

Advances in the Development of a 10-kA Class REBCO cable for the EuCARD2 Demonstrator Magnet

Presented by L. Bottura on behalf of the EuCARD2 WP10 (Future Magnets) Collaboration

EUCAS 2015, Lyon, September 6th-10th, 2015

Outline

Why HTS cables ?
Which cable ?
Highlights and plan

HTS, for what ?

EUCARD²

HTS for +5 T (REBCO)

5 T HTS (YBCO) stand-alone dipole for test in FReSCa2 (40 mm bore)

Field [T]

Magneti

G. Kirby et al., "Design, construction and test of

subscale coils with REBCO Roebel cable for the

EuCARD-2 Future Magnets project", 2M-LS-O2

Cos- θ option for an HTS Roebel

C. Lorin et al., "Development of a Roebel-cable based cos-theta dipole: design and windability of magnet ends", 3A-LS-P-01

Block coil with *lumped*-twist tape stacks

J. Himbele et al., "HTS dipole magnet for a particle accelerator using a twist stack cable", 2M-LS-O2

Target performance

Parameter		R&D target	Minimum
J _E (4.2 K, 20 T)	(A/mm ²)	600	400
Unit length	(m)	100	50
$\sigma(I_c)$	(%)	10	
M (1.5 T, 10 mT/s)	(mT)	300	
Minimum otransverse	(MPa)		100
Range of Elongitudinal	(%)		±0.3

Target cable I_C in the range of 10 kA

Material focus: REBCO or Bi-2212

EUCARD

Minimal Bi-2212 program

Analysis and characterization

Sample of BSCCO-2212 cable

EUCARD²

US-BSCCo program, testing alternative materials and coil configurations (CCT)

U. Trociewitz et al, Bi-2212 magnet technology, 2M-LS-O2 M. Matras et al, Bi-2212 heat treatment, 2A-WT-O1 F. Kametani et al., Bi-2212 microstructure, 3M-M-O2 C. Scheuerlein et al., Influence of the oxygen partial pressure, 3A-WT-P-01

Cable options - 1/3

IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) October 2014 Plenary Presentation 4PLA-01 given at ASC 2014, Charlotte, August 10 – 15, 2014. Cables Performance Summary

					and the second s	
Cable concept	Rutherford	RACC	CORC	TSTC	RSCCCT	Slotted CIC
Conductor	Bi-2212	REBCO	REBCO	REBCO	REBCO/P IT	REBCO
Tape utilization	NA	mid/high	mid/high	high	high	high
Scale-up	easy	hard	possible	easy	easy	easy
I _{op} (kA) @4.2 K (possible >10 kA)	2.6 (s.f)	> 2 (8 T_) > 10 (8 T //)	5 (19 T)	5 (12 T) 4 (19.7 T)	3 (12 T)	>2 (10 T)
J _{overall} (A/mm ²) @4.2 K	220 (s.f.)	400 (10 T)	114 (19 T)	100 (12 T)	100 (12 T)	~ 40 (10 T)
σ _{transverse,ave} (MPa)	< 50	> 50	> 300	< 40	< 30	NA
$\epsilon_{longitudinal}$ (%)	< 0.3	~ 0.4	> 0.6	NA	NA	NA
Bending radius (mm)		~10 (easy bend)	60 (-2.5%)	~140 (-3.6%)	300	NA
Comments	Transposed	Transposed	Partially transposed	Partially transposed	Partially transposed	Partially transposed
EuCARD2, 2014 Barth, 2014						43

L. Chiesa, High-current HTS Cables for Magnet Applications, ASC 2014

Cable options – 2/3

- Contraction

	Stacks	Twisted Stacks (TST)	Helically Twisted Stacks (HTST)	Conductor on Round Core (CORC)	Roebel
J _E (A/mm²)	600	273 (@16 T)	100 (@12 T)	250 (@ 17 T) (400 (@ 10T)
I _{OP} (A)	35	4 (@19 T)	1020	7 (@ 17 T)	10 (@ 10T)
ε (%)	as for tape	unknown	unknown	+0.8	unknown
σ (MPa)	as for tape	unknown	unknown	> 300	> 170

Cable options – 3/3

- Compact cable, high J_E
- Transposed cable vs. transverse field
- Easy bending in the parallel direction
- Can be produced automatically on long lengths (e.g. GCS)

- More than 50% of the material is lost
- Slit tape exposed to atmosphere
- No twisting (*scribing* not useful), large magnetization expected
- Mechanical sensitivity at cross-overs
- Tensile behavior of cable is delicate
- Difficult bending in the transverse direction

Baseline cable design

REBCO Tape

Tape width (before punching)	(mm)	12	
SC layer	(µm)	12	
Cu layer	(µm)	2 x 20	
Substrate	(µm)	50 100	
Tape thickness	(mm)	0.1 0.15	
Critical current (4.2 K, 20 T perpendicular)	(A)	≥ 670	

Roebel cable

Number of tapes	(-)	≤ 15 (17)
Width	(mm)	12
Thickness	(mm)	0.8 1.2
Transposition pitch	(mm)	226
Critical current (4.2 K, 20 T perpendicular)	(kA)	≥ 4.2

Protection !?!

3rd Workshop on Accelerator Magnets in HTS Lyon, 10-11 September 2015

Allow for tape slippage during winding

Tapes

Tape production for EuCARD2

Approximately 250 m of 12 mm tape produced:

- all above minimum (400 A/mm²)
- most at target (600 A/mm²)
- some up to J_E (4.2 K, 18 T) ≈ 800 A/mm²

Highest layer J_C obtained in an industrial process

A. Usoskin, 12mm wide HTS coated conductors for high-field applications, 3A-WT-P-02 D. Abraimov, et al., "Double disordered YBCO coated conductors", to appear in SUST, 2015

Homogeneity

T270D-2 (23,7 m × 12 mm)

Roebel cables Cables Cable

E

produced

15 SS tapes (0.1 mm), 3 m

oroduced/procured Total of $\approx 140 \text{ m}$

EUCARD²

15 SS+15 Cu tapes (0.1 mm), 3 m

15 BHTS tapes (0.14 mm), 5 m Expected I_C (4.2 K, 20 T) \approx 4.2 kA

15 BHTS tapes (0.14 mm), 2 m Expected I_C(4.2 K, 20 T) \approx 5.1 kA

W. Goldacker et al, HTS-Roebel-cables in competition to the CORC approach, 3M-WT-01

Punch-and-coat

- Standard Roebel production sequence
- Produce Cu-coated tape
- Punch meanders
- Assemble cable
- Modified Roebel production sequence
 - Produce Ag-capped tape
 - Punch meanders (less than 5% I_C degradation !)
 - Cu-coat (dog-boning !)
 Assemble cable

EUCARD

 $2x40 \ \mu m \ coating$

 $2x20 \ \mu m \ coating$

Optimized 2x20 µm coating

Magnetization

4.2 ... 100 K, 350 mT

4.2 K, 400 mT

Impregnated (CTD101G) Roebel cable sample, 226 mm

UNIVERSITEIT TWENTE.

Southampton

- As expected, the cable has large loss and magnetic moment
- Penetration field is o(1T)
- Work in progress as to the understanding and evaluation of field quality in the various magnet design

J. Van Nugteren et al., "Measurement and Numerical Evaluation of AC-Losses in a ReBCO Roebel Cable", 2M-LS-O2

Transverse forces

<u>Computed</u>

Red=thicker spots =>stressGrey =thinner spots =>no stressJerome Fleiter and Amalia BallarinoEuCARD2 Annual Meeting http://indico.cern.ch/event/364085/

Benefit of impregnation

Ch. Barth

G. Kirby, J. van Nugteren

S. Otten et al., "Transverse loading experiments on REBCO Roebel cables with and without impregnation", 2A-WT-P-03.05

Conclusions and plan

- EuCARD2 WP10 (Future Magnets) provides a strong focus to the development of HTS cables for largescale accelerator magnets
 - Focused on REBCO tape based Roebel cable
- Tape production and procurements on-going
- Cable samples ready for characterization
- Most performance targets are within reach !
- Critical steps in the next half term
 - Validate performance, and compare different materials (configurations ?)
 - Compatibility with coil winding technology, including resin impregnation, and joints
 - Quench detection and protection (!?!) WAMHTS-3 (https://indico.cern.ch/event/396905/)
 - Magnetization effects and control
 - Production for magnet winding

FACULTÉ DES SCIENCES