
Machine Learning and the Higgs search and
discovery at CMS

Josh Bendavid
(CERN)

Summer school on Machine Learning in High Energy Physics
Saint-Petersburg, Russia

Aug 30, 2015

Josh Bendavid (CERN) Machine Learning and the Higgs 1



The Standard Model
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The Standard Model of
Particle Physics describes all
known physics (except for
gravity)

Relativistic quantum field
theory of fermions and
gauge bosons describing
strong and electroweak
interactions

With this alone, theory
predicts massless fermions
and bosons...
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Higgs Mechanism

Complex scalar doublet

φ = 1√
2

(
φ1 + iφ2

φ0 + iφ3

)

Symmetry of vacuum is
spontaneously broken
leading to a ground state

φ = 1√
2

(
0

v + H

)
, where H

is a massive scalar field

The other three degrees of
freedom become the
longitudinal polarizations of
the W+, W−, and Z
bosons, giving them mass

Additional Yukawa couplings
between the Higgs field and
the fermions lead to fermion
mass terms due to v
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Higgs Boson

Remaining component of the Higgs field behaves as a massive
scalar boson, last particle to be observed in the standard
model

Coupling of the Higgs boson to the standard model particles
predicted by the theory:

Coupling to W and Z bosons
Coupling to fermions proportional to their mass

Mass of the Higgs is a free parameter of the theory (but
unitarity of WW scattering in the SM requires mH <∼ 1 TeV)

Entire region mH < 114.4 GeV ruled out by previous
experiments

Indirect electroweak constraints prefer a relatively light Higgs
mass (mH < 152 GeV at 95% C.L)

Higgs discovered by ATLAS and CMS collaborations in
summer 2012
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The Large Hadron Collider

Superconducting dipole
magnets with a design field
of 8.3 T, cooled to 1.9 K
using superfluid helium

Proton-proton collider
27 km in circumference,
located at CERN in Geneva

Design energy of 14 TeV
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Higgs Production Processes at LHC

H
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Higgs Production and Decay at LHC
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Variety of final states, would like to extract Higgs signal from
as many as possible
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The CMS Detector

~76k scintillating PbWO4 crystals

Silicon strips
  ~16m2   ~137k channels

~13000 tonnes

MUON CHAMBERS 

STEEL RETURN YOKE 

HADRON CALORIMETER (HCAL)
Brass + plastic scintillator
~7k channels

SILICON TRACKER

FORWARD
CALORIMETER 

PRESHOWER

SUPERCONDUCTING
SOLENOID 

CRYSTAL ELECTROMAGNETIC
CALORIMETER (ECAL)

Total weight 
Overall diameter 
Overall length
Magnetic field

: 14000 tonnes
: 15.0 m
: 28.7 m
: 3.8 T

Niobium-titanium coil
carrying ~18000 A

Pixels (100 x 150 μm2)
  ~1m2      ~66M channels
Microstrips (80-180μm)
  ~200m2   ~9.6M channels

Steel + quartz fibres
~2k channels

CMS Detector
Pixels
Tracker
ECAL
HCAL
Solenoid
Steel Yoke
Muons

Barrel:   2250 Drift Tube & 480 Resistive Plate Chambers
Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers
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The CMS Detector
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The CMS Detector: Some Challenges

(g) ECal Transparency Loss (h) Tracker Material Budget

ECal crystals lose and recover transparency under exposure to
radiation

Monitored in situ with LED/laser monitoring system, but still
a major challenge for calibration

Lots of material in front of the ECal
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Machine Learning Techniques in Higgs Analyses

Machine learning techniques extensively used in Higgs
search/discovery, will cover a few specific cases and their
particularities

H → ZZ → 4`: Use of Matrix Element likelihood techniques
for well understood and well measured background
H → bb̄: Use of BDT classifiers for complex set of
backgrounds with large systematic uncertainties
H → γγ: Use of BDT regression/classifiers for photon
reconstruction/selection, BDT classifiers to distinguish
different signal components, interplay with mass fits
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H → ZZ → 4`

“Golden channel” - Narrow mass peak on small background

Irreducible ZZ → 4` continuum background small and well
understood

(i) Main signal (j) Main background
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H → ZZ → 4`

Select 4 leptons of appropriate charge and flavour combinations (+FSR
recovery) with 40 < mZ1 < 120 GeV, 12 < mZ2 < 120 GeV

Electron acceptance: |η| < 2.5, pT > 7 GeV, Muon acceptance:
|η| < 2.4, pT > 5 GeV

Irreducible ZZ → 4` continuum background estimated from MC

Reducible Z + bb̄ and tt̄ backgrounds estimated from Z + same-sign

dilepton/Z + loose dilepton samples, with fake rates from Z + loose `

sample
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H → ZZ → 4`: Beyond the mass distribution

Higgs is a scalar → decay angles θ1,θ2,Φ, and lepton pair
masses mZ1,mZ2 provide additional discrimination against
continuum background
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H → ZZ → 4`: Beyond the mass distribution

Higgs is a scalar → decay angles θ1,θ2,Φ, and lepton pair
masses mZ1,mZ2 provide additional discrimination against
continuum background
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Matrix Element Likelihood Techniques

Common problem in machine learning: build a classifier to distinguish
signal from background given labeled training samples with features x̄

If probability densities for signal and background psig (x̄), pbkg (x̄) are
known a priori, then no machine learning is needed, can construct an

optimal classifier for hypothesis testing as eg
psig (x̄)

psig (x̄)+pbkg (x̄)

In high energy physics, often the probability density is known at the level
of the theoretical calculation and in terms of all initial/final state
kinematics

Can be used directly in cases where final state is fully reconstructed (eg.
no neutrinos), detector resolution effects can be neglected, and
all/dominant fraction of background is theoretically well-known

Otherwise painful analytic/numerical integration is needed to convert the
matrix element into a pdf relevant for detector-level quantities → use
Monte Carlo simulation + machine learning as an alternative
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H → ZZ → 4`: Matrix Element Likelihood Discriminator

For H → ZZ → 4`, final state is fully reconstructed, and
charged leptons have excellent momentum resolution in CMS
(O(%))

Matrix element likelihood discriminator constructed directly
from dilepton pair masses, plus decay angles as:

D =
psig (mZ1,mZ2, θ1, θ2,Φ|m4`)

psig (mZ1,mZ2, θ1, θ2,Φ|m4`) + pbkg (mZ1,mZ2, θ1, θ2,Φ|m4`)

Properly normalized conditional probability densities ensure
that D does not bias the four-lepton mass m4`
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H → ZZ → 4`: Matrix Element Likelihood Discriminator

Signal strength results extracted from 3d unbinned maximum likelihood

fit to m4` distribution with matrix element likelihood discriminant and p4`
T
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H → ZZ → 4` Results

Signal strength results extracted from 3d unbinned maximum likelihood

fit to m4` distribution with matrix element likelihood discriminant and p4`
T
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Multidimensional fit more sensitive than m4` alone
σ/σSM = 0.93+0.26

−0.23(stat.)+0.13
−0.09(syst.), 6.8σ observed

significance (6.7σ expected)
ML techniques also used for electron energy
reconstruction/per-event mass resolution estimate
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W /Z + H → bb

H → bb has high branching ratios but huge QCD backgrounds

To achieve reasonable S/B, select W /Z + H → `ν `` νν + bb
events with significant W/Z boost (pW

T /Z > 50 or 100 GeV
depending on the channel, with additional categories for
higher pt regions)

Events selected with two b-tagged jets
(secondary-vertex-based b-tag discriminant)

Significant backgrounds still remain from W /Z+jets, tt̄, and
diboson processes (WW /ZZ/WZ )

Complex mixture of backgrounds with real b-jets and
mistagged gluon/light quark jets
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W /Z + H → bb mass reconstruction

Energy of jets less precisely measured than charged leptons

b-jet energy reconstruction improved using BDT regression

Input variables included information on the relative
charged/neutral hadron/electromagnetic fraction of the jet,
details on the tracks and secondary vertex to correct for
variations in the energy response from fluctuations in jet
fragmentation, variation in track reconstruction efficiency and
resolution with secondary vertex position, etc

Additional variables on lepton kinematics included in case of
semileptonic b-decays (regression infers/corrects for missing
energy from the neutrino)

Missing transverse momentum directly included in regression
only in H + Z → `` channel (additional neutrinos from
W /Z decays break correlation with neutrinos from b-decays)
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W /Z + H → bb mass reconstruction

After regression, dijet
mass resolution is
about 10%

Mass
resolution/signal
purity not sufficient
for simple bump hunt

mbb is instead used
directly as input to
subsequent BDT (ie
the BDT is
intentionally strongly
correlated with the
mass)

m(jj) [GeV]
60 80 100 120 140 160 180 200

Ev
en

ts
 / 

2 
G

eV

0

0.2

0.4

0.6

0.8

1

1.2 Nominal 
: 15.8 GeV (13.2%)σ

 Regression
: 12.4 GeV (10.0%)σ

CMS Simulation
 = 8 TeVs

 > 100 GeVZ
T

), pb)H(b+l-Z(l

Josh Bendavid (CERN) Machine Learning and the Higgs 22



W /Z + H → bb Background scale factors

Various background components are not well-predicted by
simulation

Fit data/mc scale factors for different background
components in dedicated control regions for each channel

Background yields scaled from inverted b-tagging (W/Z+light
flavour), tighter b-tagging plus extra jets (tt̄), Mjj sidebands
(W/Z+bb̄)

W/Z+jets split into light flavour, light + 1 b, and 2 b
components since relative fractions are not well-predicted
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W /Z + H → bb Background scale factors

Example shown here for high pT

(MET> 170 GeV) H + Z → νν
control region (mbb sidebands)
enriched in W + bb by requiring
an additional lepton

Use of mass sidebands ensures
this control region is orthogonal
not just to H + Z → νν signal
region, but also to H + W → `ν
signal region

Scale factors extracted from
simultaneous fits to b-tag
discriminant distributions in
different control regions

Background normalizations are
shown post-fit (V + b has a scale
factor close to 2, resulting form
poor modeling of gluon spliting in
the simulation)

Scale factors and

statistical+systematic

uncertainties are used in the final

fit in the signal region
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W /Z + H → bb Signal Extraction

Even after determination of scale factors from control regions,
backgrounds have non-negligible uncertainty

Final sensitivity benefits from being able to further constrain
background normalizations in the final fit

Procedure:
1 Train four BDT’s for each channel: signal vs tt̄, signal vs

W /Z+jets, signal vs dibosons, signal vs (all) background
2 Cuts on background-specific BDT’s are used to partition final

signal vs (all) background distribution into four subsets
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W /Z + H → bb Signal Extraction
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W /Z + H → bb Signal Extraction

Input variables for BDT’s:

Several kinematic variables for selected jets (including dijet
mass) and W /Z candidate (lepton, missing transverse
momentum kinematics)
Number of additional jets
b-tag discriminant value for selected and additional jets

Jet energy scale and b-tag discriminant uncertainties enter as
shape uncertainties for final BDT distributions
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W /Z + H → bb Signal Extraction Controls
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W /Z + H → bb Results
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Higgs→ γγ Decay

No tree-level hγγ vertex, decay proceeds through W and
fermion (top) loops which interfere destructively

Branching ratio to two photons very sensitive to fermion vs
boson couplings and possible new particles in the loop

h

γ

γ

(a) W loop

h

γ

γ

(b) t loop
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Higgs→ γγ Analysis Overview

Higgs→diphoton search at CMS simple in principle: Search
for a small but narrow mass peak on a large, smoothly falling
background

Irreducible background from QCD di-photon production,
reducible background from QCD γ+jets and multi-jet
production with one or more jets faking a photon
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Higgs→ γγ Analysis Overview
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Standard Model search is carried out in inclusive, vector-boson-fusion
tagged, W/Z, and tt̄ associated production tagged channels

Analysis makes extensive use of multivariate techniques to optimize the
sensitivity, but basic principle of “bump hunt” is preserved
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Higgs→ γγ Analysis Overview

mγγ = 125.9 GeV
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Dataset/Pileup Conditions

5.1 fb−1 of 7 TeV data from 2011, 19.7 fb−1 of 8 TeV data
from 2012

number of vertices
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Large number of pileup interactions, interaction region extended in z
direction with σ = 5-6 cm
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Pileup in CMS

An event with 29 reconstructed primary vertices
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Higgs→ γγ Analysis Overview

1 Primary Vertex Selection (Vertex Selection MVA)

2 Photon Selection (Preselection + Photon-jet MVA
discriminator)

3 Multivariate Regression for EM Cluster corrections with
per-photon resolution estimate

4 Energy Scale and Resolution corrections from Z → ee

5 Event Categorization (MVA Discriminator)

6 Signal modeling from Monte Carlo with smearing and scale
factors applied

7 Background modeling from fit to data

8 Statistical Interpretation: Limits/Significance using maximum
likelihood fit to mγγ distribution in event categories categories
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Primary Vertex Selection

Opening angle needed to calculate diphoton mass: need to know production
vertex location

No charged particles in general, primary vertex selection ambiguous with large
pileup

Per-vertex MVA to select hard interaction from pileup vertices, using hadronic
recoil balancing with diphoton system, and tracks from converted photons

A second MVA is trained to estimate for each event the probability that the
vertex choice is correct
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Inclusive vertex selection efficiency ∼80 %, but strong dependence on Higgs pT
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Photon Selection

Geometric and (scaled) transverse momentum pre-selection
cuts driven by detector acceptance and trigger requirements

Veto electrons

Need to discriminate between prompt isolated photons, and
fakes from jets (mainly collimated π0/η0 → γγ decays)

Two handles:

Shower Shape: Two photons from π0/η0 produce a wider EM
cluster on average.
Isolation: Select against additional particles produced in the jet
alongside the leading π0/η (some complications from pileup)
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Photon Identification: MVA

Start with a very loose pre-selection matching trigger requirements

Construct a multivariate discriminator using a BDT trained on prompt
photons vs fakes from jets in MC, using shower and isolation variables as
input

Only a loose cut on the ID MVA value, which is fed forward to the final
di-photon MVA

MVA output shown for Z → ee events (electron-veto inverted)
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Photon Identification: MVA

Photon identification intended to be uncorrelated with photon kinematics
(pT and rapidity), in order to avoid shaping the mass distribution and
allow kinematics to be optimally exploited by event level BDT

Signal training sample reweighted in two-dimensions (pT ,η) to match
background training sample at preselection level

Results not perfect (some residual η dependence in endcaps), but
sufficient (may investigate uboost/flatness boosting/multivariate
decorrelation or similar techniques in the future)
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Photon Identification: MVA

Different background components clearly visible in the ID MVA output
distribution (though knowledge of the relative fractions is not required for
the analysis)

Photon ID BDT score
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Regression Energy Corrections

Photon energy reconstruction in CMS:

Ee/γ = Fe,γ(x̄)×
Ncrystals∑

i

G (GeV /ADC )× Si (t)× ci × Ai

Two main components to photon energy resolution which at least partly

factorize:

1 Crystal level calibration (ADCtoGEV, Intercalibration,
transparency corrections)

2 Higher level reconstruction (Shower containment, crack/gap
corrections, PU effects)

Shower containment is complex and not clear if/how different
contributions factorize

Best performance is obtained with multivariate regression using BDT
with cluster η, φ, shower shape variables, local coordinates, and number
of primary vertices/median energy density as input

Regression is trained on real photons in Monte Carlo, using the ratio of
the generator level energy to the raw cluster energy, also provides a per
photon estimate of the energy resolution
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Evolution of Regression Energy Corrections in CMS

Photon energy regression in CMS initially trained using TMVA
BDT implementation

Physics performance was ok, but serious problems with size on
disk and memory consumption (1GB xml files!)

CMS has an in-house BDT storage format, persistable in root
file or conditions database, disk/memory/cpu efficient (tree
structure represented in flattened arrays, one inlined while
loop for evaluation). Can convert weights from TMVA or
produce with native BDT training tool

Later CMS moved to “semi-parametric” regression
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Evolution of Regression Energy Corrections in CMS:
“Traditional” Regression

Multivariate techniques used in general to overcome lack of knowledge of
multidimensional likelihood using finite event samples

Traditional regression as used so far based on minimization of Huber loss
function for target prediction F (x̄) given target variable y = ETrue/ERaw

for a set of input variables x̄ (in our case cluster position, shower profile
and pileup variables)

L =

{
1
2
(F − y)2 |F − y | ≤ δ
δ (|F − y | − δ/2) |F − y | > δ

Minimized the square deviation out to some cutoff (by default ±1σ) and
the linear deviation beyond that

No built-in estimate of the per-photon resolution, accomplished with a
second training on an independent subset of the training sample with
target y = |ECor/ERaw − ETrue/ERaw |
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Semi-parametric Regression

Start with ansatz that in any infinitesimal slice of phase space
in, x̄ the energy response distribution is given by a double
crystal ball (ie gaussian core with power law tails on both
sides)

In terms of ETrue/ERaw the right tail (undermeasurement of
the energy) corresponds to the usual radiative losses, etc,
whereas the left tail (overmeasurement of the energy) comes
from pileup, etc.

p(y |x̄) = DoubleCrystalBall (y |µ(x̄), σ(x̄), αleft(x̄), nleft(x̄), αright(x̄), nright(x̄))
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Semi-parametric Regression

The log likelihood ratio for a training sample can be written
simply as

L = −
∑

MCPhotons

ln p(y |x̄)

Minimize this loss function directly with gradient boosting,
where µ(x̄), σ(x̄), nleft(x̄), nright(x̄) are regression outputs
estimated by BDT’s (using RooFit-based bdt-training tool,
which ensures proper pdf normalization, etc)

This gives a simultaneous estimate for energy correction and
resolution among other things
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Regression Performance: Simulation
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Substantial improvement in diphoton mass resolution in
simulation compared to simpler parameterized corrections
(representative plots here)
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Energy Regression: Predicted Response Distribution

Semi-parametric regression provides a prediction for the full
lineshape (here showing simulation vs regression-prediction for
target variable ETrue/ERaw

Total predicted pdf is given by sum of predicted lineshape for
each simulation event
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Energy Scale and Resolution

Photon Energy Scale and Resolution in data measured with Z → ee
events, applying either final photon-trained regression corrections, or
equivalent electron-trained version

Monte Carlo is smeared to match data resolution

Data energy scale is adjusted to match Monte Carlo

Energy scale is determined very precisely from (millions of) Z → ee
events, remaining systematic uncertainties from electron-photon
extrapolation and extrapolation in energy

Overall systematic uncertainty on higgs mass measurement (dominated
by energy scale uncertainty) 0.12% (but per-photon energy scale
uncertainty varies according to detector region and photon quality)
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Di-Photon MVA

Basic Strategy: Train di-photon mva on Signal and
Background MC with input variables which are to 1st order
independent of mγγ

Goal is to encode all relevant information on signal vs
background discrimination (aside from mγγ itself) into a
single variable

Can then simply categorize on Diphoton MVA output (5
categories, with cut values optimized against expected
limit/significance using MC background, plus additional
VBF/VH/ttH tagged categories with loose cut on di-photon
MVA)

Input variables cover kinematics (sans mass), per-event mass
resolution and vertex probability, and photon ID
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Di-Photon MVA Input Variables

Input variables cover kinematics (sans mass), per-event
resolution and vertex probability, and photon ID
Input Variables:

1 p1
T/mγγ

2 p2
T/mγγ

3 η1

4 η2

5 cos ∆φγγ
6 σm/mγγ (Right Vtx Hypothesis)
7 σm/mγγ (Wrong Vtx Hypothesis)
8 pvtx

9 IDMVA1

10 IDMVA2

σm constructed from per-photon σE estimate from regression,
adding also beamspot width contribution for wrong vtx
hypothesis
Per-event primary vertex selection probability pvtx comes from
per-event vertex MVA
IDMVA is photon vs jet discriminator for leading and trailing
photon
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Di-Photon MVA: Resolution

Since input variables are mass-independent, MVA is not
sensitive to mass resolution (since inclusive S/B in full mass
range does not change with resolution)

Correct this by weighting the signal events during training by
1/resolution, taking into account right and wrong primary
vertex hypotheses weighted by the per-event probability

wsig = pvtx

σright
m /mγγ

+ 1−pvtx

σwrong
m /mγγ

σright
m

mγγ
= 1

2

√
σ2

E1

E 2
1

+
σ2

E2

E 2
2

σwrong
m
mγγ

=

√(
σright

m
mγγ

)2
+
(
σvtx

m
mγγ

)2

With σvtx
m computed analytically from beamspot width and

calorimeter positions of the photons
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Di-Photon MVA Output

Lowest score region not included in the analysis

Diphoton MVA output for signal-like events can be validated with z → ee
events by inverting electron veto in the pre-selection

Analysis does not rely on MVA shape of Monte Carlo background
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Higgs→ γγ: All Together

Strategy: Process available information into quantities with straightforward physical interpretations in
order to combine per-event knowledge of expected mass resolution and S/B into a single “Diphoton MVA”
variable

Josh Bendavid (CERN) Machine Learning and the Higgs 54



S+B Fits - 8 TeV
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Plus 20 more distributions for exclusive-tagged modes and
7 TeV
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S+B Fit - Weighted Combination
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Higgs→ γγ Results
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Overall σ/σSM = 1.14± 0.21(stat.)+0.09
−0.05(syst.)+0.13

−0.09(th.)
5.7σ observed significance (5.2σ expected)

mH = 124.70± 0.31(stat.)±0.15(syst.) GeV
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Conclusions

Machine learning techniques extensively used in Higgs
analyses in CMS (and ATLAS) at all levels of the analysis

Often analysis design and design of Machine Learning
models/tools are deeply intertwined

Have discussed a (non-exhaustive) set of examples which
illustrates some of the more interesting use cases/issues
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CMS Higgs Results: Run 1

SMσ/σBest fit 
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Overall σ/σSM = 1.00± 0.14

Combining H → ZZ , γγ: mH = 125.02+0.26
−0.27(stat.)+0.14

−0.15(syst.)

Measured signal strengths broadly consistent with SM expectations

Tests of angular distributions indicate particle is indeed a scalar
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Prospects for Run 2

Gluon fusion Higgs cross section increases by ∼ 2.3 from
8 TeV to 13 TeV

tt + H cross section increases by ∼ 4

Background cross sections of course also increase

Up to ∼ 100 fb−1 expected for Run 2

”signal strength“ measured so far: model-dependent cross
section extrapolated to full phase space

Run 2: Fiducial Cross Sections, Differential Cross
Sections

Complete the transition from discovery to precision physics

Maintain object and analysis performance with 25ns bunch
spacing
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