel hit, recover event if found

- Modeled electroweak $pp \rightarrow 4\mu$
 - included $qq \rightarrow ZZ \rightarrow 4\mu$ (left) and $qq \rightarrow Z \rightarrow 2\mu$ with $2^{nd} Z$ (right)
 - other processes were negligible (<1 per million)
 - expected contribution in signal region $< 0.15 \pm 0.03$ events

Make a template via Cartesian product:

- Distributions fit with analytic functions
 - bulk shape is Bernstein polynomial
 - η , ω , and ϕ resonances are Gaussians
 - J/ ψ is a Crystal Ball
- Scale template; signal region contribution is 2.0 ± 0.7 events

All figures from Ref [3]

- Previous $b\bar{b}$ background elimination leaves prompt J/ ψ
- Two sources of prompt J/ ψ
 - Single Parton Scattering (SPS)
 - Double Parton Scattering (DPS)
- Methodology
 - select subset (2.8 GeV $\leq m_{\mu\mu} \leq$ 3.3 GeV)
 - separate prompt from non-prompt (ABCD method)
 - fit SPS/DPS MC templates to prompt sample
 - apply selection criteria to prompt samples
- Results
 - DPS: 0.008 ± 0.008 events
 - SPS: 0.050 ± 0.031 events

Run I Result

• Total Background (EWK + J/ ψ + $b\bar{b}$): 2.1 ± 0.7 events

One event seen in signal region, consistent with no signal

Run I Result Interpretation

Dark SUSY

CMS

All figures from Ref [3]

- Areas covered by CMS and ATLAS are complementary
- NMSSM:
 - "conservative" upper limits for more general model parameters
 - plot for different relative masses of h_1 , h_2 ; a_1

Conclusion

- Model-independent search has exciting opportunities for discovery and model elimination
- Number of events seen in Run I (8 TeV) consistent with no signal
- Run I results interpreted in the context of multiple models
- Running again on Run II (13 TeV) data in 2016

Cited References

- [1] CMS Collaboration, "Performance of CMS muon reconstruction in pp collision events at ^ps = 7 TeV", *JINST* **7** (2012) P10002, DOI:10.1088/1748-0221/7/10/P10002, arXiv:1206.4071
- [2] CMS Collaboration, "CMS reconstruction improvement for the muon tracking by the RPC chambers", DOI: 10.1088/1748-0221/8/03/T03001
- [3] CMS Collaboration, "A Search for New Light Bosons Decaying into Muon Pairs", Phys. Lett. B 752 (2016) 146, arXiv:1506.00424 (2015)

- Previous iterations of this analysis performed by this group
 - CMS Collaboration, "Search for light resonances decaying into pairs of muons as a signal of new physics", JHEP 07 (2011) 098, doi:10.1007/JHEP07(2011)098, arXiv:1106.2375
 - CMS Collaboration, "Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states", arXiv:1210.7619. (2013)

Candidate Event

CMS (Unpublished) 20.7 fb⁻¹ (8TeV) Muon 1, pt = 11.19 eta = -1.795 phi = 1.042 Muon 0, pt = 13.11 eta = -1.797 phi = 1.042 Muon 2, pt = 9.42 MET 0, eta = 0.295 pt = 26.47 phi = -2.864 eta = 0.000 phi = 0.068Muon 3, pt = 22.44 eta = 0.288 phi = -2.850

Candidate Event

Background: QCD pp→ $b\bar{b}$ →4 μ

- Selection criteria allows for two dimuon invariant mass distributions (shapes) based on p_T:
 - S_{17} : contains a high p_T muon ($p_T > 17$ GeV) in barrel
 - S_8 : does not contain a high p_T muon
- Two different 2D distributions contribute to the overall template
 - $S_{17}xS_8$ and $S_{17}xS_{17}$
 - Template = $F_1(N_{17,17}; N_{17,8})S_{17}xS_8 + F_2(N_{17,17}; N_{17,8})S_{17}xS_{17}$

Can be factorized into S₁₇x"S_{MIX}"

- Show isolation distribution of dimuon 1 and 2 are at most weakly correlated
- Divide distribution into A,B,C, and D regions where "A" satisfies the lso < 2GeV requirement
- Iso > 2 GeV region (BCD) is mostly b-decay J/ψ with little prompt contamination CMS (Unpublished) 20.7 fb⁻¹ (8TeV)
- Use the following relations:

$$rac{N_{A_{non-prompt}}}{N_B} \sim rac{N_D}{N_C}$$

$$N_{A_{non-prompt}} \sim N_B \times \frac{N_D}{N_C}$$

• Use the following relations:

$$\frac{N_{A_{non-prompt}}}{N_B} \sim \frac{N_D}{N_C}$$

$$N_{A_{non-prompt}} \sim N_B \times \frac{N_D}{N_C}$$

$$N_{A_{non-prompt}} \sim N_B \times \frac{N_D}{N_C}$$

$$N_{A_{prompt}} = N_A - N_{A_{non-prompt}} \sim N_A - N_B \times \frac{N_D}{N_C}$$

EWK Not Used

• EWK processes that mimic signal and were found to be negligible

$$S(m_1, m_2) = \frac{N_{17,8}}{N_{17,8} + N_{17,17}} \cdot [S_{17}(m_1) \times S_8(m_2)] + \frac{N_{17,17}}{N_{17,8} + N_{17,17}} \cdot [S_{17}(m_1) \times S_{17}(m_2)]$$

$$S(m_1, m_2) = S_{17}(m_1) \times \left[\frac{N_{17,8}}{N_{17,8} + N_{17,17}} \cdot S_8(m_2) + \frac{N_{17,17}}{N_{17,8} + N_{17,17}} \cdot S_{17}(m_2) \right]$$

 $S(m_1, m_2) = S_{17}(m_1) \times S_{mix}(m_2)$

Efficiency Curves

- Apply all selection criteria, corrections, etc
- Create efficiency distribution
 - efficiency defined as $(N_{\text{RECO}}/N_{\text{tot}})$
 - is a function of mass and lifetime
 - assume smoothly varying function
- Can pass this into limit machinery

Fiducial Region Selection

- Want efficiency independent of decay vertex location
 - efficiency "high" and "flat"
 - non-uniformity of dimuon reconstruction efficiency would be complicated
- Solution: fiducial cut restricting to uniform region
 - currently set at $L_{xy} < 4.4$ cm, $L_z < 34.5$ cm
 - nearly matches 1st pixel layer
 - require RECO dimuon have 1st pixel layer hit; offline selection

Ratio Plot in Fiducial Region

- Examine ratio of GEN level acceptance RECO level acceptance as a function of $\mathrm{c}\tau$
- Gen level acceptance (α_{gen})
 - 1 GEN mu p_T > 17 ($|\eta| < 0.9$)
 - 4 GEN mu $p_T > 8$ ($|\eta| < 2.4$)
 - GEN level fiducial cut
- Full analysis acceptance at RECO level (ϵ_{full})
 - 1 RECO mu $p_T > 17$ ($|\eta| < 0.9$)
 - 4 RECO mu $p_T > 8$ ($|\eta| < 2.4$)
 - GEN level fiducial cut
 - event and full offline selection

Vertex Finding

- required for selecting muon pairs
- needed for valid dimuons
- Vertex finding is also challenging
 - muons can have small separation & nearly parallel tracks
 - dimuons are highly boosted
 - long displacement from IP if new boson is long-lived
- Vertex finding techniques
 - initial attempt with Kalman fitter to find the dimuon vertex
 - if Kalman fails, use point of tracks' distance of closest approach as vertex and recalculate dimuon kinematics
 - improvement seen for low-mass dimuons