Nordic conference on Particle Physics: Dark matter I

Stephen West

Stephen.West@rhul.ac.uk

Outline

- DM Motivation
- WIMPS
 - Freeze-out
 - Direct Detection
 - Indirect Detection
 - LHC searches for DM

 (Some) Alternatives to WIMPs (tomorrow)

Books and Reviews

Books

Kolb and Turner, The Early Universe, (1990)

Bertone et al, Particle dark matter, (2013)

Bergström and Goobar, Cosmology and particle Astrophysics, (2006)

Reviews (+ Lectures)

Bertone, Hooper, Silk, Particle dark matter: Evidence, candidates and constraints, hep-ph/0404175, Phys.Rept. 405 (2005) 279-390

Conrad, Indirect Detection of WIMP Dark Matter: a compact review, arXiv:1411.1925

Gelmini, TASI 2014 Lectures: The Hunt for Dark Matter, arXiv:1502.01320

Baer, Choi, Kim, Roszkowski, Dark matter production in the early Universe: beyond the thermal WIMP paradigm, arXiv:1407.0017, Phys.Rept. 555 (2014) 1-60

Galaxy Cluster Abell 1689

Hubble Space Telescope • Advanced Camera for Surveys

NASA, N. Benitez (JHU), T. Broadhurst (The Hebrew University), H. Ford (JHU), M. Clampin(STScI), G. Hartig (STScI), G. Illingworth (UCO/Lick Observatory), the ACS Science Team and ESA STScI-PRC03-01a

What do we know?

- DM has attractive gravitational interactions and is either stable or has a lifetime $\gg \tau_U$
- DM is not observed to interact with light or gluons
- Bulk of the DM is Cold or Warm, thus particle DM requires physics beyond the SM
- Mass of major component of DM only constrained within some 80 orders of magnitude
- Dominant component of the DM must be dissipation-less, but part of it could be
- DM assumed to be collision-less, however the upper limit on DM self-interactions is actually very large

How was dark matter produced?

Many ideas/models on the market - start with the most studied

Freeze-out

Seen this already in Mark Hindmarsh's lectures - quick recap

Dark matter from freeze-out

 Simplest set-up relies on a connection between DM states and SM states, e.g.

$$\mathcal{L} = \bar{X}X\bar{q}q \qquad \Rightarrow \qquad \overline{X}$$

 The strength of interaction determines whether the DM state is in thermal equilibrium (chemical)

Dark matter from freeze-out

Assumptions for standard freeze-out

Single species of dark matter

Radiation dominated universe

• DM interactions with the SM states large enough to be in thermal equilibrium at $T>m_X$

Standard scenario for WIMP DM...

- ullet Initially in thermal equilibrium $T>m_X$
- $\bullet \quad \text{As the temp decreases} \quad T < m_X \\ \text{creation of } X \text{ becomes exponentially} \\ \text{suppressed}$

ullet Annihilation of X still proceeds, number density of X given by

$$N_{\rm EQ} pprox g_X \left(\frac{m_X T}{2\pi}\right)^{3/2} e^{-m_X/T}$$
 $n_{X,eq} \to 0$ as $T \to 0$

- Due to expansion, dark matter number density freezes-out when: $\Gamma = n_X \langle \sigma_A v \rangle < H$
- Number density of dark matter determined by Boltzmann Equation

$$\left(\frac{dn_X}{dt} + 3Hn_X = -\langle \sigma_A v \rangle \left(n_X^2 - n_{X,eq}^2\right)\right)$$

- Boltzmann equations usually solved numerically for most models but an analytic solution can be constructed.
- Non-relativistic expansion of the cross section, (temp of universe is below the mass of the DM).

$$\sigma v = a + bv^2 + \dots \qquad \rightarrow \langle \sigma v \rangle = a + 6b \frac{T}{m_{\rm dm}} + \dots$$

$$\Omega h^2 \approx \frac{1.04 \times 10^9}{M_{\rm pl}} \frac{x_f}{\sqrt{g_*}} \frac{1}{a + 3b/x_F}$$

$$\Omega h^2 \approx \frac{1.04 \times 10^9}{M_{\rm pl}} \frac{x_f}{\sqrt{g_*}} \frac{1}{a + 3b/x_F}$$
 $x_F = \ln\left(c(c+2)\sqrt{\frac{45}{8}} \frac{g}{2\pi^3} \frac{m_{\rm dm} M_{\rm pl}(a + 6b/x_F)}{\sqrt{g_* x_F}}\right)$

Kolb and Turner

$$\text{WHERE} \qquad \sqrt{g_*} = \frac{g_*^s}{\sqrt{g_*^\rho}} \left[1 + \frac{1}{3} \frac{dg_*^s}{dT} \right] \qquad S = g_*^s \frac{2\pi^2}{45} T^3 \quad H = 2\sqrt{\frac{\pi^3}{45}} \frac{\sqrt{g_*^\rho} T^2}{M_{\rm pl}}$$

Yield set at freeze-out gives final dark matter abundance.

$$\Omega h^2 \sim 0.1 \frac{3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}}{\langle \sigma_A v \rangle}$$

Approx. weak scale cross section \rightarrow WIMPs

Freeze-out abundance determined but annihilation cross-section

WIMP Candidates

- ◆ LSP in a SUSY model e.g. neutralino, sneutrino
- ◆ LKP in ED model E.g. KK excitation of the hyper-charge gauge boson
- Singlet scalar/fermion extension to the Standard Model
- Extra scalar states in the Inert Higgs Doublet model and variants
- Basically anything with an approx weak scale mass and couplings...

 Beyond generating the dm abundance, freeze-out points to ways in which dm can be probed

$$\mathcal{L} = \bar{X}X\bar{q}q$$

Interaction leads to annihilation - as we have already seen in freeze-out

DM annihilation today can lead to indirect signals

◆ We can also turn the diagram on its side

$$\mathcal{L} = \bar{X}X\bar{q}q$$

Leads to possibility of direct detection

Turning the diagram once more

$$\mathcal{L} = \bar{X}X\bar{q}q$$

Leads to possibility of producing DM at the LHC...more later in the week with Mads

Principles of direct detection: The Earth moves thorough a "Dark matter wind"

Look for DM scattering off Standard Model nuclei

DM-Nucleus Reduced mass

 $\gamma e^{-} \rightarrow \gamma e^{-}$ $n \rightarrow n \rightarrow N$ $N \rightarrow N' + \alpha, e^{-}$ $\nu \rightarrow N \rightarrow \nu \rightarrow N$

Scattering angle $E_{\rm recoil} = \frac{\mu_{XN}^2 v_X^2}{M_N} \left(1 - \cos\theta\right)$

Detectors located deep underground

$$E_{\rm recoil} \sim 1 - 100 \; {\rm KeV}$$

Event rate:

Particle Nuclear Local Astrophysics
$$\frac{dR}{dE_R} = \frac{\sigma_{XN}(0)}{m_X} \frac{F_N(q)^2}{\mu_{XN}^2} \rho_{X} g(v_{\min})$$

$$\sigma_{XN}(0)$$
 _____ DM-Nucleus zero-momentum-transfer cross section

$$v_{
m min} = \sqrt{E_R M_N/2\mu_r^2}$$
 Minimum WIMP velocity for given $\,E_R$

Two main ways for DM to scatter:

Spin Independent

$$\sigma_{XN}^{SI}(0) = A^2 \frac{\mu_{XN}^2}{\mu_{Xp}^2} \sigma_{Xp}^{SI}$$

(Assuming DM-p and DM-n interactions are equal)

A = Atomic number of target nucleus

Spin Dependent

$$\sigma_{XN}^{SD}(0) = \frac{4\mu_{XN}^2}{\pi} \frac{J+1}{J}$$
$$\times |\langle S_p \rangle G_a^p + \langle S_n \rangle G_a^n|^2$$

 $\langle S_p \rangle, \langle S_n \rangle$ = expectation value of spin of p and n in nucleus

J = nuclear spin

 $G_a^p, G_a^n = {\it axial four-fermion couplings of the WIMP with point-like protons and neutrons}$

For Spin independent scattering

Form Factor: reflects the loss of coherence with increasing momentum transfer

$$F_N^2(q) = \left(\frac{3j_1(qR_1)}{qR_1}\right)^2 e^{-q^2s^2}$$

Essentially the Fourier transform of the nucleon density, where

$$s,R_1$$
 = Describe the size and the form of the nucleus (See McCabe, arXiv:1005.0579 for nice discussion of this)

$$q=\sqrt{2m_N E_r}$$
 = momentum transfer of scattering

Event rate - DM mass and nuclear target dependence

(a) A xenon target with $m_N = 131.3$ u.

(b) A germanium target with $m_{\rm N} = 72.6$ u.

Direct Detection: The Experiments

Credit: Enectali Figueroa-Feliciano CRESST I **CUORE** TeO₂, Al₂O₃, LiF **Phonons** 10 meV/ph **CRESST** 100% energy **CDMS ROSEBUD EDELWEISS** CaWO₄, BGO Ge, Si ZnWO₄, Al₂O₃ ... Ionization Scintillation ~ 10 eV/e ~ I keV/Y **CLEAN ANAIS** 20% energy ArDM CoGeNT few % energy DAMA DarkSide **COSME** DEAP LUX COUPP **NAIAD** WArP DM-TPC ZEPLIN I **XENON DRIFT XMASS** ZEPLIN II, III **IGEX** Xe, Ar, Ne Xe, Ar, Ne Ge, CS₂, C₃F₈

Direct Detection: Current status

Direct Detection: Future Prospects

SO FAR: ~3 YEARS/ORDER OF MAGNITUDE

Looking for SM states from DM annihilations

Sources:

Galactic centre/halo

Dwarf Spheroidal galaxies

The Sun The Earth

Credit: J. Bullock, M. Geha, R. Powell

Credit: Carlos de los Heros astrophysics **SM** particle physics Supersymmetry (or other model) Low-energy photons **Positrons** Quarks M Electrons Medium-energy gamma rays Neutrinos Leptons Antiprotons Supersymmetric neutralinos **Protons Bosons** (or other WIMP) Decay process

Indirect dark matter searches through three 'signatures':

1)
$$\gamma - \text{rays}$$

1)
$$\gamma - \text{rays}$$
 2) e^+, e^-, \bar{p}, p

3)
$$\nu$$

Detectors:

1) $\gamma - {
m rays}$ Cherenkov Telescopes (Earth's Surface) and Satellites

e.g. HESS, MAGIC, VERITAS... e.g. FERMI-LAT, INTEGRAL, ...

2) e^+, e^-, \bar{p}, p Satellites e.g. PAMELA, AMS, ...

3) ν

Neutrino telescopes (underground/water/ice)

e.g. ICECUBE, ...

Map of the World, April 2007

Features of a Gamma ray spectrum

Bergström, Ullio, Buckley '98

Continuous spectrum -

Large rate but at lower energies difficult to see above background

Mono-energetic gamma ray lines -

Often small rate but at highest energy; "smoking gun"

Loop induced annihilation to photons

Non-relativistic annihilation

$$\frac{v_{\rm dm}}{c} \sim 10^{-3}$$

$$\Rightarrow E_{\gamma} \approx m_{\rm dm}$$

Produces a line in gamma ray spectrum

Lars Bergström, Piero Ullio '98

Annihilation to $\,Z^0 + \gamma\,$ also generates gamma ray line with energy

$$E_{\gamma} \approx m_{\rm dm} \left(1 - \frac{m_z^2}{4 m_{\rm dm}^2} \right)$$

• Rates for indirect detection of SM species $j=\gamma,e^+,e^-,\bar{p},p,\nu$

$$rac{Particle}{Physics}$$
 Astro part $rac{d\phi(\Delta\Omega,E_j)}{dE_j}=rac{\langle\sigma v
angle}{2m_{
m dm}^2}rac{dN_j}{dE_j}$ $J(\Delta\Omega)$

$$J(\Delta\Omega) = \frac{1}{4\pi} \int_{\Delta\Omega} \int_{\mathrm{l.o.s.}} \rho_{\mathrm{dm}}^2(\mathbf{r}) dl d\Omega' \qquad \text{Line-of-sight (l.o.s.) integral through DM distribution integrated over a solid angle, } \Delta\Omega.$$

$$rac{dN_j}{dE_j}$$
 Differential yield per annihilation

 Major uncertainties over dark matter density distribution - uncertainty appears in "J-factor"

 Uncertainties in the way SM final states propagate through the interstellar medium

Uncertainties in what we predict for the annihilation cross sections

◆ Large and uncertain backgrounds - E.g. Pulsars

Gamma ray limits: dSphs excellent place to look - good mass to light ratio

Galactic center excess best fit ...T. Daylan, D. P. Finkbeiner, D. Hooper, T. Linden, S. K. N. Portillo (2014) and others

- Measurements of cosmic rays increasing positron fraction...
- Conventional picture: Positrons produced in local collisions of cosmic rays with interstellar medium - energy spectrum should decrease in region of interest

 Can potentially explain with Pulsars or other astro background - - but dark matter interpretation is intriguing but difficult with no excess found in anti-protons

- Using neutrinos to constrain DM elastic scattering
 - DM states collide with protons in the sun get gravitationally captured
 - ◆ DM states in Sun can annihilate producing neutrinos look for these

From Klasen, Pohlb, Sigl, (2015)

Depends on to what the DM annihilates

LHC Searches

Look for processes of the type:

- ◆ Searches now in many channels of the form "mono-x" plus missing
- ◆ Excellent complimentary search strategy more from Mads later in the week

Summary so far...

- Evidence points towards a missing mass component of the Universe which is dark
- Most studied candidate is the WIMP produced via freeze-out
- Many candidate WIMPS: SUSY LSP, ED LKP, anything with weak couplings and electroweak scala mass
- Can probe WIMPs in a number of ways
 - Directly in labs looking for DM scattering of SM nuclei
 - Indirectly looking for SM final states in DM annihilations in astrophysical environments
 - In colliders "looking" at direct production in collisions in association with some SM states

Summary so far...

◆ So far no confirmed DM signal...

 Maybe this simple picture is not correct - modifications and alternatives...

Alternatives to Standard Freeze-out

So far we have described one particular class of DM model - there is a huge range of alternatives

Asymmetric Dark matter

Non-thermally produced states

Strongly interacting dark matter - SIMPs

♦ WIMPless models

Superwimps

WIMPzillas

Frozen-in dark matter - FIMPs

Axions or axion like particles - misalignment, mechanism

WIMPonium

Self-interacting dark matter

Nuclear Dark matter

+ many many more...

Motivation for Asymmetric DM

$$rac{\Omega_{
m dm}}{\Omega_{
m B}} \sim 5$$

Standard picture:

 $\Omega_{
m dm}$ WIMP freeze-out - set when $\Gamma_{
m ann}\lesssim H$

 Ω_{B} Set by CP-violating, baryon number violating out of equilibrium processes.

- Given the physics generating each quantity, ratio is a surprise
- If not a coincidence need to explain the closeness

Asymmetric Dark Matter

$$\eta_{\rm dm} = n_{\rm dm} - n_{\overline{\rm dm}} \neq 0$$

or

$$\eta_{\rm B} = n_{\rm B} - n_{\overline{\rm B}} \neq 0$$

- Relate this DM asymmetry to the baryon asymmetry (or vice versa)
- Leading to:

$$n_{\rm dm} - n_{\overline{\rm dm}} \propto n_{\rm B} - n_{\overline{\rm B}}$$
 \Rightarrow $\eta_{\rm dm} = C \eta_{\rm B}$

$$\frac{\Omega_{
m dm}}{\Omega_{
m B}} \sim \frac{(n_{
m dm} + n_{\overline{
m dm}}) m_{
m dm}}{(n_{
m B} + n_{\overline{
m B}}) m_{
m B}}$$

$$\eta_{\rm dm} = n_{\rm dm} - n_{\overline{\rm dm}} \neq 0$$

or

$$\eta_{\rm B} = n_{\rm B} - n_{\overline{\rm B}} \neq 0$$

- Relate this DM asymmetry to the baryon asymmetry (or vice versa)
- Leading to:

$$n_{\rm dm} - n_{\overline{\rm dm}} \propto n_{\rm B} - n_{\overline{\rm B}}$$
 \Rightarrow $\eta_{\rm dm} = C \eta_{\rm B}$

$$n_{
m dm}\gg n_{
m \overline{dm}}$$
 $\Omega_{
m dm} \gg n_{
m \overline{dm}}$ $\Omega_{
m dm} \sim \frac{(n_{
m dm}+n_{
m \overline{dm}})m_{
m dm}}{(n_{
m B}+n_{
m \overline{B}})m_{
m B}} \sim \frac{(n_{
m dm}-n_{
m \overline{dm}})m_{
m dm}}{(n_{
m B}-n_{
m \overline{B}})m_{
m B}}$

$$\eta_{\rm dm} = n_{\rm dm} - n_{\overline{\rm dm}} \neq 0$$

or

$$\eta_{\rm B} = n_{\rm B} - n_{\overline{\rm B}} \neq 0$$

- Relate this DM asymmetry to the baryon asymmetry (or vice versa)
- Leading to:

$$n_{\rm dm} - n_{\overline{\rm dm}} \propto n_{\rm B} - n_{\overline{\rm B}}$$
 \Rightarrow $\eta_{\rm dm} = C \eta_{\rm B}$

$$\frac{\Omega_{\mathrm{dm}}}{\Omega_{\mathrm{B}}} \sim \frac{(n_{\mathrm{dm}} - n_{\overline{\mathrm{dm}}}) m_{\mathrm{dm}}}{(n_{\mathrm{B}} - n_{\overline{\mathrm{B}}}) m_{\mathrm{B}}} \sim \frac{\eta_{\mathrm{dm}}}{\eta_{\mathrm{B}}} \frac{m_{\mathrm{dm}}}{m_{\mathrm{B}}}$$

$$\eta_{\rm dm} = n_{\rm dm} - n_{\overline{\rm dm}} \neq 0$$

or

$$\eta_{\rm B} = n_{\rm B} - n_{\overline{\rm B}} \neq 0$$

- Relate this DM asymmetry to the baryon asymmetry (or vice versa)
- Leading to:

$$n_{\rm dm} - n_{\overline{\rm dm}} \propto n_{\rm B} - n_{\overline{\rm B}}$$
 \Rightarrow $\eta_{\rm dm} = C \eta_{\rm B}$

$$\frac{\Omega_{\mathrm{dm}}}{\Omega_{\mathrm{B}}} \sim \frac{\eta_{\mathrm{dm}}}{\eta_{\mathrm{B}}} \frac{m_{\mathrm{dm}}}{m_{\mathrm{B}}} \sim C \frac{m_{\mathrm{dm}}}{m_{\mathrm{B}}}$$

$$\eta_{\rm dm} = n_{\rm dm} - n_{\overline{\rm dm}} \neq 0$$

or

$$\eta_{\rm B} = n_{\rm B} - n_{\overline{\rm B}} \neq 0$$

or both

- Relate this DM asymmetry to the baryon asymmetry (or vice versa)
- Leading to:

$$n_{\rm dm} - n_{\overline{\rm dm}} \propto n_{\rm B} - n_{\overline{\rm B}}$$
 \Rightarrow $\eta_{\rm dm} = C \eta_{\rm B}$

$$\frac{\Omega_{\mathrm{dm}}}{\Omega_{\mathrm{B}}} \sim \frac{\eta_{\mathrm{dm}}}{\eta_{\mathrm{B}}} \frac{m_{\mathrm{dm}}}{m_{\mathrm{B}}} \sim C \frac{m_{\mathrm{dm}}}{m_{\mathrm{B}}}$$

Value of C is determined by how the asymmetries are shared between the two sectors

- In many models, symmetries are introduced that link the baryon and dark matter sectors
- In the dark sector: $U(1)_X$ In the SM sector: $U(1)_{B-L}$
- * Require "sharing" operators that are in thermal equilibrium at $\,T>m_X$

$$\mathcal{L}\supset rac{1}{Md-4}\mathcal{O}_{\mathrm{B-L}}\mathcal{O}_{X}$$
 Break symms to subgroup $U(1)_{B-L+X}$

- Operators transmit the asymmetry from one sector to another
- Drop out of thermal equilibrium leaving $U(1)_X$ and $U(1)_{B-L}$
- They can also lead to signals. e.g. at the LHC

$$rac{\Omega_{dm}}{\Omega_B} \sim rac{\eta_{dm}}{\eta_B} rac{m_{dm}}{m_B}$$
 If $\eta_{
m dm} \sim \eta_{
m B}$

Then we get a prediction for the mass of the dark matter

$$m_{\rm dm} \sim 5 m_{\rm B} \sim 5 {\rm ~GeV}$$

- This is the "natural" dark matter mass for ADM models.
- This is true if the sharing operator decouples before the DM becomes non-relativistic
- If not, then the relationship is more complicated
 - → Can get different predictions for the DM mass

Heavy ADM

- Can have ADM with heavy masses
- Sharing processes only decouple after DM has become nonrelativistic
 - ⇒ Dark matter asymmetry gets Boltzmann suppressed

$$\frac{\Omega_{\mathrm{dm}}}{\Omega_{\mathrm{B}}} \approx \frac{m_{\mathrm{dm}}}{m_{\mathrm{B}}} x^{3/2} e^{-x}$$

with
$$x=rac{m_{
m dm}}{T_d}$$

 T_d Decoupling temp of X-number violating interactions

Actual suppression is more complicated - see Barr '91

Heavy ADM

Large range of possible masses

Asymmetric Freeze-out

◆ Already seen what happens in the standard freeze-out scenario, what happens if

$$n_{\rm dm} - n_{\overline{\rm dm}} \neq 0$$

- ◆ Assuming there is this asymmetry in the dark mater states, this changes details of freeze-out.
- Using again $\sigma v = a + bv^2 + \dots$

$$Y_{\bar{\chi}}(x \to \infty) = \frac{C}{\exp\left[C(4\pi/\sqrt{90}) \, m_{\chi} M_{\rm Pl} \, \sqrt{g_*} \, (a \, \bar{x}_F^{-1} + 3b \, \bar{x}_F^{-2})\right] - 1}$$

$$Y_{\chi}(x \to \infty) = \frac{C}{1 - \exp\left[-C(4\pi/\sqrt{90}) \, m_{\chi} M_{\rm Pl} \, \sqrt{g_*} \, (ax_F^{-1} + 3bx_F^{-2})\right]}$$

- lacktriangle Here C is the asymmetry in dark matter number
- lacktriangle Take limit as C o 0 we get back to the symmetric result $\Omega h^2 pprox rac{1.04 imes 10^9}{M_{
 m pl}} rac{x_f}{\sqrt{g_*}} rac{1}{a + 3b/x_F}$

Asymmetric Freeze-out

Compare cases of symmetric and asymmetric freeze-out.

All lines are plotted for the same model parameters - same cross section and masses of dark matter states

$$\eta$$
 = asymmetry in DM

$$Y^-$$
 =Yield for anti-DM states in asymmetric case

$$Y_{\eta=0}^{\pm}$$
 = Yield for DM and anti dm states in symmetric case

It is clear that this asymmetry can lead to a large difference in the final dark matter number density.

Probing ADM

- ◆ Indirect detection: In most models there is no indirect detection as there are no anti-DM for DM to annihilate with
 - ◆ Some more complicated models predict late time regeneration of a small amount of anti-dm through DM-AntiDM oscillations

- Direct detection is the same as for the symmetric case
- Limits from capture in stars are more constraining
- ◆ As annihilation cross-section for asymmetric freeze-out needs to be larger than the symmetric case, limits from the LHC and direct detection are more constraining

Quick ADM Summary

◆ Potential to explain ratio of DM to normal matter densities

◆ More sophisticated models can not only explain ratio but also generate the asymmetries in the first place - co-generating the DM and baryon asymmetries - one possible baryogenesis mechanism

Freeze-out Assumptions - Revisited

Single species of dark matter

Radiation dominated universe

• DM interactions with the SM states large enough to be in thermal equilibrium at $T>m_X$

Freeze-out Assumptions - Revisited

Single species of dark matter

Radiation dominated universe

• DM interactions with the SM states large enough to be in thermal equilibrium at $T>m_X$

Assume now this is not the case...

→ Leads to the possibility of "Freeze-in"

Freeze-in overview

Freeze-in is relevant for particles that are feebly coupled (Via renormalisable couplings) - λ Frozen Interacting Massive Particles (FIMPs) X

- ullet Although interactions are feeble they lead to some X production
- ullet Dominant production of X occurs at $T\sim M_X$ IR dominant
- Increasing the interaction strength increases the yield opposite to Freeze-out...

Freeze-out vs Freeze-in

$$Y_{FO} \sim \frac{1}{\langle \sigma v \rangle M_{Pl} m'}$$

Using
$$\langle \sigma v \rangle \sim \lambda'^2/m'^2$$

$$Y_{FO} \sim \frac{1}{\lambda'^2} \left(\frac{m'}{M_{Pl}}\right)$$

Freeze-in via, decays, inverse decays or 2-2 scattering

Coupling strength >

m mass of heaviest particle in interaction

$$Y_{FI} \sim \lambda^2 \left(\frac{M_{Pl}}{m}\right)$$

Freeze-in vs Freeze-out

ullet As T drops below mass of relevant particle, DM abundance is heading towards (freeze-in) or away from (freeze-out) thermal equilibrium

Freeze-in vs Freeze-out

• For a TeV scale mass particle we have the following picture.

FIMP miracle vs WIMP miracle

ullet WIMP miracle is that for $m' \sim v \quad \lambda' \sim 1$

$$Y_{FO} \sim \frac{1}{\lambda'^2} \left(\frac{m'}{M_{Pl}}\right) \sim \frac{v}{M_{Pl}}$$

ullet FIMP miracle is that for $m \sim v \;\; \lambda \sim v/M_{Pl}$

$$Y_{FI} \sim \lambda^2 \left(\frac{M_{Pl}}{m}\right) \sim \frac{v}{M_{Pl}}$$

Example Toy Model I

- FIMPs can be DM or can lead to an abundance of the Lightest Ordinary Supersymmetric Particle (LOSP)
- ullet Consider FIMP X coupled to two bath fermions ψ_1 and ψ_2

$$\left(L_Y = \lambda \, \psi_1 \psi_2 X\right)$$

ullet Let ψ_1 be the LOSP

$$ullet$$
 First case FIMP DM: $m_{\psi_1} > m_X + m_{\psi_2}$

$$\psi_1$$
 ψ_2

$$\Omega_X h^2 \sim 10^{24} \frac{m_X \Gamma_{\psi_1}}{m_{\psi_1}^2}$$

Using
$$\Gamma_{\psi_1} \sim \frac{\lambda^2 m_{\psi_1}}{8\pi} \Rightarrow$$

Using
$$\Gamma_{\psi_1} \sim \frac{\lambda^2 m_{\psi_1}}{8\pi} \Rightarrow \left[\Omega_X h^2 \sim 10^{23} \lambda^2 \frac{m_X}{m_{\psi_1}} \right]$$

For
$$\frac{m_X}{m_{\psi_1}} \sim 1$$
 need $\lambda \sim 10^{-12}$ for correct DM abundance

Toy Model continued...

ullet Second case LOSP (=LSP) DM: $m_X > m_{\psi_1} + m_{\psi_2}$

$$\left(\Omega_X h^2 \sim 10^{24} \frac{\Gamma_X}{m_X} \sim 10^{23} \lambda^2\right)$$

Using $\Gamma_X \sim rac{\lambda^2 m_X}{8\pi}$

 \bullet BUT X is unstable...

$$X$$
 ψ_1 λ ψ_2

$$\lambda$$
 giving $\Omega_{\psi_1}h^2=rac{m_{\psi_1}\Omega_Xh^2}{m_X}\sim 10^{23}\lambda^2rac{m_{\psi_1}}{m_X}$

Again for $\frac{m_X}{m_{\psi_1}} \sim 1$ need $\lambda \sim 10^{-12}$ for correct DM abundance

ullet lifetime can be long - implications for BBN, indirect DM detection

Example Model II

- Many applications and variations of the Freeze-in mechanism
- Assume FIMP is lightest particle carrying some stabilising symmetry - FIMP is the DM
- Consider quartic coupling of FIMP with two bath scalars

$$\mathcal{L}_Q = \lambda X^2 B_1 B_2$$

Assuming
$$m_X\gg m_{B_1}, m_{B_2}$$

$$B_1$$
 λ
 λ
 B_3
 X

$$\Omega h_X^2 \approx 10^{21} \lambda^2$$

For correct DM abundance
$$\Rightarrow \lambda \sim 10^{-11}$$

NOTE: Abundance in this case is independent of the FIMP mass

FIMP Candidates and generating tiny λ

- Any long lived particle that is coupled to the thermal bath with a feeble coupling - needs to be a SM gauge singlet
- Hidden sector feebly coupled to MSSM
- Moduli and Modulinos associated with SUSY breaking

$$m_{susy}^2(T) \, \phi^{\dagger} \phi = m_{susy}^2 \left(1 + \frac{T}{M} \right) \, \phi^{\dagger} \phi$$
 $\lambda \sim \frac{m_{susy}}{M}$

Dirac neutrino masses with SUSY - RH sneutrino FIMPs

$$\mathcal{L}_{\text{Dirac}} = \lambda_{\nu} L H_u N \qquad \lambda_{\nu} \sim 10^{-12}$$

See Moroi et al for related

- FIMPs from kinetic mixing: hidden sector particles coupling to the MSSM via mixing of U(1) and hidden U(1) feeble mixing feeble coupling
- Others...Gravitino, RH neutrino, axino...

Experimental Signatures

- Long lived LOSPs at the LHC: FIMPs frozen in by decay of LOSP
- The LOSP is unstable, it decays to the FIMP and only the FIMP
- The LOSP is therefore long lived
- Every SUSY event will produce two LOSP each will have long lived decays
- LOSP could be charged electronically or even coloured

$$\tau_{\text{LOSP}} = 7.7 \times 10^{-3} \text{sec} \left(\frac{m_X}{100 \,\text{GeV}} \right) \left(\frac{300 \,\text{GeV}}{m_{\text{LOSP}}} \right)^2 \left(\frac{10^2}{g_*(m_{\text{LOSP}})} \right)^{3/2}$$

Implications for Big Bang Nucleosynthesis

 Signals for BBN: FIMPs or LOSPs decaying late could have implications for BBN

 After Freeze-in, either the LOSP or FIMP is unstable, can live for a second or more - decays during BBN era

 Depending on the details of these decays, an injection of hadrons during BBN can change the abundances of some elements

Implications for indirect and direct DM detection

- Enhanced indirect and direct detection: LOSP DM relic abundance and LOSP DM annihilation cross section no longer related.
- Case where an abundance of unstable FIMPs are frozen-in, these then decay back to the LOSPs

- If Freeze-in dominantly produces DM abundance annihilation cross section must be large freeze-out abundance is small
- The annihilation cross section for the DM LOSP will be greater than the canonical value needed for freeze-out - BOOST FACTORS

Freeze-in Summary

Freeze-in can provide attractive alternative to Freeze-out

It is an IR dominated process and in simple scenarios relicable abundance can be found analytically

• Experimental implications of Freeze-in include: long lived states at the LHC, modifications to predictions at BBN and changes in predictions for indirect and direct DM detection

Hidden Sector DM

Visible sector $q,e,W,Z,H,\tilde{q},...$ Portal $\chi,\chi',\chi''_{\mu}...$

- Hidden sector states have no SM gauge interactions
- Hidden sector may be linked, beyond gravity, to the visible sector

Portals: higgs - $|H|^2|\chi|^2$ or $|H|^2|\chi'|^2$ etc neutrino - $LH\chi$ or $LH\chi'$ kinetic mixing - $(\partial_\mu\chi''_\nu-\partial_\nu\chi''_\mu)F_Y^{\mu\nu}$ if χ''_μ is a U(1)' Gauge boson plus D>4 operators $\frac{1}{M^{n-4}}\mathcal{O}_{\rm sm}\mathcal{O}_{\rm hs}$

The form of this portal can play a major role in DM genesis

<u>SuperWIMPS</u>

Visible sector $q,e,W,Z,H,\tilde{q},\dots \begin{tabular}{c} Portal \\ \hline \end{array}$

- If the portal interactions are only gravitational still have options
- SuperWIMPS: Feng, Rajaraman, Takayama '03
 - ◆ DM state never in thermal equilibrium
 - Abundance is generated by late decay of another particle that has frozen-out
 - Prime example gravitino dm with LOSP freezing out and decaying to gravitino
 - ◆ Implications for BBN + long lived states at colliders
- See also WIMPzillas

Multi-state hidden sectors

Visible Sector

 $q, e, W, Z, H, \tilde{q}, \dots$

Portal

Hidden sector

$$\chi, \chi', \chi''_{\mu}$$
...

- In particular the idea of self interacting dark matter (SIDM)
 - Motivated by small scale structure problems e.g.
 - * "Cusps vs cores"
- * "Too big to fail"

,

Carlson, Machacek, Hall '92

Spergel, Steinhardt '99

For self interacting DM to solve, requires

$$\frac{\sigma}{m_\chi} \sim \frac{1 \mathrm{barn}}{\mathrm{GeV}}$$

Rocha et al '12, Peter et al '12, Vogelsberger '12, Zavala et al '12

- ⇒ Suggests some strongly interacting theory
- Confining non-abelian gauge theory

Self-interacting dark matter

Visible sector

$$q, e, W, Z, H, \tilde{q}, \dots$$

Portal

Hidden sector
$$\chi, \chi', \chi''_{\mu}...$$
 $SU(N_D)$

- Many models of non-abelian theories in hidden sectors e.g.
 - Glueball dark matter: Pure Yang-mills

Boddy, Feng, Kaplinghat, Shadmi, Tait '14

- + susy version with glueballinos
 - makes use of wimpless miracle

Feng, Kumar '08

$$\Omega h^2 \sim \frac{m_\chi^2}{g_\chi^4}$$

if $m_\chi \propto g_\chi^2$ we get correct size

large range of possibilities including qcd-like interactions and masses

Lots of other earlier examples e.g. Falkowski, Kuknevich, Shelton '09, Alves, Bebnahani, Schuster, Wacker '09, Kribs, Roy, Terning, Zurek '09, Lisanti, Wacker '09, Buckley, Neil '12+...

Visible sector

 $q, e, W, Z, H, \tilde{q}, \dots$

Portal

Hidden sector

$$\chi^3 \to \chi^2$$

- Inspiration from the cannibalistic model of Carlson, Machacek, Hall '92
- Freeze-out of dark matter dominated by $3 \rightarrow 2$ processes
- Crucial portal interaction to visible sector allows excess energy from cannibalisation of DM states to be redistributed throughout thermal bath.
- Allows for a Strongly Interacting Massive Particle with Gev or below mass application to small scale structure problem

<u>Summary</u>

- WIMP DM generated via the freeze-out mechanism is simple, in many case predictive scenario to explain DM
- Many experimental efforts to detect DM: direct detection, indirect detection, LHC searches.
- Maybe this simple picture is not right? Maybe the WIMP has had its day?
- Maybe DM is related to the matter-antimatter asymmetry?
- Maybe DM has no significant coupling to the SM and direct dark matter detection will never see it?!
- Lots of fun investigating the possibilities though!