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The Standard Model
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Higgs Mechanism

@ Complex scalar doublet
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@ Symmetry of vacuum is

spontaneously broken
leading to a ground state

0
_ 1
qb——ﬁ <V+H>,whereH

is a massive scalar field
The other three degrees of
freedom become the
longitudinal polarizations of
the W+, W—, and Z
bosons, giving them mass

Additional Yukawa couplings
between the Higgs field and
the fermions lead to fermion
mass terms due to v
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Higgs Boson

Remaining component of the Higgs field behaves as a massive
scalar boson, last particle to be observed in the standard
model
Coupling of the Higgs boson to the standard model particles
predicted by the theory:

e Coupling to W and Z bosons

e Coupling to fermions proportional to their mass
Mass of the Higgs is a free parameter of the theory (but
unitarity of WW scattering in the SM requires my <~ 1 TeV)

Entire region my < 114.4 GeV ruled out by previous
experiments

Indirect electroweak constraints prefer a relatively light Higgs
mass (my < 152 GeV at 95% C.L)

Higgs discovered by ATLAS and CMS collaborations in
summer 2012
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The Large Hadron Collider

@ Proton-proton collider
27 km in circumference,
located at CERN in Geneva

@ Design energy of 14 TeV

@ Superconducting dipole
magnets with a design field
of 8.3 T, cooled to 1.9 K
using superfluid helium
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Higgs Production Processes at LHC
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Higgs Production and Decay at LHC
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@ Variety of final states, would like to extract Higgs signal from
as many as possible
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The CMS Detector

SILICON TRACKER

CMS Detector "
~im?  ~66M channels

Microstrips (80-180um)

Pixels ~200m"  ~9.6M channels
Tracker - CRYSTAL ELECTROMAGNETIC

l— CALORIMETER (ECAL)
A 76K scintilating POWO, crystals
HCAL
Solenoid 7,
g PRESHOWER
. Silicon strips
Muons ~16m? ~137k channels

STEEL RETURN YOKE
~13000 tonnes

SUPERCONDUCTING

SOLENOID

Niobium-titanium coil

carrying ~18000 A FORWARD
CALORIMETER
Steel + quartz fibres

. HADRON CALORIMETER (HCAL) z2Kenannels

Total weight : 14000 tonnes Brass + plastic scintillator MUON CHAMBERS

Overall diameter :15.0 m ~7k channels Barrel: 250 Drift Tube & 480 Resistive Plate Chambers

Overall length :28.7m Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers
Magnetic field :38T
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The CMS Detector
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Charged Hadron (e.g. Pion)
Photon
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The CMS Detector: Some Challenges

CMS Preliminary 2011-2012
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o ECal crystals lose and recover transparency under exposure to
radiation

e Monitored in situ with LED/laser monitoring system, but still
a major challenge for calibration

@ Lots of material in front of the ECal
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Machine Learning Techniques in Higgs Analyses

@ Machine learning techniques extensively used in Higgs
search /discovery, will cover a few specific cases and their
particularities

e H— ZZ — 4¢: Use of Matrix Element likelihood techniques
for well understood and well measured background

o H — bb: Use of BDT classifiers for complex set of
backgrounds with large systematic uncertainties

o H — ~v: Use of BDT regression/classifiers for photon
reconstruction /selection, BDT classifiers to distinguish
different signal components, interplay with mass fits
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H— ZZ — 4¢

@ "Golden channel” - Narrow mass peak on small background
@ lIrreducible ZZ — 4/ continuum background small and well

understood
g ot
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(i) Main signal (j) Main background
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H— ZZ — 4¢

@ Select 4 leptons of appropriate charge and flavour combinations (+FSR
recovery) with 40 < mz; < 120 GeV, 12 < mz, < 120 GeV

@ Electron acceptance: |n| < 2.5, pr > 7 GeV, Muon acceptance:
In| < 2.4, pr > 5 GeV

@ Irreducible ZZ — 4¢ continuum background estimated from MC
@ Reducible Z + bb and tf backgrounds estimated from Z + same-sign

dilepton/Z + loose dilepton samples, with fake rates from Z + loose ¢

sample
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H — ZZ — 4(: Beyond the mass distribution

@ Higgs is a scalar — decay angles 61,0>,9, and lepton pair
masses mz1,mz, provide additional discrimination against
continuum background
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H — ZZ — 4(: Beyond the mass distribution

@ Higgs is a scalar — decay angles 61,02,9, and lepton pair
masses mz1,mz, provide additional discrimination against
continuum background
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Matrix Element Likelihood Techniques

@ Common problem in machine learning: build a classifier to distinguish
signal from background given labeled training samples with features X

@ If probability densities for signal and background psig(X), pekg(X) are
known a priori, then no machine learning is needed,(c;'m construct an
Psig (X

PRGETE

@ In high energy physics, often the probability density is known at the level
of the theoretical calculation and in terms of all initial/final state
kinematics

optimal classifier for hypothesis testing as eg

@ Can be used directly in cases where final state is fully reconstructed (eg.
no neutrinos), detector resolution effects can be neglected, and
all/dominant fraction of background is theoretically well-known

@ Otherwise painful analytic/numerical integration is needed to convert the
matrix element into a pdf relevant for detector-level quantities — use
Monte Carlo simulation 4+ machine learning as an alternative
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H — ZZ — 4¢: Matrix Element Likelihood Discriminator

e For H— ZZ — 4/, final state is fully reconstructed, and
charged leptons have excellent momentum resolution in CMS

(O(%))
@ Matrix element likelihood discriminator constructed directly
from dilepton pair masses, plus decay angles as:

psig(m21, mza, 917 92, (D‘n’hw)
Psig(Mz1, Mz2, 01,02, ®|mag) + porg(mzi, mza, 01,02, P|mye)

D =

@ Properly normalized conditional probability densities ensure
that D does not bias the four-lepton mass myy
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H — ZZ — 4¢: Matrix Element Likelihood Discriminator

@ Signal strength results extracted from 3d unbinned maximum likelihood

fit to mg, distribution with matrix element likelihood discriminant and p%—z
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H — ZZ — 4¢ Results

@ Signal strength results extracted from 3d unbinned maximum likelihood
fit to mae distribution with matrix element likelihood discriminant and p%
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@ Multidimensional fit more sensitive than my, alone

o o/osm = 0.93703%(stat.) T35 (syst.), 6.80 observed

significance (6.70 expected)
@ ML techniques also used for electron energy
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W/Z + H — bb

@ H — bb has high branching ratios but huge QCD backgrounds

@ To achieve reasonable S/B, select W/Z + H — (v ¢ vv + bb
events with significant W/Z boost (p/Z > 50 or 100 GeV
depending on the channel, with additional categories for
higher pt regions)

@ Events selected with two b-tagged jets
(secondary-vertex-based b-tag discriminant)

e Significant backgrounds still remain from W /Z+jets, tt, and
diboson processes (WW /ZZ/W2Z)

@ Complex mixture of backgrounds with real b-jets and
mistagged gluon/light quark jets
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W /Z + H — bb mass reconstruction

@ Energy of jets less precisely measured than charged leptons
@ b-jet energy reconstruction improved using BDT regression

@ Input variables included information on the relative
charged /neutral hadron/electromagnetic fraction of the jet,
details on the tracks and secondary vertex to correct for
variations in the energy response from fluctuations in jet
fragmentation, variation in track reconstruction efficiency and
resolution with secondary vertex position, etc

@ Additional variables on lepton kinematics included in case of
semileptonic b-decays (regression infers/corrects for missing
energy from the neutrino)

@ Missing transverse momentum directly included in regression
only in H + Z — ¢¢ channel (additional neutrinos from
W /Z decays break correlation with neutrinos from b-decays)
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W /Z + H — bb mass reconstruction

o After regression, dijet
mass resolution is

T L L A S R BN

0 CMS Simulation = — Nominal 7
about 10% (s=8TeV 01 15.8 GeV (13.2%)]
— Regression

Z(I'T")H(bb), p? > 100 GeV ) o
o Mass T c:12.4 GeV (10.0%) ]

resolution /signal
purity not sufficient

0.8

Events / 2 GeV

for simple bump hunt 0.6 7
@ myy is instead used 0.4 -
directly as input to
subsequent BDT (ie 02 ]
the BDT is 0‘\”‘\”\”‘\‘”\‘ ]
intentionally strongly 60 80 100 120 140 160 180 200

GeV
correlated with the M 1GeV]

mass)
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W /Z + H — bb Background scale factors

@ Various background components are not well-predicted by
simulation

e Fit data/mc scale factors for different background
components in dedicated control regions for each channel

@ Background yields scaled from inverted b-tagging (W/Z+light
flavour), tighter b-tagging plus extra jets (tt), Mj; sidebands
(W/Z+bb)

o W/Z+jets split into light flavour, light + 1 b, and 2 b
components since relative fractions are not well-predicted
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W/Z + H — bb Background scale factors

@ Example shown here for high pr
(MET> 170 GeV) H+ Z — vv
control region (mp sidebands)
enriched in W + bb by requiring
an additional lepton

@ Use of mass sidebands ensures

~ T T T T T T —
this control region is orthogonal s . g‘j:‘a? Eg:gg E
. . o WV)H(bD) Vvz(ob) +udscy 4
not just to H + Z — vv signal g bR ekhed - W ]
=3 W+ bl ingle top B
region, but also to H+ W — (v “ B vves 8 neneen )
signal region E
@ Scale factors extracted from 1
simultaneous fits to b-tag
discriminant distributions in
different control regions
0
@ Background normalizations are 9,2
. 87 P S
shown post-fit (V + b has a scale 8oof L S g = g

factor close to 2, resulting form 03 04 05 06 07 08 08 1
poor modeling of gluon spliting in
the simulation)
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W/Z + H — bb Signal Extraction

@ Even after determination of scale factors from control regions,
backgrounds have non-negligible uncertainty

@ Final sensitivity benefits from being able to further constrain
background normalizations in the final fit
@ Procedure:

@ Train four BDT's for each channel: signal vs tt, signal vs
W /Z+jets, signal vs dibosons, signal vs (all) background

@ Cuts on background-specific BDT's are used to partition final
signal vs (all) background distribution into four subsets
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W/Z + H — bb Signal Extraction
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@ Results extracted from fit to final BDT distribution,
partitioned using dedicated BDT's into individual background
and signal-enriched regions
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W/Z + H — bb Signal Extraction

@ Input variables for BDT's:

o Several kinematic variables for selected jets (including dijet
mass) and W /Z candidate (lepton, missing transverse
momentum kinematics)

o Number of additional jets

e b-tag discriminant value for selected and additional jets

@ Jet energy scale and b-tag discriminant uncertainties enter as
shape uncertainties for final BDT distributions
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W/Z + H — bb Signal Extraction Controls

Entries /0.13

@ Final BDT distribution also validated in
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W/Z + H — bb Results
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Best fit u

taking into account gluon-induced Z + H
production)

@ Observed Significance 2.00 (Expected
2.60)
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Higgs— ~~ Decay

@ No tree-level hy~y vertex, decay proceeds through W and
fermion (top) loops which interfere destructively

@ Branching ratio to two photons very sensitive to fermion vs
boson couplings and possible new particles in the loop

Y Y

h=---- h----

(a) W loop v (b) t loop v
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Higgs— ~ Analysis Overview

e Higgs—diphoton search at CMS simple in principle: Search
for a small but narrow mass peak on a large, smoothly falling
background

@ Irreducible background from QCD di-photon production,
reducible background from QCD ~+jets and multi-jet
production with one or more jets faking a photon

q T8 T8 q
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Higgs— ~ Analysis Overview

3 -1
x10 19.7fb " (8 TeV)
Cms ¢ Data
vy
Cyjet
[ jetjet
[ Drell-Yan
[ JH-yy(125GeV) x5

Events/2 GeV

00 120 140 160 180
m,, (GeV)

Inclusive selection with coarse binning
My~ = \/2E1E2(1 — C05912)

@ Standard Model search is carried out in inclusive, vector-boson-fusion
tagged, W/Z, and tt associated production tagged channels

@ Analysis makes extensive use of multivariate techniques to optimize the
sensitivity, but basic principle of “bump hunt” is preserved
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Higgs— ~ Analysis Overview

( CMS Experiment at the LHC, CERN
Data recorded: 2012-May-13 20:08:14.621490 GMT
Run/Event: 194108 / 564224000

myy = 125.9 GeV
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Dataset/Pileup Conditio

@ 5.1 fb~1 of 7 TeV data from 2011, 19.7 fb—! of 8 TeV data

from 2012

5 preTTprTTT I Ty T ™
< CMS preliminary 0.07 CMS preliminary 4

0.1 \E=7TevL=5.11" | E=8TeVL=1967"
0.06F =

Zow ] oost 77MC Zopu
DataZ— 051 e DataZouy 1
0.041 |
0.03F =
0.02 =
0.01 -
0 of £

25 30 35 40 45 50 30 35 40 45 50

number of vertices Number of vertices

(c) 7 Tev, (d) 8 TeV,
<NPU >=95 < NPU >=19.9

@ Large number of pileup interactions, interaction region extended in z
direction with ¢ = 5-6 cm
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Pileup in CMS

@ An event with 29 reconstructed primary vertices
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Higgs— ~ Analysis Overview

© 00

Primary Vertex Selection (Vertex Selection MVA)

Photon Selection (Preselection 4+ Photon-jet MVA
discriminator)

Multivariate Regression for EM Cluster corrections with
per-photon resolution estimate

Energy Scale and Resolution corrections from Z — ee
Event Categorization (MVA Discriminator)

Signal modeling from Monte Carlo with smearing and scale
factors applied

Background modeling from fit to data

Statistical Interpretation: Limits/Significance using maximum
likelihood fit to m.., distribution in event categories categories
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@ Opening angle needed to calculate diphoton mass: need to know production
vertex location

@ No charged particles in general, primary vertex selection ambiguous with large
pileup

@ Per-vertex MVA to select hard interaction from pileup vertices, using hadronic
recoil balancing with diphoton system, and tracks from converted photons

@ A second MVA is trained to estimate for each event the probability that the
vertex choice is correct

19.7 10" (8 Te 1
co . : 8Tev) 19.7 b (8 TeV)
5 poms 8
% onpubished 2 s CMS
H Z-pp ) , 8Tev.
& 03 € - £
o constenes daa 2 W E cMS Howy (m, =125 Gev)
O8O 6 Cometvertex: data 2 Simulation <PU>=21
[ corervorex smnton I Correct vertex: simiaton v ——
02 | 4 Misassigned vertex: data - |
[r—— 401 [ wisassigned vertex: smuaiion R 4
. [ wisasigned vorex: simuaton osp = True vertex effciency
oal] ] L S b Average verex
20| £ orp 4 probabily esimate
g
T oo 1
i e | | | |
oy 05 0 05 0 T2 a “op 1 50 0 E ]
Vertex ID BDT score Vertex probability estimate Py (GeV)

@ Inclusive vertex selection efficiency ~80 %, but strong dependence on Higgs pr
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Photon Selection

e Geometric and (scaled) transverse momentum pre-selection
cuts driven by detector acceptance and trigger requirements

@ Veto electrons
@ Need to discriminate between prompt isolated photons, and
fakes from jets (mainly collimated 7°/n° — v decays)

@ Two handles:

o Shower Shape: Two photons from 7%/7° produce a wider EM
cluster on average.

e Isolation: Select against additional particles produced in the jet
alongside the leading 79 /1 (some complications from pileup)
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Photon ldentification: MVA

@ MVA output shown for Z — ee events (electron-veto inverted)

Start with a very loose pre-selection matching trigger requirements

Construct a multivariate discriminator using a BDT trained on prompt
photons vs fakes from jets in MC, using shower and isolation variables as

input

Only a loose cut on the ID MVA value, which is fed forward to the final

di-photon MVA

19.7 fb (8 TeV) 19.7 b (8 TeV)
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Photon ldentification: MVA

@ Photon identification intended to be uncorrelated with photon kinematics
(pr and rapidity), in order to avoid shaping the mass distribution and
allow kinematics to be optimally exploited by event level BDT

@ Signal training sample reweighted in two-dimensions (pr,n) to match
background training sample at preselection level

@ Results not perfect (some residual n dependence in endcaps), but
sufficient (may investigate uboost/flatness boosting/multivariate
decorrelation or similar techniques in the future)
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Photon ldentification: MVA

@ Different background components clearly visible in the ID MVA output

distribution (though knowledge of the relative fractions is not required for
the analysis)
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Regression Energy Corrections

@ Photon energy reconstruction in CMS:
Ncrystals

Eejry = Fer(X) x> G(GeV/ADC) x Si(t) x ¢; x A

@ Two main components to photon energy resolution which at least partly
factorize:
@ Crystal level calibration (ADCtoGEV, Intercalibration,
transparency corrections)
@ Higher level reconstruction (Shower containment, crack/gap
corrections, PU effects)
@ Shower containment is complex and not clear if/how different
contributions factorize
@ Best performance is obtained with multivariate regression using BDT
with cluster 7, ¢, shower shape variables, local coordinates, and number
of primary vertices/median energy density as input
@ Regression is trained on real photons in Monte Carlo, using the ratio of
the generator level energy to the raw cluster energy, also provides a per
photon estimate of the energy resolution
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Evolution of Regression Energy Corrections in CMS

@ Photon energy regression in CMS initially trained using TMVA
BDT implementation

@ Physics performance was ok, but serious problems with size on
disk and memory consumption (1GB xml files!)

@ CMS has an in-house BDT storage format, persistable in root
file or conditions database, disk/memory/cpu efficient (tree
structure represented in flattened arrays, one inlined while
loop for evaluation). Can convert weights from TMVA or
produce with native BDT training tool

o Later CMS moved to “semi-parametric’ regression
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Evolution of Regression Energy Corrections in CMS:

“Traditional” Regression

@ Multivariate techniques used in general to overcome lack of knowledge of
multidimensional likelihood using finite event samples

@ Traditional regression as used so far based on minimization of Huber loss
function for target prediction F(X) given target variable y = Epe/ERaw
for a set of input variables X (in our case cluster position, shower profile
and pileup variables)

_[HF-yy Fyl<6
S(F —yl = 8/2) |F—yl>0

@ Minimized the square deviation out to some cutoff (by default +10) and
the linear deviation beyond that

@ No built-in estimate of the per-photon resolution, accomplished with a
second training on an independent subset of the training sample with
target y = |Ecor/ ERaw — Etiue/ Eraw|
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Semi-parametric Regression

@ Start with ansatz that in any infinitesimal slice of phase space
in, X the energy response distribution is given by a double
crystal ball (ie gaussian core with power law tails on both
sides)

@ In terms of Eqye/ERaw the right tail (undermeasurement of
the energy) corresponds to the usual radiative losses, etc,
whereas the left tail (overmeasurement of the energy) comes
from pileup, etc.

p(.y|)_<) = DOUblecryStalBa” (.y|.u()_<)7 0()_()7 Ol/e&()_(), n/eft()_()7 affghf()_()v nright()_())
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Semi-parametric Regression

@ The log likelihood ratio for a training sample can be written

simply as
L=— > Inp(ylx)
MCPhotons
@ Minimize this loss function directly with gradient boosting,
where 11(X), 0(X), njest(X), Nright(X) are regression outputs
estimated by BDT's (using RooFit-based bdt-training tool,
which ensures proper pdf normalization, etc)

@ This gives a simultaneous estimate for energy correction and
resolution among other things
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Regression Performance: Simulation

Emooi ___ Photon Default: EZZOO; ___ Photon Default:
o F 6,4 = 0.98 GeV © 2000 G, =1.75 GeV
1000 - Regression: S 1800F Regression:
o 5 ~ 0, =0.76GeV E 1600 F T o, =1.24GeV
S 800f 14001
o I 511200
6001 10001
r 8001
400 600-
200[- 400}
¥ 2001
M| P N TR SR RN E PR | DRI R Rt
1% 120 130 740 910 120 T30 140
m,, (GeV) m,, (GeV)
(e) Barrel Unconverted (f) Barrel 1/2 Converted

@ Substantial improvement in diphoton mass resolution in
simulation compared to simpler parameterized corrections
(representative plots here)
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@ Semi-parametric regression provides a prediction for the full

lineshape (here showing simulation vs regression-prediction for

target variable Etye/ERaw
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@ Total predicted pdf is given by sum of predicted lineshape for
each simulation event
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Energy Scale and Resolution

Photon Energy Scale and Resolution in data measured with Z — ee
events, applying either final photon-trained regression corrections, or
equivalent electron-trained version

Monte Carlo is smeared to match data resolution

Data energy scale is adjusted to match Monte Carlo

Energy scale is determined very precisely from (millions of) Z — ee
events, remaining systematic uncertainties from electron-photon
extrapolation and extrapolation in energy

Overall systematic uncertainty on higgs mass measurement (dominated
by energy scale uncertainty) 0.12% (but per-photon energy scale
uncertainty varies according to detector region and photon quality)

197 b (8 Tev) 197 b8 Tev)

CMS

[ Barrel-Barrel 4 Data
Oz -ee o)

Events/ 0.5 GeV.
Events /0.5 GeV.

° R s ° S e
g ] 8V, ]
Bosf . Bos o]
5UR0UEE U0 " qos 5 B0 B 9095100 ios
m,, (GeV) m,, (GeV)
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Di-Photon MVA

@ Basic Strategy: Train di-photon mva on Signal and
Background MC with input variables which are to 1st order
independent of m,,

@ Goal is to encode all relevant information on signal vs
background discrimination (aside from m,, itself) into a
single variable

@ Can then simply categorize on Diphoton MVA output (5
categories, with cut values optimized against expected
limit/significance using MC background, plus additional
VBF/VH/ttH tagged categories with loose cut on di-photon
MVA)

@ Input variables cover kinematics (sans mass), per-event mass
resolution and vertex probability, and photon ID
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Di-Photon MVA Input Variables

@ Input variables cover kinematics (sans mass), per-event
resolution and vertex probability, and photon ID

@ Input Variables:

Q pi/my,

Q p7/myy

Om

O 7

© cosAg,,

Q om/m,, (Right Vtx Hypothesis)
@ om/m,, (Wrong Vix Hypothesis)
Q Putx

Q /IDMVA;

@ IDMVA,

@ 0, constructed from per-photon og estimate from regression,
adding also beamspot width contribution for wrong vtx
hypothesis

@ Per-event primary vertex selection probability p,: comes from
per-event vertex MVA
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Di-Photon MVA: Resolution

@ Since input variables are mass-independent, MVA is not
sensitive to mass resolution (since inclusive S/B in full mass
range does not change with resolution)

@ Correct this by weighting the signal events during training by
1/resolution, taking into account right and wrong primary
vertex hypotheses weighted by the per-event probability

_ Pvix 1—pyix
Q@ Wi = —
sig U;ght/m'y + Urgrong/m'y’y

right 0— O'
@ Im  _— 1 E1 E2
My~ +
wron, right \ 2 Vix 2
Mey~ My Mey~
e With o™ computed analytically from beamspot width and
calorimeter positions of the photons
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Di-Photon MVA Output

@ Lowest score region not included in the analysis

@ Diphoton MVA output for signal-like events can be validated with z — ee
events by inverting electron veto in the pre-selection

@ Analysis does not rely on MVA shape of Monte Carlo background

o 197" (8 TeV) . 19.7 fb* (8 TeV)
o 10 N 100 g Ao
=] Data d
S == wc Background 1 2 os0f, | CMS + Data
<105 — o susey 210t 2 | [ Z - e'e (MC)
% E %%ZH N 2 200 | [ MC cluster shape uncertainty
3w = 10° 3 |
g z
81 100
N
10° 10
10 Q
3 1
1 i A 8 os | , L \ J \ |
0 .4 X 1 0 01 0z 03 04 05 06 07 08 08 1
Transformed diphoton BDT classifier score Transformed diphoton BDT classifier score
(g) Full Selection (h) Inverted e-Veto
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EM Cluster
(RAW Energy,

Shower Shape,
Local/Global
Coords)

Reconstructed
Tracks

ECal and HCal
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Per-Photon

Estimate
Regression

Photon
Energy

(Cluster
Corrections)

Primary

Primary
Reconstruction Vertex

MVA
Conversion
Reconstruction
Primary
Vertex
Selection
MVA

Photon ID
MVA

7| (Photon/jet
discriminator)

Categorized

Di-photon MVA

Results

@ Strategy: Process available information into quantities with straightforward physical interpretations in
order to combine per-event knowledge of expected mass resolution and S/B into a single “Diphoton MVA”

variable
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S4B Fits - 8 TeV

Events / GeV

@ Plus 20 more distributions for exclusive-tagged modes and

7 TeV
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S+B Fit - Weighted Combination

S/(S+B) weighted events / GeV
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@ Results extracted from
simultaneous fit to 25
event classes, but
combined mass spectrum
useful for visualisation

@ Combination of all 25
event classes, weighted by
S/(S + B) for a o
window in each event
class

@ Weights are normalised to
preserve the fitted
number of signal events
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@ Overall o/osp = 1.14 £ 0.21(stat.

5.70 observed significance (5.20 expected)
e my = 124.70 £ 0.31(stat.)£0.15(syst.) GeV
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Conclusions

@ Machine learning techniques extensively used in Higgs
analyses in CMS (and ATLAS) at all levels of the analysis

@ Often analysis design and design of Machine Learning
models/tools are deeply intertwined

@ Have discussed a (non-exhaustive) set of examples which
illustrates some of the more interesting use cases/issues
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CMS Higgs Results: Run 1
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@ Measured signal strengths broadly consistent with SM expectations

@ Tests of angular distributions indicate particle is indeed a scalar
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Prospects for Run 2

Gluon fusion Higgs cross section increases by ~ 2.3 from
8 TeV to 13 TeV

tt + H cross section increases by ~ 4
Background cross sections of course also increase
Up to ~ 100 fb~1 expected for Run 2

"signal strength“ measured so far: model-dependent cross
section extrapolated to full phase space

Run 2: Fiducial Cross Sections, Differential Cross
Sections

Complete the transition from discovery to precision physics

Maintain object and analysis performance with 25ns bunch
spacing
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