RECAPITULATION

- logistic regression and SVM
- projections, kernels and regularizations
- overfitting (2 definitions)
- stochastic optimization
NEURAL NETWORKS
DECISION TREES FOR CLASSIFICATION

$\begin{align*}
 &x_1 \geq c_1 \\
 &\text{no} \\
 &\text{yes} \\
 &x_2 \geq c_2 \\
 &\text{no} \\
 &\text{yes} \end{align*}$
PRUNING
Subtree Raising

- Delete node
- Redistribute instances
- Slower than subtree replacement

(Worthwhile?)
COMPOSITIONS

Basic motivation: improve quality of classification by reusing strong sides of classifiers.
SIMPLE VOTING

- Averaging predictions of
 \[\hat{y} = [-1, +1, +1, +1, -1] \implies P_{+1} = 0.6, P_{-1} = 0.4 \]

- Averaging predicted probabilities
 \[P_{\pm 1}(x) = \frac{1}{J} \sum_{j=1}^{J} p_{\pm 1,j}(x) \]

- Averaging decision function
 \[D(x) = \frac{1}{J} \sum_{j=1}^{J} d_j(x) \]
WEIGHTED VOTING

The way to introduce importance of classifiers

\[D(x) = \sum_j \alpha_j d_j(x) \]

GENERAL CASE OF ENSEMBLING:

\[D(x) = f(d_1(x), d_2(x), \ldots, d_J(x)) \]
PROBLEMS

- very close base classifiers
- need to keep variation
- and still have good quality of basic classifiers
DECISION TREE
GENERATING TRAINING SUBSET

- **subsampling**
 taking fixed part of samples (sampling without replacement)

- **bagging** (Bootstrap AGGregating) sampling with replacement,

If the number of generated samples equals the length of the dataset, the fraction of unique samples in the new dataset is

\[1 - \frac{1}{e} \approx 63.2\]
RANDOM SUBSPACE MODEL (RSM)

Generating subspace of features by taking random subset of features
Random forest is composition of decision trees. For each tree is trained by

- bagging samples
- taking m random features

Predictions are obtained via simple voting.
OVERFITTING

- overfitted (in the sense that predictions for train and test are different)
- doesn't overfit: increasing complexity (adding more trees) doesn't spoil classifier
• Works with features of different nature
• Stable to noise in data
From 'Testing 179 Classifiers on 121 Datasets'

The classifiers most likely to be the bests are the random forest (RF) versions, the best of which [...] achieves 94.1% of the maximum accuracy overcoming 90% in the 84.3% of the data sets.
RANDOM FOREST SUMMARY

- Impressively simple
- Trees can be trained in parallel
- Doesn't overfit
- Doesn't require much tuning
- Effectively only one parameter: number of features used in each tree
- Recommendation: $N_{\text{used}} = \sqrt{N_{\text{features}}}$
- Hardly interpretable
COMPARING DISTRIBUTIONS

- 1d: Kolmogorov-Smirnov
- more features is a problem, but we can compute KS over each of variables
- hardly 1d results can be combined together
COMPARING DISTRIBUTIONS
COMPARING DISTRIBUTIONS OF POSITIVE AND NEGATIVE TRACKS
Want to compute significance? Use ROC AUC + Mann-Whitney U test
SAMPLE WEIGHTS IN ML

Can be used with many estimators.

\[x_i, y_i, w_i \quad i - \text{index of event} \]

- weight corresponds to frequency of observation
- expected behavior: \(w_i = n \) is the same as having \(n \) copies of \(i \)th event
- global normalization doesn't matter

Example for logistic regression:

\[\mathcal{L} = \sum_i w_i L(x_i, y_i) \to \min \]
Weights (parameters) of classifier \(\neq \) sample weights

In code:

```python
import sklearn.tree as tree

tree = DecisionTreeClassifier(max_depth=4)
tree.fit(X, y, sample_weight=weights)
```

Sample weights are convenient way to regulate importance of training events.

Only sample weights in this lecture.
ADABOOST [FREUND, SHAPIRE, 1995]

Bagging: information from previous trees not taken into account.

Adaptive Boosting is weighted composition of weak learners:

\[D(x) = \sum_j \alpha_j d_j(x) \]

We assume \(d_j(x) = \pm 1 \), labels \(y_i = \pm 1 \),
\(j \)th weak learner misclassified \(i \)th event iff \(y_id_j(x_i) = -1 \)
ADABOOST

\[D(x) = \sum_{j} \alpha_j d_j(x) \]

Weak learners are built in sequence

1. each next classifier is trained using different weights
2. initially \(w_i = 1 \) for each training sample

After building \(j \)th base classifier:

1. \(\alpha_j = \frac{1}{2} \ln \left(\frac{w_{\text{correct}}}{w_{\text{wrong}}} \right) \)
2. increase weight of misclassified
 \[w_i \leftarrow w_i \times e^{-\alpha_j y_i d_j(x_i)} \]
ADABOOST EXAMPLE

Decision trees of depth 1 will be used.
ADABOOST SECRET

\[D(x) = \sum_j \alpha_j d_j(x) \]

\[\mathcal{L} = \sum_i L(x_i, y_i) = \sum_i \exp(-y_i D(x_i)) \rightarrow \min \]

- \(\alpha_j \) is obtained as result analytical optimization
- sample weight is equal to penalty
 \(w_i = L(x_i, y_i) = \exp(-y_i D(x_i)) \) for event
LOSS FUNCTION OF ADABOOST

Exponential loss function

loss value $L(x_i, y_i)$

decision function $d(x)$

bkg

$signal$
ADABOOST SUMMARY

- able to combine many weak learners
- takes mistakes into account
- simple, overhead is negligible
- too sensitive to outliers
MINUTES BREAK
DECISION TREES FOR REGRESSION

Regression Tree, depth 1

Regression Tree, depth 2
GRADIENT BOOSTING [FRIEDMAN, 1999]

composition of weak learners,

\[D(x) = \sum_j \alpha_j d_j(x) \]

\[p_{+1}(x) = \sigma(D(x)) \]

\[p_{-1}(x) = \sigma(-D(x)) \]

Optimization of log-likelihood:

\[\mathcal{L} = \sum_i L(x_i, y_i) = \sum_i \ln \left(1 + e^{-y_i D(x_i)} \right) \rightarrow \min \]
GRADIENT BOOSTING

\[D(x) = \sum_j \alpha_j d_j(x) \]

\[\mathcal{L} = \sum_i \ln \left(1 + e^{-y_i D(x_i)} \right) \rightarrow \min \]

- Optimization problem: find all \(\alpha_j \) and weak leaners \(d_j \)
- Mission impossible
- Main point: greedy optimization of loss function by training one more weak learner \(d_j \)
- Each new estimator follows the gradient of loss function
GRADIENT BOOSTING

Gradient boosting ~ steepest gradient descent.

\[D_j(x) = \sum_{j'=1}^{j} \alpha_{j'} d_{j'}(x) \]

\[D_j(x) = D_{j-1}(x) + \alpha_j d_j(x) \]

At \(j \)th iteration:

- pseudo-residual \(z_i = -\frac{\partial}{\partial D(x_i)} \mathcal{L} \bigg|_{D(x)=D_{j-1}(x)} \)
- train regressor \(d_j \) to minimize MSE:
 \[\sum_i (d_j(x_i) - z_i)^2 \to \text{min} \]
- find optimal \(\alpha_j \)
ADDITIONAL GB TRICKS

to make training more stable, add learning rate

\[D_j(x) = \sum_j \eta \alpha_j d_j(x) \]

randomization to fight noise and build different trees:

subsampling of features and training samples
AdaBoost is a particular case of gradient boosting with a different target loss function:

\[L = \sum_{i} e^{-y_i D(x_i)} \rightarrow \min \]

This loss function is called ExpLoss or AdaLoss.

*(also AdaBoost expects that \(d_j(x_i) = \pm 1 \))
LOSS FUNCTIONS

Gradient boosting can optimize different smooth loss functions.

- **regression, \(y \in \mathbb{R} \)**
 - Mean Squared Error \(\sum_i (d(x_i) - y_i)^2 \)
 - Mean Absolute Error \(\sum_i |d(x_i) - y_i| \)

- **binary classification, \(y_i = \pm 1 \)**
 - ExpLoss (ada AdaLoss) \(\sum_i e^{-y_id(x_i)} \)
 - LogLoss \(\sum_i \log(1 + e^{-y_id(x_i)}) \)
EXAMPLE: REGRESSION WITH GB

using regression trees of depth=2
ADAPTING BOOSTING

By modifying boosting or changing loss function we can solve different problems

- classification
- regression
- ranking

Also we can add restrictions, i.e. fight correlation with mass
In ranking we need to order items by y_i:

$$y_i < y_j \Rightarrow d(x_i) < d(x_j)$$

We can add penalization term for misordering:

$$\mathcal{L} = \sum_{ij} L(x_i, x_j, y_i, y_j)$$

$$L(x_i, x_j, y_i, y_j) = \begin{cases}
\sigma(d(x_j) - d(x_i)), & y_i < y_j \\
0, & \text{otherwise}
\end{cases}$$
BOOSTING TO UNIFORMITY

Point of uniform boosting - have constant efficiency against some variable.

Examples:

- flat background efficiency along mass
- flat signal efficiency for different flight time
- flat signal efficiency along Dalitz variable
High correlation with mass will create from pure background false peaking signal

Aim: \(\text{FPR} = \text{const} \) for different regions in mass.
uBoostBDT

Variation of AdaBoost approach, aim \(FPR_{\text{region}} = \text{const} \).

Fix target efficiency (say \(FPR_{\text{target}} = 30\% \)), find corresponding threshold

- Train a tree, its decision function \(d_j(x) \)
- Increase weight for misclassification:
 \[
 w_i \leftarrow w_i \exp \left(-\alpha y_i d_j(x) \right)
 \]
- Increase weight of signal events in regions with high FPR
 \[
 w_i \leftarrow w_i \exp \left(\beta (FPR_{\text{region}} - FPR_{\text{target}}) \right)
 \]
uBoost

uBoost is an ensemble over uBoostBDT, each uBoostBDT uses own global FPR.

uBoostBDT returns 0 or 1 (passed or not the threshold corresponding to target FPR), simple voting is used to obtain predictions.

- drives to uniform selection
- very complex training
- many classifiers
- estimation of threshold in uBoostBDT may be biased
MEASURING NON-UNIFORMITY
MEASURING NON-UNIFORMITY

\[\text{CvM} = \sum_{\text{region}} \int \left| F_{\text{region}}(s) - F_{\text{global}}(s) \right|^2 dF_{\text{global}}(s) \]
FLATNESS LOSS

Put an additional term in loss function which will penalize for non-uniformity

\[\mathcal{L} = \mathcal{L}_{\text{exploss}} + c \mathcal{L}_{\text{FL}} \]

Flatness loss approximates (non-differentiable) CVM metrics:

\[\mathcal{L}_{\text{FL}} = \sum_{\text{region}} \int |F_{\text{region}}(s) - F_{\text{global}}(s)|^2 ds \]

\[\frac{\partial}{\partial D(x_i)} \mathcal{L}_{\text{FL}} \approx 2(F_{\text{region}}(s) - F_{\text{global}}(s)) \big|_{s=D(x_i)} \]
GRADIENT BOOSTING

- general-purpose flexible algorithm
- usually over trees
- state-of-art results in many areas
- can overfit
- usually needs tuning
THE END