H→bb Tagging in ATLAS

Qi Zeng

On behalf of the ATLAS Collaboration BOOST, July 18-22, 2016

Introduction

SLAC

Motivation

- SM decay H→bb: largest branching ratio
- Boosted topology provides various handles to suppress dominant multi-jet background
- Boosted H→bb tagger becomes an essential tool for new physics search in ATLAS

Contents

- Boosted H→bb tagger in Run-II
- Modeling in high-pT g→bb enriched sample using 8TeV data

Boosted H→bb Tagging in Run-II

ATL-PHYS-PUB-2015-035

Tagging Boosted H→bb

- Reconstruct $H \rightarrow bb$ topology with trimmed anti-k_t R=1.0 jet (f_{cut}=0.05, $R_{sub}=0.2$)
- Major backgrounds considered:
 - Multi-jet events
- Multi-jet events
 Boosted hadronically decaying top quarks
 Three handles for background rejection:
- - b-Tagging
 - Large-R jet mass
 - Large-R jet substructure

Small-R Track Jet *b*-Tagging

- Use small radius (R=0.2) track jets to resolve close-by b-hadrons
- Ghost association of track jets to ungroomed large-R jets to provide *b*-tagging

Small-R Track Jet b-Tagging

- Large improvement in efficiency to find boosted Higgs jet from small radius
- Flexible in track jet *b*-tagging
 - Independent of calorimeter jets
 - Single / double / one-tight-one-loose schemes

Large-R Jet Mass and Substructure

- Improve large-R jet mass resolution by:
 - Trimming with $f_{cut} = 0.05, R_{sub} = 0.2$
 - Muon-in-b-jet correction correcting for semi-leptonic b hadron decays
 - Variable-R jets(<u>ATL-PHYS-PUB-2016-013</u>): More details in talks from A. Dattagupta and C. Anders
- Substructure information considered in addition to mass cut and b-tagging:
 - Similar performance across $D_2^{\beta=1}, C_2^{\beta=1}$ and τ_{21}^{wta}
 - $D_2^{\beta=1}$ is chosen due to better modeling in data

H→bb Tagger Performance

- Three working points (WP) defined
- Systematic uncertainties:
 - b-tagging largest for loose selection
 - Jet energy/mass scale & resolution larger for tight selection

Selection	double <i>b</i> -tagging	large- <i>R</i> jet Mass	$D_2^{(\beta=1)}$
Loose	70% WP	90% window, $m \in [76, 146]$ GeV	-
Medium	70% WP	68% window, $m \in [93, 134]$ GeV	-
Tight	70% WP	68% window, $m \in [93, 134]$ GeV	$p_{\rm T}$ -dependent cut

Table 1: Criteria used for the different Higgs-jet tagging selections.

Application in 13 TeV New Physics Search

Higgs tagger has been widely used in ATLAS 13TeV analysis, in particular the new physics search:

- A selected list of examples here
- More details in C. Pollard's talk on Thursday

Application in 13 TeV New Physics Search (Continued)

MET

mono-Higgs [ATLAS-CONF-2016-019]:

1 or 2 b-tagged track jets

Additional 1 b-tag WP

Loose WP

Full mass distribution used in likelihood fit

Lessons learnt from analysis:

- b-Tagging contributes the most to sensitivity
- Analysis benefits more from efficiency than rejection in boosted topology ٠
 - Alternative: Single b-tagging (+ substructure)
 - Alternative: Looser b-tagging WP (especially high pT)

SLAC

b

Updates of H→bb Tagger in 2016: *b*-Tagging

SLAC

- In 2016, we are following the similar tagging strategy as previous H→bb tagger
- Improvement in *b*-tagging:
 - Algorithm optimization in impact parameter based tagging (IP3D) and secondary vertex finder (SV)
 - Optimization of final multivariable *b*-tagging discriminant (MV2)
- Various discriminants available for b-tagging
 - Suit for various background composition
 - Improved rejection against light/c-jet in antik_T R=0.4 calorimeter jets
 - Similar improvement expected in track jet btagging

11

Modeling in $g \rightarrow bb$ Enriched Data

ATLAS-CONF-2016-002

- Not enough $H \rightarrow bb$ in data not even found yet :)
- Solution: $g \rightarrow bb$ provides a copious sample of close-by b-jets
 - Double b-tagging systematics for track jets
 - Check modeling of large-R jet substructure variables
 - Cross-check large-R jet energy scale (JES) / jet mass scale (JMS) / D₂^{β=1} uncertainty
- We check these using 2012 8TeV data

Strategy

- Goal: Increase g→bb purity
- Key: At least one of small radius track jets should be matched to muon
 - Select semi-leptonic b-hadron decays
 - Enrich events with jets containing b-hadrons
- Further double b-tagging on small-R track jets to obtain high purity g→bb samples

SLAO

Flavor Fraction Correction

SLAC

Displaced Tracks

 $\left| \mathcal{S}_{d_0} - sgn(d_0) \times \frac{a_0}{\sigma(d_0)} \right|$

Secondary

Primary

Vertex

Verte

- · Issue: MC does not model the heavy flavor content in data
- Method: Fit variable sensitive to flavor composition to data
- Discriminant: Largest track impact parameter significance inside track jet
- Fit procedure:
 - Build S_{d_0} template for each flavor component
 - Simultaneous binned likelihood fit on 1-D S_{d_0} distribution for muon and non-muon track jet

Flavor Fraction Correction

- A clear discrepancy between data/MC on flavor fraction can be seen for large-R jet, especially when pT < 500 GeV
 - \rightarrow Flavor correction becomes essential
- Double b-tagging rate very well modeled after flavor correction

Results: Double b-Tagging

- Data/MC agrees well within the uncertainties
- It is noticeable that same level of agreement is seen at low ΔR in which jets are not isolated from each other

SLAO

- Large-R jet pT well modeled within uncertainties
- Large-R jet JES uncertainty cross-check
 - We use data and MC ratio of variable $r_{trk}^{p_T} = p_T^{calo}/p_T^{trk}$ for in-situ calibration
 - Existing JES uncertainty derived from inclusive sample is large enough to cover topology dependence
- Same cross-check on JMS / $D_2^{\beta=1}$ uncertainty

Results: Large-R Jet Mass / Substructure Modeling

SLAC

Boosted H \rightarrow bb tagger is highly successful in ATLAS for new physics search with 13TeV data

Pushing the physics search limits in ATLAS through

- Jet substructure techniques
- Small-R track jet b-tagging

Modeling of b-tagging performance and large-R jet properties studied in $g \rightarrow bb$ topology for the first time in ATLAS using 8TeV data

- Useful to cross-check flavor dependency of existing calibrations
- Modeling is in good agreement within uncertainties

Back Up

Number of track-jets

H→bb: *b*-Tagging

H→bb: Large-R Jet Mass and Substructure

	Loose	Medium	Tight			
efficiency	0.41 ± 0.07	0.32 ± 0.06	0.25 ± 0.05			
Multi-jet rejection						
Inclusive	260 ± 50	460 ± 90	800 ± 210			
Light-flavor	$\mathcal{O}(10^5)$	$\mathcal{O}(10^5)$	$\mathcal{O}(10^6)$			
cl	$\mathcal{O}(10^3)$	$\mathcal{O}(10^3)$	$\mathcal{O}(10^4)$			
bl	$\mathcal{O}(10^2)$	$\mathcal{O}(10^2)$	$\mathcal{O}(10^3)$			
bc	$\mathcal{O}(10)$	$\mathcal{O}(10)$	$\mathcal{O}(10^2)$			
cc	$250\ \pm 150$	480 ± 310	1200 ± 900			
bb	11 ± 2	19 ± 4	31 ± 9			
Hadronic top rejection						
Inclusive	67 ± 17	110 ± 30	160 ± 50			
bl	360 ± 230	660 ± 460	810 ± 600			
bc	24 ± 6	39 ± 11	53 ± 16			

-SLAC

Large-R Jet Modeling before *b*-tagging

🗕 Data

100×10³

90

ATLAS Preliminary

Large-R Jet Other Substructure Variables

Variable-R Jets in H→bb

