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Introduction

@ Advanced aspects of machine learning
@ 8 lectures:

Reminder about major algorithms. Model evaluation.
Feature selection.

Ensemble learning N1.

Ensemble learning N2.

Linear dimensionality reduction.

Non-linear dimensionality reduction.

Kernel trick. Kernelized algorithms.

Deep learning.
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Recommended materials

Statistical Pattern Recognition. 3rd Edition, Andrew R.
Webb, Keith D. Copsey, John Wiley & Sons Ltd., 2011.

The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Trevor Hastie, Robert Tibshirani,
Jerome Friedman, 2nd Edition, Springer, 2009.
http://statweb.stanford.edu/~tibs/ElemStatLearn/

Machine Learning: A Probabilistic Perspective.
Kevin P. Murphy. Massachusetts Institute of Technology.
2012.

Lectures of Machine Learning Course (in Russian).
Konstantin Vorontsov. machinelearning. ru.

Additional sources - wikipedia, articles, tutorials.
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Reminder

Formal definitions of machine learning

@ Machine learning is a field of study that gives computers the
ability to learn without being explicitly programmed.

@ A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure
P, if its performance P at tasks in T improves with
experience E.
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Reminder

Supervised machine learning

o Find functional relationship between input variables x and

output variables y based on expert knowledge and their
common observations:

(X17YI)> (X27y2)7 "‘(XN7YN)

e x as a vector is called object, pattern.

e individual components of x are called features, regressors,
inputs.
e y is called output, target

o if y € R => regression

o if y € {w1,wy,...wc} => classification / pattern recognition
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Reminder

Demonstration
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Supervised learning: x = (x1,x2), y specified by color
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Reminder

Unsupervised learning

@ Find functional relationship between input variables x and
output variables y based on expert knowledge and only x

observations:

@ Unsupervised learning is also known as clustering (for discrete

X1,X2, ...

XN

output)
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Unsupervised output recovery
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Semi-supervised learning

@ A small number of joint observations is available:
(x1,31), (2, ¥2)5 (X, yv)
@ A bigger number of only input observations is also available:

X1y X2y - XM
@ Recover x — y relationship

N Raw data (2 classes=red and blue) Lalbe\s learned with Label Spreading (KNN)
- =

.. ® Outer Leamed

N

10 510 -05 0.0 05 1.0

Semi-supervised output recovery
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Reminder

Notation

(x1, 1), (x2,¥2), ...(xn, yn) - training sample, N is number of
observations

x; €RP, Dis dimensionality of data
x; or (x;, ;) - individual sample, pattern, object.

In case of feature selection or dimensionality reduction: d is
output dimensionality

w1, ws, ...wc - labels of classes, C - total number of classes.
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Main ML methods

Comments on some major ML methods

K-NN (metric selection, search optimization using KD-trees
and ball-trees)

Random Forest
Extra random trees

Neural network (later)

Boosting
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Forward stagewise additive modeling

Input: training dataset (x;,y;), i = 1,2, ...n; loss function L(f,y),
general form of additive classifier h(x, ) (dependent from
parameter v) and the number M of successive additive
approximations.
O Fit initial approximation f9(x) (might be taken f%(x) = 0)
Q@ Form=1,2,..M:

© find next best classifier

(Cma ’Vm) = arg min Z L(fmfl(xi) + th(Xv '7m)7 }/i)
i=1
0 set
fm(X) = mfl(x) + th(X7 Vm)
Output: approximation function fM(x) = f9(x) + Zj\il cih(x,vm)
Adaboost algorithm is obtained for L(y, f(x)) = e (%)
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Adaboost (discrete version)

Assumptions: loss function L(y, f(x)) = e (), classification task:
y €}
Input: training dataset (x;,y;), i = 1,2,...n; number of additive weak
classifiers M, a family of weak classifiers h(x), outputting only +1 or
-1 (binary classification) and trainable on weighted datasets.
© Initialize observation weights w; =1/n, i = 1,2,...n.
Q@ form=12..M:
O fit h(x) to training data using weights w;
@ compute weighted misclassification rate:

L S will() # i
" 27:1 Wi

© compute ay =In((1— En)/Em)
@ increase all weights, where misclassification with h™(x) was made:

w; < wie®™, i € {i: h"(x;) # yi}

Output: composite classifier f(x) = sign (Zgzl amhm(x))
/51
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Main ML methods

Gradient boosting - regression

Input: training dataset (x;,y;), i = 1,2, ...n; loss function L(f,y)
and the number M of successive additive approximations.
O Fit initial approximation f9(x) (might be taken f%(x) = 0)
© For eachstep m=1,2,...M:

o
(2]

Output:

calculate derivatives z; = L(’y |r=fm—1(x)

train additive approximat|on W|th classifier ™ on

(xi,zi), i = 1,2,...n with simple loss function, e.g. squared
difference "7, (h™(x;) — z)°

solve univariate optimization problem:

D L(F™ (%) + cmh™(x7), yi) — min

cm€ER
i=1 M

set fM(x) = f™"(x) + cnh™(x)
approximation function fM(x) = f9(x) + Zﬁ,ﬂzl cmh™(x)
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Main ML methods

Gradient boosting of trees - regression

Input: training dataset (x;,y;), i = 1,2, ...n; loss function L(f,y)
and the number M of successive additive approximations.
@ Fit constant initial approximation (x):

fo(x

) =argmin, > L(7, yi)

@ For eachstep m=1,2,...M:

o
(2]

Output:

calculate derivatives z; = al'(r’y |r=fm=1(x)

train regression tree h™ on (x,,z,) i=1,2,...n with squared
loss ﬂ_mction S (hm(xi) — z)* and extract terminal regions
Rimi j=1,2,..Jm.

for each terminal region Ry, j =1,2,...J, solve univariate
optimization problem:

Vjm —argmln Z L(F™ () + 7, vi)
X;i €Rjm
update £7(x) = F71(x) + 77, 2yl € Ryl

approximation function M (x)
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Gradient boosting for classification

@ Suppose we have C classes. Then each class probability may
be represented using C — 1 functions f;(x):

efi(x) .
—_— =1.2...C—-1
1 Cc—1 fx)7 / y <
pi(x) = { T .
megrem 1= C

e In classification boosting functions fj(x), i =1,2,...C — 1 are
estimated the same way as single regression function £™(x) in
regression boosting - the loop [for c = 1,2,...C — 1] is inserted
inside step 2 loop [for m =1,2,...M].

@ More information on boosting can be found in chapter 10 of
the book “The Elements of Statistical Learning” (http:
//statweb.stanford.edu/~tibs/ElemStatLearn/)

17/51


http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://statweb.stanford.edu/~tibs/ElemStatLearn/

Kitov Victor - Model evaluation
Main ML methods

Neural networks
Structure of neural network
7

LA
s @Sy

L SO
IR
7 x"»\\

Activation function
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Margin

Discriminative functions

o Classification of two classes w; and w»

@ Discriminant function: gy (x) is defined

o Linear discriminant function: g(x) = w'x +wy =< W, X >,
where W = [wp, w] and X = [1, x].

o If we denote classes wy and wy with y = +1 and y =
respectively, we get the decision rule y = sign g(x).
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Margin
@ Define margin M(x,y) = g(x)y
e M(x,y) >0 <=> object x is correctly classified

o |M(x,y)| = M’(x) > 0 measures confidence of decision

@ Upper boundary on misclassification:

Qaccurate(W‘X) = ZH[M X,"W < 0]
< Z L{M(xi|w)) = Qapprox(w|X)
e Optimization task to get weights:

Qapprox W|X Z[’ X1|W Z£(<W,X,‘>y,') — mMi/n

i=1
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Approximating loss functions

51

v
43 Lk

QM) = (1-M)?

3 V(M) =(1-M),

S 0 S(M) =2(1 + M)t
g L(M) = log}zw(l +eM)
% EM)=e
0‘ ——r

5 4 3 2 1 0 1 2 3 4 5

M

o SVM: (1 — M), , logistic regression: In(1+ e~M)
@ Sigmoid: more tight approximation, but non-convex.
e Exponential: strongly affected by outliers.
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Optimization
@ Optimization task to get weights:

n
Qapprox (W[ X) = Z L(M(xj|w)) Z L({w,xi)yi) — mmi/n
i=1
e Gradient descent algorithm:
o lteratively until convergence

9 Qapprox (w[X)

W4—w—1 B
w

=w-=n Z L'({w, x;) yi)xii

i=1
e 1) - parameter, controlling the speed of convergence.

e Faster convergence when updates are more often - e.g. at each
observation. Observations may be taken randomly.
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Improved optimization

Stochastic gradient descent algorithm

Calculate Qapprox(w, X) = 371 L(M(xi|w))

Iteratively, until convergence of Q.pprox Or convergence of w:
Q select random observation (x;, ;)
Q adapt weights: w < w — nL' ({w, x;)yi)xiyi
© Estimate error: g; = L({w, x;)y;)

Q Recalculate Qapprox = (1 — @) Qapprox + a€;

Initial weights selection:
o all zeros

e random at [—%, %] (for logistic approximation) or arbitrary
random

_ Ky
o w; = 5E%)
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Margin

Selection of n

Larger n => algorithm more prone to diverge.

Plot Qapprox(W) (or Qapprox(wW)) versus iteration number t to
control convergence.

@ Deterministic scheme:

e Stochastic gradient descent converges to local optima if

o Example: n, =1

Data dependent scheme:
o At each step find 7 = arg min Qpprox (W — naQappmx)
n

o Often analytical solution for such 7 exists
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Comments

@ Margins increase robustness, by pushing decision boundary
away from the samples.

@ Non-symmetrical margin:
° (g(x) =&,y =7) is equivalent to (g(x) = —&,y = —7)
e not relevant for non-symmetric losses (example: predicting
illness)

gi1(x)

y= we can treat
g(x) y=-1

e by introducing g,(x) = {

non-symmetrical case.
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Regularization

@ Useful technique to control the trade-off between bias and
variance, can be applied to any algorithm.

Qregularized(w) = Q(w) + 7||w||2

Qregu/arized(w) — Q(W) + THWHl
D

D
Iwlile = Iwal,  llwll2 =) (wa)?
d=1

d=1
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Maximum probability estimation
o X ={x1,x,..xn}, Y = {1, 2,...Yn} - training sample of
i.i.d. observations, (x;,y;) ~ p(y|x, w)

ML estimation w = arg max,, p(Y|X, w)
Using independence assumption:

n
[ plyilxi, w) Z In p(yilxi, w) — max
i=1

@ Approximated miscIaSS|f|cat|on:

ZE (xi)yilw) — m|n

Interrelation:

L(g(xi)yilw) = —In p(yi|xi, w)
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Maximum a prosteriori estimation

o X ={xi,x2,..xn}, Y ={yi,)2,...yn} - training sample of
i.i.d. observations, (x;,y;) ~ p(x, y|w)

e x; ~ p(x|w)

o MAP estimation:

e w is random with prior probability p(w)

p(X. Y, w) _ p(X, Y|w)p(w)
p(X.Y) p(X.Y)

p(wIX., ) = % p(X. Y|w)p(w)

w = argmax p(w|X, Y) = argmax p(X, Y|w)p(w)

n
> Inp(xi, yil0) + In p(w) — max
i=1
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Gaussian prior

o Gaussian prior

1 ICTIS 1
|n p(W,O’z) = |n (We 202 ) = —EHWH%‘FCOﬂSt(W)

@ Laplace prior

In p(w, C):|n< e ¢ ):é||w||1+const(w)
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Regularization

L1 norm

||wl||1 regularizer will do feature selection.

Consider

n D
Q) = D Li(w) + £ > wa
i=1 d=1

if % > sup,, ‘85‘(/:1,‘/) , then it becomes optimal to set w; =0

For smaller C more inequalities will become active.
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Regression

Example: least squares regression
ZnNzl(WTXn + wo — )% + R(w) — miny. w,
@ LASSO: least-squares regression, using ||w||1
@ Ridge: least-squares regression, using ||w||2
o Elastic Net: : least-squares regression, using both

Ridge coefficients as a function of the regularization Lasso and Elastic-Net Paths

— Lasso S
- - Elastic-Net
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Multi-task lasso

K outputs are solved with K regressions:
@ in the same feature space

@ with constraint that features become included/excluded
simulataneously across all tasks.

Optimization problem:
- 2
in [XW = Y|+ o Wiy

where X € RVMO W € RDXK |y ¢ RMK and

N K
[Wllyy = Z Z Wiy

n=1 k=1
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Model output

@ Regression output: y € R
o Classification output:

e exact class (e.g: majority voting)

e score (SVM, nearest centroid)

o class probability (logistic regression, all tree based methods,
K-NN)

@ Techniques for transforming score f(x) to probability p(y = 1):

o Platt scaling
@ isotonic regression
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Platt scaling

Platt scaling assumes logistic relationship

=1 — 1
P(y - |X) - 14+ eAf(X)+B

and fits parameters A, B using maximum likelihood.

Logistic function
1

e For fitting A, B training set should be different from training set
where f(x) was fitted (otherwise overfitting).
e Platt scaling is good for small datasets, otherwise use more

general isotonic regression.
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Isotonic regression

The following functional relationship is assumed:

yi=m(s;)+¢;

where g; ~ i.i.d.N(0,0?), s; is score of classifier for x; and
m(-) is arbitrary monotone function.

Using (s;,yi), i =1,2,...N as training set, find

—argmlnz ; — m(f;))?

Should be fitted on separate validation set.

Piecewise constant solution is found in linear time.
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Sample fit of isotonic regression

300 r T T T
e e Data .
— Isotonic Fit P o*
250[ LA
- - Linear Fit . ° e

200f
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100f
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@ Model evaluation
@ Evaluation of class assignements
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Model evaluation

Evaluation of class assignements

Confusion matrix

Confusion matrix:

Estimated classes Visualized confusion matrix

1 2 . C 1 2 3 4 5 6 7 1200

1 i nio 1050

%00

2 na1 N 750

. . 600

: . 250
6

C ncc e

Predicted label 0

njj - number of objects, belonging
to w; but classified as w;.

B o e

Tue label

True classes
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Model evaluation

Evaluation of class assignements

2-class case

Confusion matrix:

Estimated class
+ -
+ | True positives | False negatives
- | False positives | True negatives

True class
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Model evaluation

Evaluation of class assignements

2-class case

Confusion matrix:

Estimated class
+ -
+ | True positives | False negatives
- | False positives | True negatives

True class

Derived performance measures:

Accuracy: % Error rate: %
FPR: £ TPR: ®
Precision: % Recall: %
F-measure: ﬁ Fg-measure: 71 1 —
Precision |~ Recall 1452 Precision + 13 52 Recall

@ Accuracy - most intuitive but irrelevant for skewed classes
o All measures require specification of probability / score.
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Model evaluation

Evaluation of class assignements

Discriminability vs. reliability

o Discriminability measures how well classes are classified

o Error rate is discriminability measure
e Reliability how well class probabilities are estimated

o Likelihood (y; is the class of x;):

H ﬁ()/i|Xi)
i=1

o Brier score:

n

1 C
=303 (@ € wl = Blwelx)?

i=1 c=1

e Example of good discriminability and poor reliability
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Parametrization of predicted class proportions

Bayes minimum risk solution: assign x to wy if
A1p(w1)p(x|wi) > Aap(w2)p(x|w?2)
This condition is equivalent to

p(x|w1) _ Aap(wa)
p(x|w2) ~ Mp(en)

Discriminant functions: assign x to wy if g1(x) — ga(x) > p/.
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ROC curve
@ ROC curve characterizes ROC curves
e — classifier
classifier performance for all

values of parameter cut-off.

@ As u decreases, the
algorithm becomes more
inclined to select class w;
(positive class)

true positive rate

o TPR=1 — &1 increases
o FPR=¢; also increases
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ROC curves

ROC curve
@ ROC curve characterizes ROC curves
e — classifier
classifier performance for all

values of parameter cut-off.

@ As u decreases, the
algorithm becomes more
inclined to select class w;
(positive class)

true positive rate

o TPR=1 — &1 increases
o FPR=¢; also increases

How to compare different classifiers? J
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ROC properties

Better ROC curves are more concave

Diagonal represents random guessing

Expected loss is equal to

L = Aap(wz)eat+Aip(wr)er = Aop(wa)ea—Arp(wr)(1—e1)+A1p(wr)

At optimality point iso-loss surface is tangent to ROC curve

. A2p(w2)
with slope tangent equal to Xp(t)
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ROC quality criteria

e AUC:;

o global performance characteristic
e equals the probability that for random x; € w; and x> € w» it
would be true that: p(wy|x1) > p(wa|x)
@ LC index:
e rescale A\ and > sothat \{ + X\ =1
define \i =\, o =1—- )\
for each A € [0, 1] calculate
)1 if 1st classifier is better
| =1 if 2nd classifier is better
define probability for p(\) (example: triangular)
o choose 1-st classifier iff fol L(A)p(N)dX > 0.

L(A)
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ROC curves

Comments on model evaluation

@ Bayes minimum error rate - theoretical lower bound for
classification

e need to know P(x,y).
@ Training error rate - optimistically biased

@ Test error rate - pessimistically biased (since part of data used
for error estimation)
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Holdout estimate of error rate distribution

Let e be the probability of making error on previously unseen object.
Probability of observing k errors on test sample of size n:

plen) = ) ey
Ther (e.kln)  p(kle,n)p(eln)
p(e, k|n p(kle, n)p(eln
plelk,n) = =
(el m) = "oklm) = T p(kImyp(elnyde
Assuming that p(e|n) = const, we obtain

p(elk,n) = _p(kle,n) o ef(1—e)k

= [ p(kln)de

Since beta-distribution
Be(x|a, B) = [T(a + B) /(T ()T (B)]x* (1 — x)?~ it follows that

p(elk,n) ~ Be(k +1,n— k +1)
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