Higgs Coupling measurements

W. Verkerke (Nikhef)

1

Outline of this presentation

① Introduction

2 Higgs boson phenomenology & interpretation framework

3 Combination procedure & experimental inputs

- (4) Signal strength measurements
- 5 Constraints on Higgs boson couplings
- 6 Improving on systematic uncertainties
 - \bigcirc Improving on Higgs signal models

Wouter Verkerke, NIKHEF

Todav

Tomorrow

Introduction – Brout-Englert-Higgs mechanism in the SM

• The Brout-Englert-Higgs mechanism plays a pivotal role in the Standard Model

Run 1- Discovery of SM-like Higgs boson

• Discovery of Standard-Model like Higgs boson in 2012 offers opportunity to investigate Higgs sector of nature in detail

The observed Higgs boson is a spin-0 particle, compatible with CP-even

5

Mass of Higgs boson measured with <0.2% precision

- Higgs boson mass is only parameter unconstrained by SM
- But crucial in SM prediction of Higgs production and decay rates
- Measurement based on $H \rightarrow ZZ^*$ and $H \rightarrow \gamma \gamma$ final states, for which invariant mass can be reconstructed with high precision

Mass of Higgs boson measured with <0.2% precision

• Result from combination of ATLAS and CMS results

Today's focus - Higgs boson couplings

• Rich experimental area of Higgs properties: the Higgs coupling strength to other SM particles, e.g.

- All coupling strengths predicted by SM, given known Higgs boson mass
- Accessible in various combinations and admixtures. Large variety of ATLAS & CMS observed Higgs boson decay rates
- Powerful test of nature of Higgs boson: SM, or subtly different?

Higgs bosons – Alternatives to the SM Higgs boson

- What else could the 125 GeV state be? Many alternative theories exist, for example
- Light CP-even h(125) of a Two Higgs Doublet Model (h,H,H[±],A)
- Pseudo NG boson from higher energy theory (Composite Higgs)

In either case couplings of BSM h(125) candidate (slightly) different from SM Higgs boson

 Can either pick a specific BSM model to interpret data, or develop a generic framework to quantify possible deviations in Higgs couplings from SM. Today will focus on generic framework Outline of this presentation

1 Introduction

② Higgs boson phenomenology & interpretation framework

③ Combination procedure & experimental inputs

④ Signal strength measurements

- 5 Constraints on Higgs boson couplings
- 6 Improving on systematic uncertainties
 - ⑦ Improving on Higgs signal models

Standard Model Higgs boson decays

Decay channel	Branching ratio [%]
$H \rightarrow b \bar{b}$	57.5 ± 1.9
$H \rightarrow WW$	21.6 ± 0.9
$H \rightarrow gg$	8.56 ± 0.86
$H \to \tau \tau$	6.30 ± 0.36
$H \rightarrow c \bar{c}$	2.90 ± 0.35
$H \rightarrow ZZ$	2.67 ± 0.11
$H ightarrow \gamma \gamma$	0.228 ± 0.011
$H \rightarrow Z\gamma$	0.155 ± 0.014
$H \rightarrow \mu \mu$	0.022 ± 0.001

SM BR theory uncertainties 2-5% for most important decays

The natural width of the Higgs boson is expected to be very small (<< resolution)

See "Handbook of LHC Higgs Cross Sections: 3. Higgs Properties" (arXiv:1307.1347) for further details on Higgs phenomenology

Higgs boson production in the SM

	Product	tion Cross section [pb]		ction [pb]	Order of
	proce	ss	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	calculation
10 ² (s= 8 TeV)	<i>gg</i> F		15.0 ± 1.6	19.2 ± 2.0	NNLO(QCD)+NLO(EW)
	VBF		1.22 ± 0.03	1.58 ± 0.04	NLO(QCD+EW)+~NNLO(QCD)
10 ⁻¹	W H		0.577 ± 0.016	0.703 ± 0.018	NNLO(QCD)+NLO(EW)
10 ² 100 150 200 250 300 M _v (GeV)	ZH		0.334 ± 0.013	0.414 ± 0.016	NNLO(QCD)+NLO(EW)
	→ [ggZH]	0.023 ± 0.007	0.032 ± 0.010	NLO(QCD)
	bbH		0.156 ± 0.021	0.203 ± 0.028	5FS NNLO(QCD) + 4FS NLO(QCD)
	ttH		0.086 ± 0.009	0.129 ± 0.014	NLO(QCD)
	tH		0.012 ± 0.001	0.018 ± 0.001	NLO(QCD)
			17.4 ± 1.6	22.3 ± 2.0	
g 000000 H t/b		Gluon-initiated ZH production represents ~8% of total ZH cross-section, has harder p_T distribution			
^g ∞∞∞∞ ^z ^h Modeled separately of gg→ZH is different			deled separa gg → ZH is diff	tely because l erent from qq	Higgs coupling structure →ZH
s 000000	HZZ				Wouter Verkerke, NIKHEF

Higgs boson production in the SM

	Production	Cross section [pb]		Order of
	process	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	calculation
S= 8 TeV	<i>gg</i> F	15.0 ± 1.6	19.2 ± 2.0	NNLO(QCD)+NLO(EW)
	VBF	1.22 ± 0.03	1.58 ± 0.04	NLO(QCD+EW)+~NNLO(QCD)
100 00 00 00 00 00 00 00 00 00 00 00 00	► WH	0.577 ± 0.016	0.703 ± 0.018	NNLO(QCD)+NLO(EW)
100 150 200 250 300 M _H [GeV]	► ZH	0.334 ± 0.013	0.414 ± 0.016	NNLO(QCD)+NLO(EW)
	[ggZH]	0.023 ± 0.007	0.032 ± 0.010	NLO(QCD)
	bbH	0.156 ± 0.021	0.203 ± 0.028	5FS NNLO(QCD) + 4FS NLO(QCD)
	ttH	0.086 ± 0.009	0.129 ± 0.014	NLO(QCD)
	tH	0.012 ± 0.001	0.018 ± 0.001	NLO(QCD)
	Total	17.4 ± 1.6	22.3 ± 2.0	
	q' q	q'	് ത്ത്ത്ത്ത	$f = \frac{t + g}{2}$
	, H			Н ЗЗЗЗ
2000000	ttH			ttH
(a)	\overline{b} g QUISE	(b) <i>b</i>	b	(c) (d)
				(C) (U)

Very small SM cross-section due to almost completely destructive interference For opposite sign W/t Higgs couplings, σ (tHqb) increases by factor 13 and σ (WtH) by factor 6

Higgs boson production in the SM

	Production	Cross section [pb]		Order of
	process	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	calculation
10 ² (s = 8 TeV) (s = 0 TeV) (s = 0 TeV)	<i>gg</i> F	15.0 ± 1.6	19.2 ± 2.0	NNLO(QCD)+NLO(EW)
H 1 0 0 000 + NO PM	V BF	1.22 ± 0.03	1.58 ± 0.04	NLO(QCD+EW)+~NNLO(QCD)
10 ⁻¹	► WH	0.577 ± 0.016	0.703 ± 0.018	NNLO(QCD)+NLO(EW)
10 ² 100 150 200 250 300 M _v [GeV]	ZH	0.334 ± 0.013	0.414 ± 0.016	NNLO(QCD)+NLO(EW)
	[ggZH]	0.023 ± 0.007	0.032 ± 0.010	NLO(QCD)
	→ bbH	0.156 ± 0.021	0.203 ± 0.028	5FS NNLO(QCD) + 4FS NLO(QCD)
—	tt H	0.086 ± 0.009	0.129 ± 0.014	NLO(QCD)
	tH	0.012 ± 0.001	0.018 ± 0.001	NLO(QCD)
	Total	17.4 ± 1.6	22.3 ± 2.0	
)				

Diagrams similar to ttH,

but experimentally not really distinguishable from ggF and 100x smaller in SM

Higgs production and decay – Run 1 input measurements

[28] ATLAS Collaboration, Search for $H \rightarrow \gamma \gamma$ produced in association with top quarks and constraints

JHEP 09 (2014) 087, arXiv:1408.1682 [hep-ex].

	annel References for		on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8			
Channel			<i>TeV with the ATLAS detector</i> , Phys. Lett. B740 (2015) 222, arXiv:1409.3122 [hep-ex].			
			[38] ATLAS Collaboration, Search for the bb decay of the Standard Model Higgs boson in associated (W/Z)H production with the ATLAS detector, JHEP 1501 (2015) 069, arXiv:1409.6212 [hep. cc]			
	individual pu	ioncations	[nep-ex].			
	ATLAS	CMS	 [39] CMS Collaboration, Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks, Phys. Rev. D 89 (2014) 012003, arXiv:1310.3687 [hep-ex]. 			
$H \rightarrow \gamma \gamma$	[51]	[52]	[51] ATLAS Collaboration, Measurement of Higgs boson production in the approximation decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV work power of VLAS detector, Phys. Rev. D90 (2014) 112015, arXiv:1408.7084 [hep-ex]			
$H \rightarrow ZZ \rightarrow 4\ell$	[53]	[54]	 [52] CMS Collaboration, Observation Observation Observation Observation Observation Observation Observation Observation Observation of the Spice on the 125 College Descent of the proceedings of the Spice of the Spice			
$H \rightarrow WW$	[55,56]	liggs sig	[54] CMS Collaboration Measurement of the property local rings boson in the four-lepton final state, hydr Ker, D 59 (2014) 092007, apJ(2) = 2,5533 [hep-ex]. Solution of the property of the propert			
H - TATLA	s, CIVIS.	searche	 [76] A. L.S. collaboration, Study of the Higgs boson decaying to WW* produced in association with a yeak boson with the ATLAS detector at the LHC, JHEP 1508 (2015) 137, arXiv:1506.06641 [hep-ph]. [57] CMS Collaboration, Measurement of Higgs boson production and properties in the WW decay 			
an	d old	Merre	 [58] ATLAS Collaboration, Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector, arXiv:1501.04943 [hep-ex]. 			
$H \rightarrow bb$	aldes	[39]	[59] CMS Collaboration, Evidence for the 125 GeV Higgs boson decaying to a pair of τ leptons, JHEP 05 (2014) 104, arXiv:1401.5041 [hep-ex].			
			[60] ATLAS Collaboration, Search for the Standard Model Higgs boson decay to $\mu^+\mu^-$ with the ATLAS detector, Phys. Lett. B738 (2014) 68, arXiv:1406.7663 [hep-ex].			
$H \rightarrow \mu \mu$	[60]	[61]	[61] CMS Collaboration, Search for a standard model-like Higgs boson in the $\mu^+\mu^-$ and e^+e^- decay channels at the LHC, Phys. Lett. B (2015), arXiv:1410.6679 [hep-ex].			
			[62] ATLAS Collaboration, Search for the Standard Model Higgs boson produced in association with top quarks and decaying into $b\bar{b}$ in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 349, arXiv:1503.05066 [hep-ex].			
ttH production	[28,62,63]	[65]	[63] ATLAS Collaboration, Search for the associated production of the Higgs boson with a top quark pair in multi-lepton final states with the ATLAS detector, ATLAS-CONF-2015-007 (2015).			
			[65] CMS Collaboration, Search for the associated production of the Higgs boson with a top-quark pair,			

Higgs production and decay – Run 1 measurements Signal strength fits of individual experiments

17

Understanding signal strengths for process i \rightarrow H \rightarrow f

• Signal strength µ is observed rated normalized by SM prediction

$$\mu_{i}^{f} \equiv \frac{\sigma_{i} \cdot BR^{f}}{(\sigma_{i} \cdot BR^{f})_{SM}} = \mu_{i} \times \mu^{f}$$

$$\begin{array}{c} \text{ATLAS} \\ \text{Individual analysis} \\ \hline H \rightarrow \gamma \gamma \end{array} \begin{array}{c} \text{Input measurements} \\ \mu_{\mu}(\text{GeV}) \\ \hline \pm 1\sigma \text{ on } \mu \\ \hline \Psi \\ \text{VBF}; \mu = 0.8^{\frac{1}{0.7}} \\ \text{VBF}; \mu = 0.8^{\frac{1}{0.7}} \\ 125.4 \\ \hline \Psi \\ \text{VBF}; \mu = 0.8^{\frac{1}{0.7}} \\ \hline \end{array}$$

- Disentangling production (μ_i) & decay (μ_f) always requires assumption of narrow Higgs width.
- Additional assumptions required when combining measurements, e.g

$$\mu_i = \frac{\sigma_i}{\sigma_i^{\text{SM}}}$$
 and $\mu^f = \frac{\text{BR}^f}{\text{BR}^f_{\text{SM}}}$.

Assumes SM value of decay BRs

Assumes SM value of production σ's

Interpretation beyond signal strengths – the **k** framework

See "Handbook of LHC Higgs Cross Sections: 3. Higgs Properties" (arXiv:1307.1347) for further details κ framework

• Alternative one can disentangle deviations in production and decay with explicit modeling of Higgs width

• Introduce functions $\kappa_i \rightarrow$ describe deviations from SM predictions.

$$\sigma_i = \kappa_i^2(\vec{\kappa}) \cdot \sigma_i^{SM} \qquad \Gamma^f = \kappa_f^2(\vec{\kappa}) \cdot \Gamma^{f,SM}$$

so that for $\kappa_i=1 \rightarrow \sigma_i$, Γ_f , Γ_H give SM prediction

Interpretation beyond signal strengths – the κ framework

- Parameters κ_i correspond to LO degrees of freedom
- Example for ggF production of $H \rightarrow VV$

The κ framework – the total width

• Note that total *H* width scales all observed cross-sections

$$\sigma(i \to H \to f) = \frac{\sigma_i(\vec{\kappa}) \cdot \Gamma^f(\vec{\kappa})}{\Gamma_{\rm H}}$$

- Since Γ_H is not yet directly measured with a meaningful precision, must make an assumption on Γ_H to interpret cross-sections in terms of Higgs couplings.
- E.g. in absence of BSM *H* decays (invisible, undetected etc...), can assume SM width, adjusted by effect of k-rescaled couplings

$$\Gamma_{H}(\vec{\kappa}) = \kappa_{H}^{2}(\vec{\kappa}) \cdot \Gamma_{H}^{SM}$$

$$0.57 \cdot \kappa_{b}^{2} + 0.22 \cdot \kappa_{W}^{2} + 0.09 \cdot \kappa_{g}^{2} + \kappa_{H}^{2} \sim 0.06 \cdot \kappa_{\tau}^{2} + 0.03 \cdot \kappa_{Z}^{2} + 0.03 \cdot \kappa_{c}^{2} + 0.0023 \cdot \kappa_{\gamma}^{2} + 0.0016 \cdot \kappa_{Z\gamma}^{2} + 0.00022 \cdot \kappa_{\mu}^{2}$$

The kappa framework – the dictionary

Factors depend on

- Assumed value m_{H} ,
- Calculations of σ , Γ

• Kinematic selections

Production	Loops	Interference	Multip	licative factor	
$\sigma(ggF)$	\checkmark	b-t	$\kappa_{\rm g}^2 \sim$	$1.06 \cdot \kappa_{\rm t}^2 + 0.01 \cdot \kappa_{\rm b}^2 - 0.07$	$\cdot \kappa_{\rm t} \kappa_{\rm b}$
$\sigma(VBF)$	_	_	~	$0.74 \cdot \kappa_{\rm W}^2 + 0.26 \cdot \kappa_{\rm Z}^2$	
$\sigma(WH)$	_	_	~	$\kappa_{\rm W}^2$	
$\sigma(qq/qg \to ZH)$	-	_	~	$\kappa_{\rm Z}^2$	
$\sigma(gg \to ZH)$	\checkmark	Z-t	~	$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64$	$\mathbf{i} \cdot \mathbf{\kappa}_{\mathbf{Z}} \mathbf{\kappa}_{\mathbf{t}}$
$\sigma(ttH)$	_	_	~	$\kappa_{\rm t}^2$	
$\sigma(gb \to WtH)$	_	W-t	~	$1.84 \cdot \kappa_{\rm t}^2 + 1.57 \cdot \kappa_{\rm W}^2 - 2.4$	$1 \cdot \kappa_t \kappa_W$
$\sigma(qb \to tHq)$	_	W-t	~	$3.4 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96$	$\cdot \kappa_{\rm t} \kappa_{\rm W}$
$\sigma(bbH)$	-	-	~	$\kappa_{\rm b}^2$	
Partial decay width					
Γ^{ZZ}	_	_	~	$\kappa_{\rm Z}^2$	
Γ^{WW}	_	_	~	$\kappa_{\rm W}^2$	
$\Gamma^{\gamma\gamma}$	\checkmark	W-t	$\kappa_{\gamma}^2 \sim$	$1.59 \cdot \kappa_{\rm W}^2 + 0.07 \cdot \kappa_{\rm t}^2 - 0.6$	$6 \cdot \kappa_W \kappa_t$
$\Gamma^{ au au}$	_	_	·~	κ_{τ}^2	
Γ^{bb}	_	_	~	$\kappa_{\rm b}^2$	
$\Gamma^{\mu\mu}$	_	_	~	κ_{μ}^2	
Total width for $BR_{BSM} = 0$					
				$0.57 \cdot \kappa_b^2 + 0.22 \cdot \kappa_W^2 + 0.0$	$\overline{9 \cdot \kappa_{g}^{2}}$ +
$\Gamma_{ m H}$	\checkmark	_	$\kappa_{\rm H}^2 \sim$	$+0.06 \cdot \kappa_{\tau}^2 + 0.03 \cdot \kappa_Z^2 + 0.03$	$.03 \cdot \kappa_c^2 +$
				$+ 0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa$	$2_{Z\gamma}^{2}$ +
				$+ 0.0001 \cdot \kappa_{s}^{2} + 0.00022 \cdot \kappa_{s}^{2}$	ζ ² .

The kappa framework – the dig

Outline of this presentation

1 Introduction

2 Higgs boson phenomenology & interpretation framework

③ Combination procedure & experimental inputs

- (4) Signal strength measurements
- **(5)** Constraints on Higgs boson couplings
 - 6 Most generic parametrizations

Signal strength measurements by ATLAS and CMS

Each experiment has O(15) signal strength measurements focusing on a wide variety of production and decay models

Anatomy of a single measurement

- Every measurement consists of one or more signal regions, designed to selected target Higgs production/decay
- Distribution of a (multivariate) discriminant is interpreted in terms of sum of signal and background contributions

Profile likelihood formalism for (systematic) uncertainties

• Build likelihood function for *each* signal, control region of the data

$$L(\vec{N} \mid \vec{\mu}_{i}, \vec{\mu}_{f}, \vec{\theta}) = \prod_{k=0, nbins} Poisson \left(N_{k} \mid \sum_{i, f} \mu_{i} \cdot \mu^{f} \cdot S_{i, k}^{f}(\vec{\theta}) + \sum_{m} B_{m}(\vec{\theta}) \right)$$

$$Inclusive SM cross-section$$

$$Acceptance (from MC)$$

$$Efficiency (from MC)$$

$$Higgs BR$$

$$\mathcal{L}(k) \times \{\sigma_{i}^{SM} \times A_{i}^{f}(k) \times \varepsilon_{i}^{f}(k) \times BR_{SM}^{f}\}$$

_			
Profile lik	Assume SM Higgs bosor Production	n for acceptance Event	generator
	process	ATLAS	CMS
 Build lik 	ggF *	Powheg [30-34]	Powheg
	VBF	Powheg	Powheg
	WH	Рутніа8 [35]	Рутніа6.4 [36]
	$ZH (qq \rightarrow ZH \text{ or } qg \rightarrow ZH)$	Ρυτηία8	Рутнія6.4
$L(N \mid \mu$	$ggZH (gg \rightarrow ZH)$	Powheg	See text
	ttH	POWHEL [44]	Рутніа6.4
	$tHq (qb \rightarrow tHq)$	MadGraph [46]	AMC@NLO [29]
	$tHW (gb \rightarrow tHW)$	AMC@NLO	AMC@NLO
Inclus	bbH	Ρυτηία8	Pythia6, aMC@NLO
	(*) Higgs p _⊤ distribution of ggF HiRes 2.1calculation (include	production reweighte s NNLO and NNLL (ed to match QCD corrections)
Luminosity			2γ, 22 m _H = 12\$ GeV
$\mathcal{L}(k) \times \left\{ \sigma_i^{\mathrm{SM}} \right.$	$\times A_i^f(k) \times \varepsilon_i^f(k) \times \mathrm{BR}^f_{\mathrm{SM}} \Big\}$		
		[°] 80 100	120 140 160 180 m (GeV)
			m_{4l} ($\Delta e v$)

Wouter Verkerke, NIKHEF

Decomposition of Higgs signal contributions in channels

 Channels selections hardly ever 100% pure in production process (especially 'untagged') → separately model distributions from all contributing Higgs production processes

Phys. Rev. D 92, 012006 (2015)

Some channels also not 100% pure in decay mode (e.g. H→WW selection has contributions of H→ττ decays). Interpret such contributions as Higgs signal (of appropriate type) in coupling analysis

30

Measurements of backgrounds often data-driven using control regions

Most expected distributions subject to systematic uncertainties

• Expected distributions mostly derived from simulation chain

Profile likelihood formalism for (systematic) uncertainties

 Extend description of each signal/background distribution so that it can describe distribution under a wide range of parameters for which the true values are unknown (energy scales, QCD scales...)

Illustration: modeling of energy scale uncertainty

Profile likelihood formalism for (systematic) uncertainties

• Correlated parameters as needed between channels, experiments

Correlated uncertainties in ATLAS/CMS combination

- Full combination describes ~580 signal regions & control regions from both experiments. Grand total of ~4200 nuisance parameters, related to (systematic) uncertainties
- Correlation strategy of nuisance parameters a delicate and complicated task
 - Detector systematic uncertainties → follow strategy of ATLAS and CMS internal combinations (generally correlated within, not between experiments)
 - Signal theory uncertainties (QCD scales, PDF, UEPS) on inclusive cross-sections generally correlated between experiments.
 - Signal theory uncertainties on acceptance and selection efficiency are uncorrelated between experiments, as these are small and estimation procedures are generally different.
 - PDF uncertainties on signal cross-sections uncorrelated between channels, except WH/ZH = correlated (effect of ignoring other correlations is ≤1%)
 - No correlations assumed between Higgs BRs (except for WW/ZZ).
 Effect of ignoring correlations shown to be generally small, except for a few specific measurements, in which case full correlation structure is retained

 Θ : vector of ~4200

36

Outline of this presentation

1 Introduction

2 Higgs boson phenomenology & interpretation framework

3 Combination procedure & experimental inputs

④ Signal strength measurements

(5) Constraints on Higgs boson couplings

6 Most generic parametrizations

Reminder – the signal strengths in the individual channels Signal strength fits of individual experiments/channels

The global signal strength

• Assuming SM ratios of production cross-sections and decay rates

$$\mu = 1.09^{+0.11}_{-0.10}$$

$$\stackrel{Most precise result at the}{expense of the largest assumptions}$$

$$= 1.09^{+0.07}_{-0.07} \text{ (stat)} \stackrel{+0.04}{_{-0.04}} \text{ (expt)} \stackrel{+0.03}{_{-0.03}} \text{ (thbgd)} \stackrel{+0.07}{_{-0.06}} \text{ (thsig)}$$

$$\stackrel{Stat and Th.Sig of comparable size}{(Th.Sig dominated by ggF cross-section uncertainty)}$$

• NB: Theory uncertainties on the inclusive SM cross-section enter through denominator in Higgs signal strength

$$\mu_i^f \equiv \frac{\sigma_i \cdot \mathrm{BR}^f}{(\sigma_i \cdot \mathrm{BR}^f)_{\mathrm{SM}}} = \mu_i \times \mu^f$$

Higgs signal strength by production and decay mode

Production signal strengths Decay signal strengths (SM values of BRs assumed) (SM value of production σ 's assumed) - ATLAS ATLAS and CMS Preliminary ATLAS and CMS Preliminary - ATLAS - CMS LHC Run 1 LHC Run 1 ATLAS+CMS - CMS $-\pm 1\sigma$ ATLAS+CMS $-\pm 2\sigma$ μ_{ggF} — ± 1σ $\mu^{\gamma\gamma}$ SM p-value SM p-value 25% μ_{VBF} 60% μ^{ZZ} μ_{WH} μ^{WW} μ_{ZH} 2.3σ from SM $\mu^{\tau\tau}$ μ_{ttH} μ^{bb} μ 0.5 3.5 0 1.5 2 2.5 3 0.5 1.5 2.5 3.5 2 0 3 Parameter value Parameter value SM SM

Wouter Verkerke, NIKHEF

Significance of combined observations

• Comparing likelihood of the best-fit with likelihood assuming $\mu_{prod}=0$ or $\mu^{decay}=0$ we obtain:

	Observed	Expected
Production process	Significance(o)	Significance (o)
VBF	5.4	4.7
WH	2.4	2.7
ZH	2.3	2.9
VH	3.5	4.2
ttH	4.4	2.0
Decay channel		
Η→ττ	5.5	5.0
H→bb	2.6	3.7

VBF production and $H \rightarrow \tau \tau$ now established at over 5 σ . ggF and $H \rightarrow ZZ, \gamma \gamma, WW$ already established by each experiment Signal strength in V,F-mediated production by decay

Outline of this presentation

1 Introduction

2 Higgs boson phenomenology & interpretation framework

3 Combination procedure & experimental inputs

(4) Signal strength measurements

(5) Constraints on Higgs boson couplings

6 Most generic parametrizations

Constraints for Higgs couplings to fermions, bosons

- Assume universal scaling parameters for Higgs couplings to fermions (κ_F), bosons (κ_V) $\sigma(i \to H \to f) = \frac{\sigma_i(\vec{\kappa}) \cdot \Gamma^f(\vec{\kappa})}{\Gamma_H}$
- Assume only SM physics in loops, no invisible Higgs decays, $\kappa_{F,V} \ge 0$

Constraints for Higgs couplings to fermions, bosons

• Expanding parameter ranges to include negative couplings

Constraints on tree-level Higgs couplings

- Assume only SM physics in loops, no invisible Higgs decays
- Fit for scaling parameters for Higgs couplings to

W, Z, b, t, τ, μ

 NB: low measured value of κ_b reduces total width Γ_H
 → all κ_i measured low [w.r.t μ=1.09]

$$\begin{aligned} \sigma(i \to H \to f) &= \frac{\sigma_i(\vec{\kappa}) \cdot \Gamma^f(\vec{\kappa})}{\Gamma_H} \\ \kappa_H^2 &\sim \begin{array}{c} 0.57 \cdot \kappa_b^2 + 0.22 \cdot \kappa_W^2 + 0.09 \cdot \kappa_g^2 + \\ 0.06 \cdot \kappa_\tau^2 + 0.03 \cdot \kappa_Z^2 + 0.03 \cdot \kappa_c^2 + \\ 0.0023 \cdot \kappa_\gamma^2 + 0.0016 \cdot \kappa_{Z\gamma}^2 + 0.00022 \cdot \kappa_\mu^2 \end{aligned}$$

Wouter Verkerke, NIKHEF

Constraints on tree-level Higgs couplings

Wouter Verkerke, NIKHEF

Allowing for BSM contributions in Higgs coupling interpretations

- Results shown so far assumed no invisible (BSM) Higgs decays nor BSM contributions to loops. Now drop these assumptions.
- 1. Represent loop processes (ggF, H \rightarrow Z/ $\gamma\gamma$) with effective params (κ_g, κ_γ), rather than assuming SM content

2. Allowing BSM Higgs decays (invisible, undetected etc...) to increase the total width $\Gamma_{\rm H} = \frac{\kappa_{H}^2 \cdot \Gamma_{H}^{\rm SM}}{1 - {\rm BR}_{\rm BSM}}$

If BR_{BSM} >0 then all observed cross-sections lowered by common factor $\sigma(i \to H \to f) = \frac{\sigma_i(\vec{\kappa}) \cdot \Gamma^f(\vec{\kappa})}{\Gamma_{\rm H}}$

Limit on invisible Higgs decays from Higgs couplings

• Concept: set limit on BR to (invisible, undetected) Higgs decays

$$\Gamma_{\rm H} = \frac{\kappa_H^2 \cdot \Gamma_H^{\rm SM}}{1 - {\rm BR}_{\rm BSM}}$$

- When κ_H is modeled by 6+2 κ_i's it has no strong upper bound
 → BR_{BSM} not bounded (Γ_H due to large κ_H or to large BR_{BSM}?)
 → Must introduce some assumptions to bound κ_H
- Scenario 1 Assume 6 tree-level couplings at SM (k=1), but leaving 2 effective couplings for loops floating
- Scenario 2 Keep all 6+2 coupling parameters floating, but bound vector boson couplings $\kappa_W, \kappa_Z \leq 1$

(Bound $k_V \leq 1$ occurs naturally in many BSM physics models, e.g. Electroweak Singlet, 2HDM, MCHM...)

(alternatively, use off-shell coupling strength measurements to constrain Γ_{H} , albeit with additional assumptions)

Focus on effective couplings for loop processes

- Scenario 7.
- Fix all tree-level Higgs couplings to SM ($\kappa_{W,}\kappa_{Z,}\kappa_{b,}\kappa_{t,}\kappa_{\mu,}\kappa_{\tau}=1$) and BR_{inv}=0

50