H→bb Tagging in ATLAS

Qi Zeng

On behalf of the ATLAS Collaboration
BOOST, July 18-22, 2016
Introduction

Motivation

- SM decay \(H \rightarrow bb \): largest branching ratio
- Boosted topology provides various handles to suppress dominant multi-jet background
- Boosted \(H \rightarrow bb \) tagger becomes an essential tool for new physics search in ATLAS

Contents

- Boosted \(H \rightarrow bb \) tagger in Run-II
- Modeling in high-\(p_T \) \(g \rightarrow bb \) enriched sample using 8TeV data
Boosted H→bb Tagging in Run-II

ATL-PHYS-PUB-2015-035
Tagging Boosted $H \rightarrow bb$

- Reconstruct $H \rightarrow bb$ topology with trimmed anti-k_t $R=1.0$ jet ($f_{cut}=0.05$, $R_{sub}=0.2$)

- Major backgrounds considered:
 - Multi-jet events
 - Boosted hadronically decaying top quarks

- Three handles for background rejection:
 - b-Tagging
 - Large-R jet mass
 - Large-R jet substructure
Small-R Track Jet b-Tagging

- Use small radius (R=0.2) track jets to resolve close-by b-hadrons
- Ghost association of track jets to ungroomed large-R jets to provide b-tagging

Advantage of track jets
- Better estimate b-hadron flight direction
- Pile-up resistant
- b-tagging independent of calorimeter jets

ATLAS Simulation Preliminary

Welcome to the page with information about Small-R Track Jet b-Tagging. The diagram illustrates the arrangement of large and small-radius jets, highlighting the advantage of using small-radius track jets for better estimation of b-hadron flight direction, being pile-up resistant, and independent of calorimeter jets.
Small-R Track Jet b-Tagging

- Large improvement in efficiency to find boosted Higgs jet from small radius
- Flexible in track jet b-tagging
 - Independent of calorimeter jets
 - Single / double / one-tight-one-loose schemes

ATLAS Simulation Preliminary

$\sqrt{s} = 8$ TeV, $k_{T\text{, initial}} = 1.0$

- anti-k_t track jets
- k_t calor jets

4b efficiency in
RSG\rightarrowhh\rightarrow4b

ATLAS Simulation Preliminary

anti-k_t R=1.0 jets

Trimmed ($f_{\text{cut}} = 0.05$, $R_{\text{sub}} = 0.2$)

$p_T > 250$ GeV, $|\eta_{\text{jet}}| < 2.0$

4b efficiency vs. Graviton Mass [GeV]

Higgs-jet efficiency vs. Multi-jet rejection
Large-R Jet Mass and Substructure

- Improve large-R jet mass resolution by:
 - Trimming with $f_{\text{cut}} = 0.05$, $R_{\text{sub}} = 0.2$
 - Muon-in-b-jet correction correcting for semi-leptonic b hadron decays

- Substructure information considered in addition to mass cut and b-tagging:
 - Similar performance across $D_2^\beta=1$, $C_2^\beta=1$ and τ_{w^+a}
 - $D_2^\beta=1$ is chosen due to better modeling in data

ATLAS Simulation Preliminary

- anti-k_t, $R=1.0$ jets
- Trimmed ($f_{\text{cut}}=0.05$, $R_{\text{sub}}=0.2$)
- $|\eta_{\text{det}}| < 2.0$
- Double b-tagged @ 70% WP

ATLAS Simulation Preliminary

- anti-k_t, $R=1.0$ jets
- Trimmed ($f_{\text{cut}}=0.05$, $R_{\text{sub}}=0.2$)
- $350 < p_T < 500$ GeV
- $|\eta_{\text{det}}| < 2.0$
- 68% mass window

- τ_{w^+a}
H→bb Tagger Performance

- Three working points (WP) defined
- Systematic uncertainties:
 - b-tagging largest for loose selection
 - Jet energy/mass scale & resolution larger for tight selection

Table 1: Criteria used for the different Higgs-jet tagging selections.

<table>
<thead>
<tr>
<th>Selection</th>
<th>double b-tagging</th>
<th>large-R jet Mass</th>
<th>$D_2^{(\beta=1)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loose</td>
<td>70% WP</td>
<td>90% window, $m \in [76, 146]$ GeV</td>
<td>-</td>
</tr>
<tr>
<td>Medium</td>
<td>70% WP</td>
<td>68% window, $m \in [93, 134]$ GeV</td>
<td>-</td>
</tr>
<tr>
<td>Tight</td>
<td>70% WP</td>
<td>68% window, $m \in [93, 134]$ GeV</td>
<td>p_T-dependent cut</td>
</tr>
</tbody>
</table>

ATLAS Simulation Preliminary

- anti-k_t, $R=1.0$ jets
- Trimmed ($f_{\text{cut}}=0.05$, $R_{\text{sub}}=0.2$)
- $|\eta_{\text{sel}}| < 2.0$
- Loose Selection

- Efficiency
- Jet Scale
- Jet Resolution
- b-tagging
- Total

Uncertainty: ~17%
Application in 13 TeV New Physics Search

Higgs tagger has been widely used in ATLAS 13TeV analysis, in particular the new physics search:

- A selected list of examples here
- More details in C. Pollard’s talk on Thursday

Di-Higgs 4b [EXOT-2015-11]:
- Require 3 or 4 \(b\)-tagged track jets
- 77% WP is used
- Customized jet mass requirement
Application in 13 TeV New Physics Search (Continued)

VH resonance search [ATLAS-CONF-2015-074]:
- Loose WP
- Additional 1 b-tag WP

mono-Higgs [ATLAS-CONF-2016-019]:
- 1 or 2 b-tagged track jets
- Full mass distribution used in likelihood fit

Lessons learnt from analysis:
- b-Tagging contributes the most to sensitivity
- Analysis benefits more from efficiency than rejection in boosted topology
 - Alternative: Single b-tagging (+ substructure)
 - Alternative: Looser b-tagging WP (especially high pT)
Updates of $H \rightarrow bb$ Tagger in 2016: b-Tagging

- In 2016, we are following the similar tagging strategy as previous $H \rightarrow bb$ tagger

- Improvement in b-tagging:
 - Algorithm optimization in impact parameter based tagging (IP3D) and secondary vertex finder (SV)
 - Optimization of final multivariable b-tagging discriminant (MV2)

- Various discriminants available for b-tagging
 - Suitable for various background composition
 - Improved rejection against light/c-jet in anti-k_T $R=0.4$ calorimeter jets
 - Similar improvement expected in track jet b-tagging
Modeling in $g \rightarrow bb$ Enriched Data

ATLAS-CONF-2016-002
Challenges

• Not enough $H \rightarrow bb$ in data — not even found yet :)

• Solution: $g \rightarrow bb$ provides a copious sample of close-by b-jets
 ‣ Double b-tagging systematics for track jets
 ‣ Check modeling of large-R jet substructure variables
 ‣ Cross-check large-R jet energy scale (JES) / jet mass scale (JMS) / $D_2^{\beta=1}$ uncertainty

• We check these using 2012 8TeV data
Strategy

• Goal: Increase $g \rightarrow bb$ purity
• Key: At least one of small radius track jets should be matched to muon
 ‣ Select semi-leptonic b-hadron decays
 ‣ Enrich events with jets containing b-hadrons
• Further double b-tagging on small-R track jets to obtain high purity $g \rightarrow bb$ samples
Flavor Fraction Correction

- **Issue:** MC does not model the heavy flavor content in data
- **Method:** Fit variable sensitive to flavor composition to data
- **Discriminant:** Largest track impact parameter significance inside track jet
- **Fit procedure:**
 - Build S_{d_0} template for each flavor component
 - Simultaneous binned likelihood fit on 1-D S_{d_0} distribution for muon and non-muon track jet

$$S_{d_0} = \text{sgn}(d_0) \times \frac{d_0}{\sigma(d_0)}$$
Flavor Fraction Correction

- A clear discrepancy between data/MC on flavor fraction can be seen for large-R jet, especially when $p_T < 500$ GeV
 → Flavor correction becomes essential
- Double b-tagging rate very well modeled after flavor correction
Results: Double b-Tagging

- Data/MC agrees well within the uncertainties

- It is noticeable that same level of agreement is seen at low ΔR in which jets are not isolated from each other
Results: Large-R Jet p_T Modeling

- Large-R jet p_T well modeled within uncertainties
- Large-R jet JES uncertainty cross-check
 - We use data and MC ratio of variable $\frac{p_T^{trk}}{p_T^{calo}}$ for in-situ calibration
 - Existing JES uncertainty derived from inclusive sample is large enough to cover topology dependence
- Same cross-check on JMS / $D_2^{\beta=1}$ uncertainty
Results: Large-R Jet Mass / Substructure Modeling

ATLAS Preliminary

- **$\sqrt{s} = 8$ TeV, 20.3 fb$^{-1}$**
- Anti-k_t, $R=1.0$ jet after b-tagging
- Trimmed ($R_{\text{sub}}=0.3$, $f_{\text{cut}}=0.05$)
- Flavor fraction corrected

Data / MC

- Total Uncertainty
- Fit Uncertainty
- b-tagging Uncertainty

ATLAS Preliminary

- **$\sqrt{s} = 8$ TeV, 20.3 fb$^{-1}$**
- Anti-k_t, $R=1.0$ jet after b-tagging
- Trimmed ($R_{\text{sub}}=0.3$, $f_{\text{cut}}=0.05$)
- Flavor fraction corrected

Data / MC

- Total Uncertainty
- Fit Uncertainty
- b-tagging Uncertainty

ATLAS Preliminary

- **$\sqrt{s} = 8$ TeV, 20.3 fb$^{-1}$**
- Anti-k_t, $R=1.0$ jet after b-tagging, $|\eta| > 1.2$
- Trimmed ($R_{\text{sub}}=0.3$, $f_{\text{cut}}=0.05$)

Data / MC

- Data
- Pythia 8 MC

ATLAS Preliminary

- **$\sqrt{s} = 8$ TeV, 20.3 fb$^{-1}$**
- Anti-k_t, $R=1.0$ jet after b-tagging
- Trimmed ($R_{\text{sub}}=0.3$, $f_{\text{cut}}=0.05$)

Data / MC

- Pythia 8 MC
Concluding Remarks

Boosted $H \rightarrow bb$ tagger is highly successful in ATLAS for new physics search with 13TeV data

Pushing the physics search limits in ATLAS through
 ‣ Jet substructure techniques
 ‣ Small-R track jet b-tagging

Modeling of b-tagging performance and large-R jet properties studied in $g \rightarrow bb$ topology for the first time in ATLAS using 8TeV data
 ‣ Useful to cross-check flavor dependency of existing calibrations
 ‣ Modeling is in good agreement within uncertainties
Back Up
H→bb: Number of Track Jets

ATLAS Simulation Preliminary

- anti-k_t $R=1.0$ jets
- Trimmed ($f_{cut}=0.05$, $R_{sub}=0.2$)
- $p_T > 250$ GeV, $|\eta_{det}| < 2.0$

Number of track-jets vs. Arbitrary Units

- Higgs-jet $M_{RSG}=500$ GeV
- Higgs-jet $M_{RSG}=1000$ GeV
- Higgs-jet $M_{RSG}=1500$ GeV
- Multi-jet
- Hadronic top
H→bb: b-Tagging

ATLAS Simulation Preliminary

anti-k_t R=1.0 jets
Trimmed ($f_{cut} = 0.05$, $R_{sub} = 0.2$)
$p_T > 250 \text{ GeV}, |\eta_{jet}| < 2.0$

ATLAS Simulation Preliminary

anti-k_t R=1.0 jets
Trimmed ($f_{cut} = 0.05$, $R_{sub} = 0.2$)
$p_T > 250 \text{ GeV}, |\eta_{jet}| < 2.0$

ATLAS Simulation Preliminary

anti-k_t R=1.0 jets
Trimmed ($f_{cut} = 0.05$, $R_{sub} = 0.2$)
$p_T > 250 \text{ GeV}, |\eta_{jet}| < 2.0$
H→bb: Large-R Jet Mass and Substructure
H→bb Taggers

ATLAS Simulation Preliminary

- **Higgs-jet efficiency**
 - anti-κ, R=1.0 jets
 - Trimmed (\(f_{cut}=0.05, R_{sub}=0.2\))
 - \(|\eta_{jet}| < 2.0\)
 - b-tagging at 70% WP

- **Multi-jet rejection**
 - anti-κ, R=1.0 jets
 - Trimmed (\(f_{cut}=0.05, R_{sub}=0.2\))
 - \(|\eta_{jet}| < 2.0\)
 - b-tagging at 70% WP

- **Hadronic top rejection**
 - anti-κ, R=1.0 jets
 - Trimmed (\(f_{cut}=0.05, R_{sub}=0.2\))
 - \(|\eta_{jet}| < 2.0\)
 - b-tagging at 70% WP
H→bb Taggers

ATLAS Simulation Preliminary

- anti-\(k_{t} \), \(R=1.0 \) jets
- Trimmed (\(f_{\text{cut}}=0.05, R_{\text{sub}}=0.2 \))
- \(|\eta_{dij}| < 2.0 \)
- Medium Selection

ATLAS Simulation Preliminary

- Trimmed (\(f_{\text{cut}}=0.05, R_{\text{sub}}=0.2 \))
- \(|\eta_{dij}| < 2.0 \)
- Tight Selection

Relative Uncertainty

- Efficiency
- Jet Scale
- Jet Resolution
- b-tagging
- Total
H→bb Taggers

ATLAS Simulation Preliminary

- Anti-κ, $R=1.0$ jets
- Trimmed ($f_{cut} = 0.05, R_{sub} = 0.2$)
- $|\eta_{det}| < 2.0$
- Medium Selection
- Rejection
- Jet Scale
- Jet Resolution
- b-tagging
- Total

ATLAS Simulation Preliminary

- Anti-κ, $R=1.0$ jets
- Trimmed ($f_{cut} = 0.05, R_{sub} = 0.2$)
- $|\eta_{det}| < 2.0$
- Tight Selection
- Rejection
- Jet Scale
- Jet Resolution
- b-tagging
- Total
H→bb Taggers

ATLAS Simulation Preliminary

- anti-k, R=1.0 jets
- Trimmed \(f_{\text{cut}} = 0.05, R_{\text{sub}} = 0.2 \)
- \(|\eta_{\text{det}}| < 2.0 \)

Medium Selection

- Rejection
- Jet Scale
- Jet Resolution
- b-tagging
- Total

Hadronic top rejection

400 600 800 1000 1200 1400
\(p_T \) [GeV]

Relative Uncertainty

0.5 1 1.5
H→bb Taggers

<table>
<thead>
<tr>
<th></th>
<th>Loose</th>
<th>Medium</th>
<th>Tight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>0.41 ±0.07</td>
<td>0.32 ±0.06</td>
<td>0.25 ±0.05</td>
</tr>
<tr>
<td>Multi-jet rejection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusive</td>
<td>260 ±50</td>
<td>460 ±90</td>
<td>800 ±210</td>
</tr>
<tr>
<td>Light-flavor</td>
<td>O(10⁵)</td>
<td>O(10⁵)</td>
<td>O(10⁶)</td>
</tr>
<tr>
<td>cl</td>
<td>O(10³)</td>
<td>O(10³)</td>
<td>O(10⁴)</td>
</tr>
<tr>
<td>bl</td>
<td>O(10²)</td>
<td>O(10²)</td>
<td>O(10³)</td>
</tr>
<tr>
<td>bc</td>
<td>O(10)</td>
<td>O(10)</td>
<td>O(10²)</td>
</tr>
<tr>
<td>cc</td>
<td>250 ±150</td>
<td>480 ±310</td>
<td>1200 ±900</td>
</tr>
<tr>
<td>bb</td>
<td>11 ±2</td>
<td>19 ±4</td>
<td>31 ±9</td>
</tr>
<tr>
<td>Hadronic top rejection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusive</td>
<td>67 ±17</td>
<td>110 ±30</td>
<td>160 ±50</td>
</tr>
<tr>
<td>bl</td>
<td>360 ±230</td>
<td>660 ±460</td>
<td>810 ±600</td>
</tr>
<tr>
<td>bc</td>
<td>24 ±6</td>
<td>39 ±11</td>
<td>53 ±16</td>
</tr>
</tbody>
</table>
Large-R Jet Modeling before b-tagging
Large-R Jet Other Substructure Variables

ATLAS Preliminary

- **s=8 TeV, 20.3 fb⁻¹**
- Anti-kₜ R=1.0 jet before b-tagging
- Trimmed \(R_{\text{sub}}=0.3, f_{\text{cut}}=0.05 \)
- Flavor fraction corrected

ATLAS Preliminary

- **s=8 TeV, 20.3 fb⁻¹**
- Anti-kₜ R=1.0 jet after b-tagging
- Trimmed \(R_{\text{sub}}=0.3, f_{\text{cut}}=0.05 \)
- Flavor fraction corrected

Data

- LL
- CL
- CC
- BL
- BC
- BB

Total Uncertainty

- **Fit Uncertainty**

Data

- LL
- CL
- CC
- BL
- BC
- BB

Total Uncertainty

- **Fit Uncertainty**

- **b-tagging Uncertainty**
Variable-R Jets in $H \rightarrow bb$

ATLAS Preliminary
Simulation, $\sqrt{s} = 13$ TeV
$1.0 < p_{T}^\text{jet} < 1.5$ TeV
$G_{KK} \rightarrow hh$

ATLAS Preliminary
Simulation, $\sqrt{s} = 13$ TeV
m_{jet} scan (lower bound)
$1.0 < p_{T}^\text{jet} < 1.5$ TeV
$G_{KK} \rightarrow hh$

ATLAS Preliminary
Simulation, $\sqrt{s} = 13$ TeV
AKT10 trim
AKT10 trim ISR Tagged
VR600 trim
VR600 trim ISR Tagged
$1.0 < p_{T}^\text{jet} < 1.5$ TeV
$G_{KK} \rightarrow hh$