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Introduction

Advanced aspects of machine learning

8 lectures:

Reminder about major algorithms. Model evaluation.
Feature selection.
Ensemble learning N1.
Ensemble learning N2.
Linear dimensionality reduction.
Non-linear dimensionality reduction.
Kernel trick. Kernelized algorithms.
Deep learning.
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Recommended materials

Statistical Pattern Recognition. 3rd Edition, Andrew R.
Webb, Keith D. Copsey, John Wiley & Sons Ltd., 2011.

The Elements of Statistical Learning: Data Mining,

Inference, and Prediction. Trevor Hastie, Robert Tibshirani,
Jerome Friedman, 2nd Edition, Springer, 2009.
http://statweb.stanford.edu/~tibs/ElemStatLearn/

Machine Learning: A Probabilistic Perspective.

Kevin P. Murphy. Massachusetts Institute of Technology.
2012.

Lectures of Machine Learning Course (in Russian).
Konstantin Vorontsov. machinelearning.ru.

Additional sources - wikipedia, articles, tutorials.
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Reminder

Formal de�nitions of machine learning

Machine learning is a �eld of study that gives computers the
ability to learn without being explicitly programmed.

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure

P, if its performance P at tasks in T improves with
experience E.
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Reminder

Supervised machine learning

Find functional relationship between input variables x and
output variables y based on expert knowledge and their
common observations:

(x1, y1), (x2, y2), ...(xN , yN)

x as a vector is called object, pattern.
individual components of x are called features, regressors,
inputs.
y is called output, target

if y ∈ R => regression

if y ∈ {ω1, ω2, ...ωC} => classi�cation / pattern recognition
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Reminder

Demonstration

Supervised learning: x = (x1, x2), y speci�ed by color
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Reminder

Unsupervised learning

Find functional relationship between input variables x and
output variables y based on expert knowledge and only x
observations:

x1, x2, ...xN

Unsupervised learning is also known as clustering (for discrete
output)

Unsupervised output recovery
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Reminder

Semi-supervised learning

A small number of joint observations is available:

(x1, y1), (x2, y2), ...(xN , yN)

A bigger number of only input observations is also available:

x1, x2, ...xM

Recover x → y relationship

Semi-supervised output recovery
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Reminder

Notation

(x1, y1), (x2, y2), ...(xN , yN) - training sample, N is number of
observations

xi ∈ RD , D is dimensionality of data

xi or (xi , yi ) - individual sample, pattern, object.

In case of feature selection or dimensionality reduction: d is
output dimensionality

ω1, ω2, ...ωC - labels of classes, C - total number of classes.
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Reminder

Typical work�ow (CrispDM methodology)
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Main ML methods
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Main ML methods

Comments on some major ML methods

K-NN (metric selection, search optimization using KD-trees
and ball-trees)

Random Forest

Extra random trees

Neural network (later)

Boosting

12/51



Kitov Victor - Model evaluation

Main ML methods

Forward stagewise additive modeling

Input: training dataset (xi , yi ), i = 1, 2, ...n; loss function L(f , y),
general form of additive classi�er h(x , γ) (dependent from
parameter γ) and the number M of successive additive
approximations.

1 Fit initial approximation f 0(x) (might be taken f 0(x) ≡ 0)

2 For m = 1, 2, ...M:

1 �nd next best classi�er

(cm, γm) = argmin

n∑
i=1

L(fm−1(xi ) + cmh(x , γm), yi )

2 set
fm(x) = fm−1(x) + cmh(x , γm)

Output: approximation function f M(x) = f 0(x) +
∑M

j=1 cjh(x , γm)

Adaboost algorithm is obtained for L(y , f (x)) = e−yf (x)

13/51



Kitov Victor - Model evaluation

Main ML methods

Adaboost (discrete version)

Assumptions: loss function L(y , f (x)) = e−yf (x), classi�cation task:
y ∈}
Input: training dataset (xi , yi ), i = 1, 2, ...n; number of additive weak
classi�ers M, a family of weak classi�ers h(x), outputting only +1 or
-1 (binary classi�cation) and trainable on weighted datasets.

1 Initialize observation weights wi = 1/n, i = 1, 2, ...n.
2 for m = 1, 2, ...M:

1 �t hm(x) to training data using weights wi

2 compute weighted misclassi�cation rate:

Em =

∑n
i=1

wi I[hm(x) 6= yi ]∑n
i=1

wi

3 compute αm = ln ((1− Em)/Em)
4 increase all weights, where misclassi�cation with hm(x) was made:

wi ← wie
αm , i ∈ {i : hm(xi ) 6= yi}

Output: composite classi�er f (x) = sign
(∑M

m=1 αmh
m(x)

)
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Main ML methods

Gradient boosting - regression

Input: training dataset (xi , yi ), i = 1, 2, ...n; loss function L(f , y)
and the number M of successive additive approximations.

1 Fit initial approximation f 0(x) (might be taken f 0(x) ≡ 0)

2 For each step m = 1, 2, ...M:

1 calculate derivatives zi = −∂L(r ,y)∂r |r=f m−1(x)

2 train additive approximation with classi�er hm on
(xi , zi ), i = 1, 2, ...n with simple loss function, e.g. squared

di�erence
∑n

i=1
(hm(xi )− zi )

2

3 solve univariate optimization problem:

n∑
i=1

L
(
f m−1(xi ) + cmh

m(xi ), yi
)
→ min

cm∈R+

4 set f m(x) = f m−1(x) + cmh
m(x)

Output: approximation function f M(x) = f 0(x) +
∑M

m=1 cmh
m(x)
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Main ML methods

Gradient boosting of trees - regression

Input: training dataset (xi , yi ), i = 1, 2, ...n; loss function L(f , y)
and the number M of successive additive approximations.

1 Fit constant initial approximation f 0(x):
f 0(x) = argminγ

∑n
i=1 L(γ, yi )

2 For each step m = 1, 2, ...M:

1 calculate derivatives zi = −∂L(r ,y)∂r |r=f m−1(x)

2 train regression tree hm on (xi , zi ), i = 1, 2, ...n with squared

loss function
∑n

i=1
(hm(xi )− zi )

2
and extract terminal regions

Rjm, j = 1, 2, ...Jm.
3 for each terminal region Rjm, j = 1, 2, ...Jm solve univariate

optimization problem:

γjm = argmin
γ

∑
xi∈Rjm

L(f m−1(xi ) + γ, yi )

4 update f m(x) = f m−1(x) +
∑Jm

j=1
γjmI[x ∈ Rjm]

Output: approximation function f M(x)
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Main ML methods

Gradient boosting for classi�cation

Suppose we have C classes. Then each class probability may
be represented using C − 1 functions fi (x):

pi (x) =


efi (x)

1+
∑C−1

i=1 efi (x)
, i = 1, 2, ...C − 1

1

1+
∑C−1

i=1 efi (x)
i = C

In classi�cation boosting functions fi (x), i = 1, 2, ...C − 1 are
estimated the same way as single regression function f m(x) in
regression boosting - the loop [for c = 1, 2, ...C − 1] is inserted
inside step 2 loop [for m = 1, 2, ...M].

More information on boosting can be found in chapter 10 of
the book �The Elements of Statistical Learning� (http:
//statweb.stanford.edu/~tibs/ElemStatLearn/)
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Main ML methods

Neural networks

Structure of neural network

Activation function
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Margin
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Margin

Discriminative functions

Classi�cation of two classes ω1 and ω2

Discriminant function: gw (x) is de�ned

ω̂ =

{
ω1, g(x) ≥ 0

ω2, g(x) < 0

Linear discriminant function: g(x) = wT x + w0 =<W ,X >,
where W = [w0, w ] and X = [1, x ].

If we denote classes ω1 and ω2 with y = +1 and y = −1
respectively, we get the decision rule y = sign g(x).
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Margin

Margin

De�ne margin M(x , y) = g(x)y

M(x , y) > 0 <=> object x is correctly classi�ed
|M(x , y)| = M ′(x) ≥ 0 measures con�dence of decision

Upper boundary on misclassi�cation:

Qaccurate(w |X ) =
∑
i

I[M(xi |w) < 0]

≤
∑
i

L(M(xi |w)) = Qapprox(w |X )

Optimization task to get weights:

Qapprox(w |X ) =
n∑

i=1

L(M(xi |w)) =
n∑

i=1

L(〈w , xi 〉yi )→ min
w
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Margin

Approximating loss functions

SVM: (1−M)+ , logistic regression: ln(1 + e−M)

Sigmoid: more tight approximation, but non-convex.

Exponential: strongly a�ected by outliers.
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Margin

Optimization

Optimization task to get weights:

Qapprox(w |X ) =
n∑

i=1

L(M(xi |w)) =
n∑

i=1

L(〈w , xi 〉yi )→ min
w

Gradient descent algorithm:

Iteratively until convergence

w ← w − η ∂Qapprox(w |X )

∂w
= w − η

n∑
i=1

L′(〈w , xi 〉yi )xiyi

η - parameter, controlling the speed of convergence.

Faster convergence when updates are more often - e.g. at each
observation. Observations may be taken randomly.
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Margin

Improved optimization

Stochastic gradient descent algorithm

Calculate Q̂approx(w ,X ) =
∑n

i=1 L(M(xi |w))

Iteratively, until convergence of Q̂approx or convergence of w :

1 select random observation (xi , yi )

2 adapt weights: w ← w − ηL′(〈w , xi 〉yi )xiyi
3 Estimate error: εi = L(〈w , xi 〉yi )
4 Recalculate Q̂approx = (1− α)Q̂approx + αεi

Initial weights selection:

all zeros

random at [− 1
2D ,

1
2D ] (for logistic approximation) or arbitrary

random

wi = 〈x i ,y〉
〈x i ,x i 〉
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Margin

Selection of η

Larger η => algorithm more prone to diverge.

Plot Qapprox(w) (or Q̂approx(w)) versus iteration number t to
control convergence.

Deterministic scheme:

Stochastic gradient descent converges to local optima if

ηt → 0∑∞
t=1 ηt = ∞∑∞
t=1 η

2
t <∞

Example: ηt = 1

t

Data dependent scheme:

At each step �nd ηt = argmin
η
Qapprox(w − η ∂Qapprox

∂w )

Often analytical solution for such η exists
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Margin

Comments

Margins increase robustness, by pushing decision boundary
away from the samples.

Non-symmetrical margin:

(g(x) = g̃ , y = ỹ) is equivalent to (g(x) = −g̃ , y = −ỹ)
not relevant for non-symmetric losses (example: predicting
illness)

by introducing gy (x) =

{
g1(x) y = +1

g2(x) y = −1
we can treat

non-symmetrical case.
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Regularization
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Regularization

Regularization

Useful technique to control the trade-o� between bias and
variance, can be applied to any algorithm.

Qregularized(w) = Q(w) + τ ||w ||2

Qregularized(w) = Q(w) + τ ||w ||1

||w ||1 =
D∑

d=1

|wd |, ||w ||2 =
D∑

d=1

(wd)2
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Regularization

Maximum probability estimation

X = {x1, x2, ...xn}, Y = {y1, y2, ...yn} - training sample of
i.i.d. observations, (xi , yi ) ∼ p(y |x ,w)
ML estimation ŵ = argmaxw p(Y |X ,w)
Using independence assumption:

n∏
i=1

p(yi |xi ,w) =
n∑

i=1

ln p(yi |xi ,w)→ max
w

Approximated misclassi�cation:

n∑
i=1

L(g(xi )yi |w)→ min
w

Interrelation:

L(g(xi )yi |w) = − ln p(yi |xi ,w)
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Regularization

Maximum a prosteriori estimation

X = {x1, x2, ...xn}, Y = {y1, y2, ...yn} - training sample of
i.i.d. observations, (xi , yi ) ∼ p(x , y |w)

xi ∼ p(x |w)

MAP estimation:

w is random with prior probability p(w)

p(w |X ,Y ) =
p(X ,Y ,w)

p(X ,Y )
=

p(X ,Y |w)p(w)

p(X ,Y )
∝ p(X ,Y |w)p(w)

w = argmax
w

p(w |X ,Y ) = argmax
w

p(X ,Y |w)p(w)

n∑
i=1

ln p(xi , yi |θ) + ln p(w)→ max
w
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Regularization

Gaussian prior

Gaussian prior

ln p(w , σ2) = ln

(
1

(2πσ2)n/2
e−
||w||22
2σ2

)
= − 1

2σ2
||w ||22+const(w)

Laplace prior

ln p(w ,C ) = ln

(
1

(2C )n
e−
||w||1

C

)
= − 1

C
||w ||1 + const(w)
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Regularization

L1 norm

||w ||1 regularizer will do feature selection.

Consider

Q(w) =
n∑

i=1

Li (w) +
1

C

D∑
d=1

|wd |

if 1
C > supw

∣∣∣∂L(w)
∂wi

∣∣∣, then it becomes optimal to set wi = 0

For smaller C more inequalities will become active.
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Regularization

Regression

Example: least squares regression∑N
n=1(wT xn + w0 − yn)2 + R(w)→ minw ,w0

LASSO: least-squares regression, using ||w ||1
Ridge: least-squares regression, using ||w ||2
Elastic Net: : least-squares regression, using both
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Regularization

Multi-task lasso

K outputs are solved with K regressions:

in the same feature space

with constraint that features become included/excluded
simulataneously across all tasks.

Optimization problem:

min
W
‖XW − Y ‖22 + α ‖W ‖21

where X ∈ RNxD , W ∈ RDxK , Y ∈ RNxK and

‖W ‖21 =
N∑

n=1

√√√√ K∑
k=1

w2
nk
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Model output
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Model output

Model output

Regression output: y ∈ R
Classi�cation output:

exact class (e.g: majority voting)
score (SVM, nearest centroid)
class probability (logistic regression, all tree based methods,
K-NN)

Techniques for transforming score f (x) to probability p(y = 1):

Platt scaling
isotonic regression
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Model output

Platt scaling

Platt scaling assumes logistic relationship

p(y = 1|x) =
1

1 + eAf (x)+B

and �ts parameters A,B using maximum likelihood.

Logistic function

For �tting A,B training set should be di�erent from training set
where f (x) was �tted (otherwise over�tting).
Platt scaling is good for small datasets, otherwise use more
general isotonic regression.
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Model output

Isotonic regression

The following functional relationship is assumed:

yi = m(si ) + εi

where εi ∼ i .i .d .N(0, σ2), si is score of classi�er for xi and
m(·) is arbitrary monotone function.

Using (si , yi ), i = 1, 2, ...N as training set, �nd

m̂ = argmin
m

∑
i

(yi −m(fi ))2

Should be �tted on separate validation set.

Piecewise constant solution is found in linear time.
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Model output

Sample �t of isotonic regression
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Model evaluation
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Model evaluation
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Model evaluation

Evaluation of class assignements

Confusion matrix

Confusion matrix:

Estimated classes

T
ru
e
cl
as
se
s

1 2 · · · C
1
2
...
C


n11 n12
n21 n22

. . .

nCC


nij - number of objects, belonging
to ωi but classi�ed as ωj .

Visualized confusion matrix
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Model evaluation

Evaluation of class assignements

2-class case

Confusion matrix:

Estimated class
+ -

True class
+ True positives False negatives
- False positives True negatives

Derived performance measures:

Accuracy: TP+TN
P+N Error rate: FP+FN

P+N

FPR: FP
N TPR: TP

P

Precision: TP
TP+FP Recall: TP

P

F-measure: 2
1

Precision
+ 1

Recall

Fβ-measure: 1
β2

1+β2
1

Precision
+ 1

1+β2
1

Recall

Accuracy - most intuitive but irrelevant for skewed classes
All measures require speci�cation of probability / score.
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Model evaluation
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Model evaluation

Evaluation of class assignements

Discriminability vs. reliability

Discriminability measures how well classes are classi�ed

Error rate is discriminability measure

Reliability how well class probabilities are estimated

Likelihood (yi is the class of xi ):

n∏
i=1

p̂(yi |xi )

Brier score:

1

n

n∑
i=1

C∑
c=1

(I[xi ∈ ωc ]− p̂(ωc |xi ))2

Example of good discriminability and poor reliability
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ROC curves
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ROC curves

Parametrization of predicted class proportions

Bayes minimum risk solution: assign x to ω1 if

λ1p(ω1)p(x |ω1) > λ2p(ω2)p(x |ω2)

This condition is equivalent to

p(x |ω1)

p(x |ω2)
>
λ2p(ω2)

λ1p(ω1)
= µ

Discriminant functions: assign x to ω1 if g1(x)− g2(x) > µ′.
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ROC curves

ROC curve

ROC curve characterizes
classi�er performance for all
values of parameter cut-o�.

As µ decreases, the
algorithm becomes more
inclined to select class ω1
(positive class)

TPR=1− ε1 increases
FPR=ε2 also increases

How to compare di�erent classi�ers?
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ROC curves

ROC properties

Better ROC curves are more concave

Diagonal represents random guessing

Expected loss is equal to

L = λ2p(ω2)ε2+λ1p(ω1)ε1 = λ2p(ω2)ε2−λ1p(ω1)(1−ε1)+λ1p(ω1)

At optimality point iso-loss surface is tangent to ROC curve
with slope tangent equal to λ2p(ω2)

λ1p(ω1)
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ROC curves

ROC quality criteria

AUC:

global performance characteristic
equals the probability that for random x1 ∈ ω1 and x2 ∈ ω2 it
would be true that: p̂(ω1|x1) > p̂(ω2|x)

LC index:

rescale λ1 and λ2 so that λ1 + λ2 = 1
de�ne λ1 = λ, λ2 = 1− λ
for each λ ∈ [0, 1] calculate

L(λ) =

{
+1 if 1st classi�er is better

−1 if 2nd classi�er is better

de�ne probability for p(λ) (example: triangular)

choose 1-st classi�er i�
´
1

0
L(λ)p(λ)dλ > 0.
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ROC curves

Comments on model evaluation

Bayes minimum error rate - theoretical lower bound for
classi�cation

need to know P(x , y).

Training error rate - optimistically biased

Test error rate - pessimistically biased (since part of data used
for error estimation)
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ROC curves

Holdout estimate of error rate distribution

Let e be the probability of making error on previously unseen object.
Probability of observing k errors on test sample of size n:

p(k |e, n) =

(
n
k

)
ek(1− e)n−k

Then

p(e|k , n) =
p(e, k |n)

p(k |n)
=

p(k |e, n)p(e|n)´
p(k |n)p(e|n)de

Assuming that p(e|n) ≡ const, we obtain

p(e|k , n) =
p(k|e, n)´
p(k |n)de

∝ ek(1− e)n−k

Since beta-distribution
Be(x |α, β) = [Γ(α+ β)/(Γ(α)Γ(β))]xα−1(1− x)β−1 it follows that

p(e|k , n) ∼ Be(k + 1, n − k + 1)
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