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Feature selection

Feature selection is a process of selecting a subset of original
features with minimum loss of information related to final task
(classification, regression, etc.)
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Applications of feature selection

@ Why feature selection?

e increase predictive accuracy of classifier

improve optimization stability by removing multicollinearity
increase computational efficiency

reduce cost of future data collection

make classifier more interpretable

@ Not always necessary step:
e some methods have implicit feature selection
o decision trees and tree-based (RF, ERT, boosting)

e regularization
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Types of features

Define f - the feature, F = {f1, f,...fp} - full set of features,
S=F\{f}.
o Strongly relevant feature:
p(yIf,S) # p(ylS)

o Weakly relevant feature:

p(ylf,S) = p(y|S), but 35" C S: p(y|f,S") # p(y|S')
o Irrelevant feature:

VS C St op(ylf,S") = p(y|S")

Aim of feature selection

Find minimal subset S C F such that P(y|S) ~ P(y|F), i.e. leave
only relevant and non-redundant features.
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Refining redundant features

Consider a set of interrelated random variablesZ = {z;, z5, ...zp}

Definition 1

Subset S of Z is called is called a Markov blanket of z; if
P(z|$,Z) = P(z]S) .

@ For Markov network Markov
blanket consists of all nodes
connected to Y.

@ For Bayesian network Markov
blanket consists of: parents,
children and children other
parents.

Only features from Markov blanket of y inside set {f1, >, ...fp, y} are
needed. J

Markov blanket may be found by special algorithms such as IAMB.
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Specification

o Need to specify:

o quality criteria J(X)
o subset generation method 5,55, S3, ...
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Types of feature selection algorithms

@ Completeness of search:
o Complete
o exhaustive search complexity is C3 for |F| = D and |S| = d.
e Suboptimal

o deterministic
e random (deterministic with randomness / completely random)

@ Integration with predictor

e independent (filter methods)
e uses predictor quality (wrapper methods)
o is embedded inside classifier (embedded methods)
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Classifer dependency types

o filter methods

o rely only on general measures of dependency between features
and output

e more universal

e are computationally efficient

@ wrapper methods

o subsets of variables are evaluated with respect to the quality of

final classification
e give better performance than filter methods
e more computationally demanding

o embedded methods

o feature selection is built into the classifier
o feature selection and model tuning are done jointly
o example: classification trees, methods with L; regularization.
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Filter methods

Table of Contents

@ Filter methods
@ Probability measures
@ Context relevant measures
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Filter methods

Correlation

@ two class:

S = Py - 7)
[ = P2 S — )72

e multiclass wy,ws, ...wc (micro averaged p(f,y.)c=1,2,...C.)

e S [l = Ay — 7))
S i = P2 (e — 7 )2

p(f,y) =

o Benefits:

e simple to compute
o applicable both to continuous and discrete features/output.
o does not require calculation of p.d.f.

9/38



Kitov Victor - Feature selection
Filter methods

Correlation for non-linear relationship

@ Correlation captures only linear relationship
e Example: X ~ Uniform[-1,1], Y = X2

E{(X -EX)(Y -EY)} = E{X(X*-EX?)}
EX3 —EXEX? =0

@ Other examples of data and its correlation:

S oF E m m W

1 1 1 1 -1

S e = = N

o

o
S
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Entropy

@ Entropy of random variable Y:

H(Y) ==Y ply)lnp(y)

y

o level of uncertainty of Y
e proportional to the average number of bits needed to code the

outcome of Y using optimal coding scheme (— In p(y) for
outcome y).

e Entropy of Y after observing X:

H(Y|X) = Zp X)Zp y1x) In p(y|x)
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Kullback-Leibler divergence

Kullback-Leibler divergence

For two p.d.f. P(x) and Q(x) Kullback-Leibler divergence
KL(P||Q) equals >, P(x)In it

@ Properties:

o defined only for P(x) and Q(x) such that
QR(x)=0= P(x)=0
o KL(P||Q) >0
o P(x) = Q(x)Vx if and only if KL(P||Q) = 0 (for discrete r.v.)
o KL(P||Q) # KL(QI|P)
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Kullback-Leibler divergence

e Symmetrical distance: KLgm(P||Q) = KL(P||Q) + KL(Q||P)
@ Information theoretic meaning:

o true data distribution P(x)
o estimated data distribution Q(x)

KL(PIIQ) = = > P(x)In Q(x +ZP )In P(x

o KL(P||Q) shows how much longer will be the average length
of the code word.
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Mutual information

Mutual information measures how much X gives information

about Y:
MI(X,Y) = H(Y)—H(Y|X)
_ x p(x,y)
- Z” ) [ (Ip(y )]
Properties:
o MI(X,Y) = MI(Y,X)

o MI(X,Y) = KL(p(x,y), p(x)p(y)) >
o MI(X <Y)<min{H(X),H(Y)}
e X, Y- independent, then MI(X,Y) =

X completely identifies Y, then He
MI(X,Y)=H(Y) < H(X)
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Mutual information for feature selection

o Normalized variant NMI(X,Y) = M’(XY;/) equals

e zero, when P(Y|X) = P(Y)
e one, when X completely identifies Y.

o Properties of M/ and NMI:

o identifies arbitrary non-linear dependencies
e requires calculation of probability distributions
e continuous variables need to be discretized
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Probability measures

© Filter methods
@ Probability measures
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Probability measures

Probabilistic distance

Measure of relevance: p(x|w1) vs. p(x|wz)
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Probability measures

Examples of distances

Distances between probability density functions 7(x) and g(x):
o Total variation: 1 [ |f(x) — g(x)|dx,

o Euclidean: % (f(f(x) — g(X))zdx)l/z

o Hellinger: <;f (m_ m>2dx>1/2

e Symmentrical KL: [ (f(x) — g(x))In %dx
Distances between cumulative probability functions: F(x)
and G(x):

e Kolmogorov: sup, |F(x) — G(x)|

e Kantorovich: [ |F(x) — G(x)|dx

o Ly ([1F(x) — G(x)[Pdx)"
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Probability measures

Other

Multiclass extensions:
Suppose, we have a distance score J(wj,wj).
We can extend it to multiclass case using:

J = max J(wj, wj)
wj,wj

J =" p(wi)p(w;)d(wi,w))
i<j
Comparison with general p.d.f:
We can also compare p(x|w;) vs. p(x) using

J =371 pwi) D (p(x|wi), p(x)):
o Chernoff: J = Z,C L P(wj) {—log | p*(x|wi)p*~( }dx
o Bhattacharyya: J =<, p(w;) { log [ (p(x|wi)p )2 dx}
o Patrick-Fisher: J = Zizl p(w;) {f[p(x|w,-) - p(x)]zdx}l/2
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Context relevant measures

© Filter methods

@ Context relevant measures
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Filter methods

Context relevant measures

Relevance in context

Individually features may not predict the class, but may be relevant
together:

p(ylx1) = p(y), p(ylx2) = p(y), but p(y|x1, x2) # p(y)
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Context relevant measures

Relief criterion

INPUT:
Training set (xi,y1),(x2,y2),-..(xn, yn)
Number of neighbours K
Distance metric d(x,x’)

for each pattern x, in xi,x2,..xn:
calculate K nearest neighbours of the same class y;:

Xs(n,1)5 Xs(n,2)s -+-Xs(n,K)
calculate K nearest neighbours of class different from y;:

Xd(n,1)s Xd(n,2)s +-+Xd(n,K)
for each feature f; in fi,f,...fp:

calculate relevance R(f) =N S%. lx" ults k)‘

x’x \

OUTPUT:
feature relevances R
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Context relevant measures

Cluster measures

General idea of cluster measures

Feature subset is good if observations belonging to different classes
group into different clusters.
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Context relevant measures

Cluster measures

Define:

o zic =I[y; = w¢], N-number of samples, N;-number of samples
belonging to class w;.

o m= %Z;Xi: me = N%Z,-z,-cx,-,j: 1,2,...C.

e Global covariance: ¥ = £ > :(x — m)(x —m)T,

@ Intraclass covariances: Y. = N% S zie(xi — me)(xi — me)T
o Within class covariance: Sy = S°5_, Rey .

@ Between class covariance: Sg = chzl %(mj — m)(m; —m)

Interpretation

Within class covariance shows how samples are scattered within
classes.

Between class covariance shows how classes are scattered between
each other.
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Context relevant measures

Scatter magnitude

Theorem 1
Every real symmetric matrix A € R™" can be factorized as

A=UxUT

where ¥ is diagonal and U is orthogonal. ¥ = diag{\1, A2, ...A\n}
and U = [u1, up, ...u,| where \j,i =1,2,...n are eigenvalues and
uj € R™1 are corresponding eigenvectors.

o U is basis transform corresponding to rotation, so only ¥
reflects scatter.

o Aggregate measures of scatter trX =) . \;j and det™ =[], \;

@ Since tr [P_IBP] = tr B and det [P‘lBP] = det B, we can
estimate scatter with tr A =tr¥ and det A =det X
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Context relevant measures

Clusterization quality

e Good clustering: Sy is small and Sg, X are big.

@ Cluster discriminability metrics:

Tr{Sg} detX
Tr{Sw} " det Sw

Resume

o Pairwise feature measures

Tr{S,; S},

e fail to estimate relevance in context of other features
e are robust to curse of dimensionality

o Context aware measures:

e estimate relevance in context of other features
e prone to curse of dimensionality
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Table of Contents

© Feature subsets generation
@ Randomised feature selection
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Complete search with optimal solution

o exhaustive search
@ branch and bound method

e requires monotonicity property:
FcG: J(F)< J(G)

e when property does not hold, becomes suboptimal
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Feature subsets generation

Example

(1,3,4,5) (1,2,4,5) (1,2,3,5)

80.1(1,2,5) 76.27(1,2,4) 77.2(1,2,3)
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Incomplete search with suboptimal solution

@ Order features with respect to J(f):
> ..

J(f) > J(R) > ..> J(fp)

e select top m .
F={f,f,..fn}

o select best set from nested subsets:
S={{h}.{A, L}, .{f, fo,..0p}}

F= J(F
2re 2y J(F)

o Comments:

e simple to implement

o if J(f) is context unaware, so will be the features

o example: when features are correlated, it will take many
redundant features
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Sequential search

@ Sequential forward selection algorithm:

o init: k=0, Fpb=10
e while k < max_ features:

fir1 = arg maxrer J(Fc U {f})
Fir1 = Fe U{fis1}

if J(Fiy1) < J(Fi): break
k=k+1

o return Fy
@ Variants:

sequential backward selection

up-k forward search

down-p backward search

up-k down-p composite search

up-k down-(variable step size) composite search
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Randomised feature selection

© Feature subsets generation
@ Randomised feature selection
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Randomised feature selection

Randomization

o Random feature sets selection:

o new feature subsets are generated completely at random
o does not get stuck in local optimum

o low probability to locate small optimal feature subset

e sequential procedure of feature subset creation with inserted
randomness

@ more prone to getting stuck in local optimum (though less
than deterministic)

e more efficiently locates small optimal feature subsets
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Feature subsets generation

Randomised feature selection

Randomization

@ Means of randomization:

o initialize an iterative algorithm with random initial features

e apply algorithm to sample subset

e at each iteration of sequential search look through random
subset of features

e genetic algorithms
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Feature subsets generation

Randomised feature selection

Genetic algorithms

o Each feature set F = {fi(1), fi(2), ---fik)} is represented using
binary vector [by, by, ...bp| where b; = I[f; € F]
@ Genetic operations:
o crossover(b', b%) = b, where b; = {b’; with pr.obability 2
b otherwise
bt with probability 1 — «

° mutation(bl) = b, where b; = L ) -
—b;  with probability o
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Randomised feature selection

Genetic algorithms

INPUT:
size of population B
size of expanded population B’
parameters of crossover and mutation 6
maximum number of iterations T, minimum quality change AQ

ALGORITHM:
generate B feature sets randomly: P° = {SD S9 ..S2}, set t=1
while t <=T and |Q"'— Q"' > AQ:
modify P'~! using crossover and mutation:
Pt =5'1,5",..5's = modify(P'1|9)
order transformed sets by decreasing quality:
Q(S"iw) = Qi) > - Q(S"its1)
get B best representatives:
Si S5 .S = best_representatives(P'’, B)
set next population to consist of best representatives:
t_ t t t
. P —t {fi(l)a 5:'(2)7 -~~5i(B)}
Q' = Q' (Siw)
t=t+1
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Feature subsets generation

Randomised feature selection

Modifications of genetic algorithm

o Augment Pt with K best representatives from Pi~! to
preserve attained quality

@ Allow crossover only between best representatives

@ Make mutation probability higher for good features (that
frequently appear in best representatives)

o Crossover between more than two parents

@ Simultaneously modify several populations and allow rare
random transitions between them.
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Feature subsets generation

Randomised feature selection

Other

o Feature selection using:

e L, regularization
o feature importances of trees

Compositions

o different algorithms
o different subsamples

Stability measures

o Jaccard distance: D(51,5;) = Eia‘;zl

D(S;, Sj)

o for K outputs: ﬁz,@

o Feature selection compositions yield more stable selections.
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