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Overfitting







Hypotheses testing



• We observe n-events. The value, observed number of event, is 
assumed to have the Poisson distribution.

H0 : n ⇠ Poiss(b) background only

H1 : n ⇠ Poiss(s+ b) signal + bck

• We can define the optimal Neumann-Pearson statistic:
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• If we use several independent experiments:

• In our experiments 
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• The power of the test (power to distinguish two hypotheses):

• Thus, threshold for classifier’s selection should optimize:
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• To calculate TPR we use Monte Carlo. Thus TPR will be 
overestimated. The control channel can give calibration 
multiplier:

• To make our model more sensitive, we can use several regions of the 
classifier’s predictions (divide predictions into several bins). Each bin 
is assumed to be an independent experiment (is used in the Bs->µµ)
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• If Monte Carlo and real data agree, then the classifier 

optimization is simpler



Hypotheses testing:  
common case



L(µ) = P (n|µ)
nY

i=1

f(xi|µ) =
(µs+ b)ne�(µs+b)
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µsf(xi|s) + bf(xi|b)
(µs+ b)

• We observe n-events. The value, observed number of event, is 
assumed to have the Poisson distribution with the mean (µs+b), 
where s is a number of signal events, b is a number of bck events, µ 
is a signal power. And likelihood of our model:

L(µ) =
e
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[µsf(xi|s) + bf(xi|b)]



H0 : µ = 0

H1 : µ > 0

• Often in HEP one claims discovery when the p-value of the background-only 
hypothesis is found below 2.9 × 10^−7, corresponding to a 5-sigma effect.  

• Construct the Neumann-Pearson statistic.
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where µ̂ is the maximum likelihood estimation of L(µ|H1)



• xi is a discriminative variable. To get the previous statistic xi 
should be seen as a bin of predictions. Thus 
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Metrics

• Details about metrics can be found in G. Punzi paper (He also uses Gaussian 
approximation)  

http://arxiv.org/abs/physics/0308063v2
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Weighted ROC AUC

• The most sensitive bin is that what has the 
greatest predictions.  

• For our hypotheses metric only part of the 
ROC curve is interesting 

• Different parts of the ROC curve have 
different sensitivity in terms of our metric 

• The solution for optimization of the  
classifiers is to take the weighted ROC AUC



ROC curve demonstration



Hypotheses testing: 
ND pdfs



• Train classifier to distinguish our ND data (ND pdfs) 

• If it is close to 0.5 than pdfs are similar, if close to 1. than they are different 

• How to test hypotheses: H0-similar, H1-different? And how to compute p-
value?



Mann-Whitney U-test
• It is a nonparametric test of the null hypothesis that two samples come from the 

same population against an alternative hypothesis, especially that a particular 
population tends to have larger values than another.!

• Assign numeric ranks to all observations:!
!

!
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sample 1, 1-labeled ranks: 3,4,5,7,9,11,12!
sample 2, 0-labeled ranks: 1,2,6,8,10,13!
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https://en.wikipedia.org/wiki/Nonparametric_statistics
https://en.wikipedia.org/wiki/Statistical_hypothesis_test
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Alternative_hypothesis


U-statistic and AUC

The U statistic is equivalent to AUC
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