

Resolved Top Tagger in CMS

An MVA-based tool used for tagging low to moderately boosted hadronic tops

Stanislava Sevova, Northwestern University on behalf of CMS Collaboration

Overview

- Motivation
- Resolved Top Tagger (RTT) Overview
- Training and Inputs
- Expected Performance
- Characterization in Data and Simulation
- Systematic Uncertainties
- Application

Motivation (1)

- Many BSM theories predict low to moderately boosted tops where tops decay to three resolved jets in final state
 - e.g. tops in tt+DM models are typically not boosted

- Aim to leverage jet properties/characterization tools to tag resolved top decays
- Similar arguments motivated earlier development of a resolved W tagger
 - Applied in Run-1 CMS monojet/mono-V Dark Matter search (EXO-12-055)
 - Presented at BOOST 2014 (JME-14-002)

Motivation (2)

- Search for tt+DM in semileptonic and hadronic channels
 - hadronic channel background has either no tops (i.e. V+jets) or one hadronically decaying top (i.e. tt(1ℓ))

- MVA training performed in simulated tt sample
 - Signal training sample: each jet in trijet combo is matched (R<0.3) to generator level quarks from a hadronic top decay
 - Background training sample: any trijet combo where at least one jet is not matched to a generator level quark from hadronic top decay

RTT Training

- MVA discriminant used to identify jet triplets from top decays
 - Self-contained: uses only interrelations and properties from jet triplets, and nothing from global event
 - Inputs: b-tag discriminant, QGL, angles between jets, kinematic fit probability
- Jet selection: anti-k_T R=0.4, p_T > 30 GeV, $|\eta|$ < 2.4
 - Top mass window: 100 GeV < M_{jjj} < 300 GeV
- Trained using BDT with gradient descent method on 100,000 signal and 200,000 background events
 - 1000 trees used for training
 - Training depth = 3
 - ► Shrinkage parameter = 0.05 ⇒ small parameter means more decision trees

Inputs (1)

- b-tag discriminant: no explicit b-tag requirement for jets fed into BDT
 - jet #1 designated as "b-jet" (highest b-tag discriminant)
 - jet #2 and jet #3 are considered to be coming from W decay

- QGL: quark-gluon likelihood discriminant
 - QGL of jets from W decay
 - Discriminant against combinatoric background from gluon-initiated jets

Inputs (2)

Kinematic fit probability

- jet triplet 4-vectors free to float within experimental uncertainties to best satisfy m_{top} and m_W constraints
- Least squares method: probability translated from χ^2 of fit

- Most powerful input variable to RTT training
- ◆ 2015 data well described by simulation

Expected Performance

- Observe good level of agreement between 2015 CMS data and simulation for RTT discriminant
 - → 3 efficiencies in data & MC: signal, tt(1ℓ)
 combinatorial background, non-tt(1ℓ)
 background
 - measured for working point RTT > 0

Split by signal and backgrounds

- Expected performance in simulation
 - signal combination is a matched jet triplet from hadronic top decay in semileptonic tt sample
 - background is highest RTT scoring combination containing at least one jet not matched to a hadronic top decay quark

Characterization Procedure (1)

- Efficiencies measured using 2 step procedure:
 - (1) non-tt(1ℓ) bkg efficiency measured in dileptonic tt control region
 - (2) **signal** and **tt(1**/**) combinatorial bkg** efficiencies measured in **semileptonic** tt sample

Characterization Procedure (2)

- Efficiencies measured using 2 step procedure:
 - (1) non-tt(1ℓ) bkg efficiency measured in dileptonic tt control region
 - provides sample with similar composition as Z(vv)+jets for fake rate measurement

Control region selection

Characterization Procedure (3)

- Efficiencies measured using 2 step procedure:
 - (1) non-tt(1ℓ) bkg efficiency measured in dileptonic tt control region
 - provides sample with similar composition as Z(vv)+jets for fake rate measurement

Count the fraction of events passing RTT discriminant > 0 in data & MC to derive scale factor for non-tt(1ℓ) bkg

Characterization Procedure (4)

- Efficiencies measured using 2 step procedure:
 - (1) non-tt(11) bkg efficiency term measured in dileptonic tt sample
 - (2) signal and tt(1ℓ) combinatorial bkg efficiency terms measured in semileptonic tt
 - "tag" leptonic top decay, look at "probes"

 object requirements give high purity of semileptonic tt

Characterization Procedure (5)

- Efficiencies measured using 2 step procedure:
 - (1) non-tt(11) bkg efficiency term measured in dileptonic tt sample
 - (2) signal and tt(11) combinatorial bkg efficiency terms measured in semileptonic tt

- MC mass templates constructed from tt(1ℓ) signal, tt(1ℓ) background and non-tt(1ℓ) background events
 - non-tt(1*l*) bkg efficiency constrained from step 1
- Simultaneously fit reconstructed top mass (tri-jet mass) in orthogonal passing and failing "probe" samples to extract efficiencies

Evaluating Systematic Uncertainties

- Jet Energy Scale and Resolution: efficiency measurement repeated where MC mass templates are convoluted with Gaussians
 - μ floats within [-2,2] GeV and σ floats within [0,4] GeV
- **Showering Scheme:** TnP procedure repeated with MC mass templates from HERWIG++ showered tt sample (nominally showered with PYTHIA8)

Sources of uncertainties

Parameter	Statistical	m JEC/JER	Showering Scheme	Total
ϵ_{sig}	0.01	0.01	0.03	0.03
$\epsilon_{tar{t}(1l)comb}$	0.03	0.03	0.04	0.06
$\epsilon_{nontar{t}(1l)}$	0.01	0.03	0.01	0.03

RTT Efficiency

Efficiencies in data/MC

Signal efficiencies in MC

- CA R=1.5 fat jet, soft drop mass
- CA R=1.5 fat jet, soft drop mass, N-subjettiness
- Observe good agreement between efficiencies in data and simulation
- RTT covers top p_T range more suitable for tt+DM than typical boosted techniques
 - e.g. comparison with top tagging used in monotop+DM search (EXO-16-017)

Application: RTT in Action

- Employed as a means of categorization in E_Tmiss shape analysis search for top pairs produced in association with dark matter with 2015 CMS data
 - hadronic channel categorized into events with 2 top tags and < 2 top tags

- Enables gains of up to ~30% over non-categorized strategy
 - → 2 tag category allows for better rejection of tt(1ℓ)
 - < 2 tag category: N_{jets} > 3, N_{bjets} > 1
 - recover signal acceptance for soft p_T jets or merged jets in boosted tops
- Envision categorization of semileptonic channel in next iteration

Conclusions

- Developed a novel MVA-based top tagging tool
 - Performs well against backgrounds similar in composition to targeted application sample
- Efficiency measured in data and simulation
 - 2015 data is well described by simulation
 - Major systematics assessed: JES/JER and showering scheme
- Enables significant gains in tt+DM search
- Potential for wide application in top-philic BSM searches
 - Complimentary to taggers developed for boosted tops
 - Extension to other searches underway

Back Up

Tag-and-Probe Details

- Selection for dilepton sample used to derive SFnon-tt(1/) bkg
 - two leptons passing stringent ID with $p_T>30$ and $|\eta|<2.4$
 - at least three jets with $p_T>30$ and $|\eta|<2.4$ (at least one is b-tagged)
- Selection for single muon sample used to derive SFsignal and SFtt(1/) combinatorial bkg
 - exactly one muon passing stringent ID with $p_T>30$ and $|\eta|<2.4$
 - \rightarrow E_Tmiss > 40
 - at least four jets with $p_T > 30$ and $|\eta| < 2.4$ (at least two b-tagged)