Feature selection

© Victor Kitov v.v.kitov@yandex.ru

Summer school on Machine Learning in High Energy Physics

in partnership with

August 2015

Feature selection

Feature selection is a process of selecting a subset of original features with minimum loss of information related to final task (classification, regression, etc.)

Applications of feature selection

• Why feature selection?

- increase predictive accuracy of classifier
- improve optimization stability by removing multicollinearity
- increase computational efficiency
- reduce cost of future data collection
- make classifier more interpretable
- Not always necessary step:
 - some methods have implicit feature selection
 - decision trees and tree-based (RF, ERT, boosting)
 - regularization

Types of features

Define f - the feature, $F=\{f_1,f_2,...f_D\}$ - full set of features, $S=F\backslash\{f\}.$

• Strongly relevant feature:

$$p(y|f,S) \neq p(y|S)$$

• Weakly relevant feature:

$$p(y|f,S) = p(y|S), \text{ but } \exists S' \subset S: p(y|f,S')
eq p(y|S')$$

Irrelevant feature:

$$\forall S' \subset S : p(y|f,S') = p(y|S')$$

Aim of feature selection

Find minimal subset $S \subset F$ such that $P(y|S) \approx P(y|F)$, i.e. leave only *relevant* and *non-redundant* features.

Refining redundant features

Consider a set of interrelated random variables $Z = \{z_1, z_2, ... z_D\}$

Definition 1

Subset S of Z is called is called a Markov blanket of z_i if $P(z_i|S, Z) = P(z_i|S)$.

- For Markov network Markov blanket consists of all nodes connected to *Y*.
- For Bayesian network Markov blanket consists of: parents, children and children other parents.

Only features from Markov blanket of y inside set $\{f_1, f_2, ..., f_D, y\}$ are needed.

Markov blanket may be found by special algorithms such as IAMB.

Specification

- Need to specify:
 - quality criteria J(X)
 - subset generation method S_1, S_2, S_3, \dots

Types of feature selection algorithms

- Completeness of search:
 - Complete
 - exhaustive search complexity is C_D^d for |F| = D and |S| = d.
 - Suboptimal
 - deterministic
 - random (deterministic with randomness / completely random)
- Integration with predictor
 - independent (filter methods)
 - uses predictor quality (wrapper methods)
 - is embedded inside classifier (embedded methods)

Classifer dependency types

filter methods

- rely only on general measures of dependency between features and output
- more universal
- are computationally efficient
- wrapper methods
 - subsets of variables are evaluated with respect to the quality of final classification
 - give better performance than filter methods
 - more computationally demanding
- embedded methods
 - feature selection is built into the classifier
 - feature selection and model tuning are done jointly
 - example: classification trees, methods with L_1 regularization.

Filter methods

Table of Contents

Filter methods

- Probability measures
- Context relevant measures

Correlation

• two class:

$$\rho(f, y) = \frac{\sum_{i} (f_{i} - \bar{f})(y_{i} - \bar{y})}{\left[\sum_{i} (f_{i} - \bar{f})^{2} \sum_{i} (y_{i} - \bar{y})^{2}\right]^{1/2}}$$

• multiclass $\omega_1, \omega_2, ... \omega_C$ (micro averaged $\rho(f, y_c) c = 1, 2, ... C.$)

$$R^{2} = \frac{\sum_{c=1}^{C} \left[\sum_{i} (f_{i} - \bar{f})(y_{ic} - \bar{y}_{c})\right]^{2}}{\sum_{c=1}^{C} \sum_{i} (f_{i} - \bar{f})^{2} \sum_{i} (y_{ic} - \bar{y}_{c})^{2}}$$

Benefits:

- simple to compute
- applicable both to continuous and discrete features/output.
- does not require calculation of p.d.f.

Filter methods

Correlation for non-linear relationship

- Correlation captures only linear relationship
- Example: $X \sim \text{Uniform}[-1, 1]$, $Y = X^2$:

$$\mathbb{E}\left\{ (X - \mathbb{E}X) \left(Y - \mathbb{E}Y \right) \right\} = \mathbb{E}\left\{ X (X^2 - \mathbb{E}X^2) \right\} \\ = \mathbb{E}X^3 - \mathbb{E}X \mathbb{E}X^2 = 0$$

• Other examples of data and its correlation:

Entropy

• Entropy of random variable Y:

$$H(Y) = -\sum_{y} p(y) \ln p(y)$$

- level of uncertainty of Y
- proportional to the average number of bits needed to code the outcome of Y using optimal coding scheme $(-\ln p(y))$ for outcome y).
- Entropy of Y after observing X:

$$H(Y|X) = -\sum_{x} p(x) \sum_{y} p(y|x) \ln p(y|x)$$

Kullback-Leibler divergence

Kullback-Leibler divergence

For two p.d.f. P(x) and Q(x) Kullback-Leibler divergence KL(P||Q) equals $\sum_{x} P(x) \ln \frac{P(x)}{Q(x)}$

- Properties:
 - defined only for P(x) and Q(x) such that $Q(x) = 0 \Rightarrow P(x) = 0$
 - $KL(P||Q) \ge 0$
 - $P(x) = Q(x) \forall x$ if and only if KL(P||Q) = 0 (for discrete r.v.)
 - $KL(P||Q) \neq KL(Q||P)$

Kullback-Leibler divergence

- Symmetrical distance: $KL_{sym}(P||Q) = KL(P||Q) + KL(Q||P)$
- Information theoretic meaning:
 - true data distribution P(x)
 - estimated data distribution Q(x)

$$KL(P||Q) = -\sum_{x} P(x) \ln Q(x) + \sum_{x} P(x) \ln P(x)$$

• *KL*(*P*||*Q*) shows how much longer will be the average length of the code word.

Mutual information

Mutual information measures how much X gives information about Y:

$$MI(X, Y) = H(Y) - H(Y|X)$$

= $\sum_{x,y} p(x,y) \ln \left[\frac{p(x,y)}{p(x)p(y)} \right]$

Properties:

- MI(X, Y) = MI(Y, X)
- $MI(X, Y) = KL(p(x, y), p(x)p(y)) \ge 0$
- $MI(X < Y) \le \min \{H(X), H(Y)\}$
- X, Y- independent, then MI(X, Y) = 0
- X completely identifies Y, then $MI(X, Y) = H(Y) \le H(X)$

Mutual information for feature selection

- Normalized variant $NMI(X, Y) = \frac{MI(X, Y)}{H(Y)}$ equals
 - zero, when P(Y|X) = P(Y)
 - one, when X completely identifies Y.
- Properties of *MI* and *NMI*:
 - identifies arbitrary non-linear dependencies
 - requires calculation of probability distributions
 - continuous variables need to be discretized

Probability measures

- Probability measures
- Context relevant measures

Filter methods

Probability measures

Probabilistic distance

Measure of relevance: $p(x|\omega_1)$ vs. $p(x|\omega_2)$

Filter methods

Probability measures

Examples of distances

Distances between probability density functions f(x) and g(x):

- Total variation: $\frac{1}{2}\int |f(x) g(x)|dx$,
- Euclidean: $\frac{1}{2} \left(\int (f(x) g(x))^2 dx \right)^{1/2}$

• Hellinger:
$$\left(\frac{1}{2}\int \left(\sqrt{f(x)}-\sqrt{g(x)}\right)^2 dx\right)^{1/2}$$

• Symmentrical KL: $\int (f(x) - g(x)) \ln \frac{f(x)}{g(x)} dx$

Distances between cumulative probability functions: F(x) and G(x):

- Kolmogorov: $\sup_{x} |F(x) G(x)|$
- Kantorovich: $\int |F(x) G(x)| dx$
- $L_p: (\int |F(x) G(x)|^p dx)^{1/p}$

Filter methods

Probability measures

Other

Multiclass extensions:

Suppose, we have a distance score $J(\omega_i, \omega_j)$. We can extend it to multiclass case using:

$$J = \max_{\omega_i, \omega_j} J(\omega_i, \omega_j)$$

$$J = \sum_{i < j} p(\omega_i) p(\omega_j) J(\omega_i, \omega_j)$$

Comparison with general p.d.f:

We can also compare $p(x|\omega_i)$ vs. p(x) using $J = \sum_{i=1}^{C} p(\omega_i) D(p(x|\omega_i), p(x))$:

• Chernoff: $J = \sum_{i=1}^{C} p(\omega_i) \left\{ -\log \int p^s(x|\omega_i) p^{1-s}(x) \right\} dx$

• Bhattacharyya:
$$J = \sum_{i=1}^{C} p(\omega_i) \left\{ -\log \int \left(p(x|\omega_i) p(x)
ight)^{rac{1}{2}} dx
ight\}$$

• Patrick-Fisher:
$$J = \sum_{i=1}^{C} p(\omega_i) \left\{ \int [p(x|\omega_i) - p(x)]^2 dx \right\}^{1/2}$$

Context relevant measures

- Probability measures
- Context relevant measures

Filter methods

Context relevant measures

Relevance in context

Individually features may not predict the class, but may be relevant together:

 $p(y|x_1) = p(y), \ p(y|x_2) = p(y), \ \text{but } p(y|x_1, x_2) \neq p(y)$

Filter methods

Context relevant measures

Relief criterion

INPUT : Training set $(x_1, y_1), (x_2, y_2),(x_N, y_N)$ Number of neighbours K Distance metric $d(x, x')$ # usually Euclidean
for each pattern x_n in $x_1, x_2,, x_N$:
calculate K nearest neighbours of the same class y_i :
$X_{s(n,1)}, X_{s(n,2)}, \dots X_{s(n,K)}$
calculate K nearest neighbours of class different from y_i :
$X_{d(n,1)}, X_{d(n,2)}, \dots X_{d(n,K)}$
for each feature f_i in $f_1, f_2, \dots f_D$:
calculate relevance $R(f_i) = \sum_{n=1}^N \sum_{k=1}^K rac{ x_n^i - x_{d(n,k)}^i }{ x_n^i - x_{s(n,k)}^i }$
OUTPUT:
feature relevances <i>R</i>

Filter methods

Context relevant measures

Cluster measures

General idea of cluster measures

Feature subset is good if observations belonging to different classes group into different clusters.

Filter methods

Context relevant measures

Cluster measures

Define:

- z_{ic} = I[y_i = ω_c], N-number of samples, N_i-number of samples belonging to class ω_i.
- $m = \frac{1}{N} \sum_{i} x_{i}, m_{c} = \frac{1}{N_{c}} \sum_{i} z_{ic} x_{i}, j = 1, 2, ... C.$
- Global covariance: $\Sigma = \frac{1}{N} \sum_{i} (x m)(x m)^{T}$,
- Intraclass covariances: $\Sigma_c = rac{1}{N_c}\sum_i z_{ic}(x_i-m_c)(x_i-m_c)^{\mathcal{T}}$
- Within class covariance: $S_W = \sum_{c=1}^C \frac{N_c}{N} \Sigma_c$
- Between class covariance: $S_B = \sum_{c=1}^{C} \frac{N_c}{N} (m_j m) (m_j m)$

Interpretation

Within class covariance shows how samples are scattered within classes.

Between class covariance shows how classes are scattered between each other.

Filter methods

Context relevant measures

Scatter magnitude

Theorem 1

Every real symmetric matrix $A \in \mathbb{R}^{n \times n}$ can be factorized as

$$A = U\Sigma U^T$$

where Σ is diagonal and U is orthogonal. $\Sigma = \text{diag}\{\lambda_1, \lambda_2, ...\lambda_n\}$ and $U = [u_1, u_2, ...u_n]$ where $\lambda_i, i = 1, 2, ...n$ are eigenvalues and $u_i \in \mathbb{R}^{n \times 1}$ are corresponding eigenvectors.

- U^T is basis transform corresponding to rotation, so only Σ reflects scatter.
- Aggregate measures of scatter tr $\Sigma = \sum_i \lambda_i$ and det $\Sigma = \prod_i \lambda_i$
- Since tr [P⁻¹BP] = tr B and det [P⁻¹BP] = det B, we can estimate scatter with tr A = tr Σ and det A = det Σ

Filter methods

Context relevant measures

Clusterization quality

- Good clustering: S_W is small and S_B, Σ are big.
- Cluster discriminability metrics:

$$Tr\{S_W^{-1}S_B\}, \frac{Tr\{S_B\}}{Tr\{S_W\}}, \frac{\det \Sigma}{\det S_W}$$

Resume

- Pairwise feature measures
 - fail to estimate relevance in context of other features
 - are robust to curse of dimensionality
- Context aware measures:
 - estimate relevance in context of other features
 - prone to curse of dimensionality

Feature subsets generation

Table of Contents

Filter methods

- 2 Feature subsets generation
 - Randomised feature selection

Feature subsets generation

Complete search with optimal solution

- exhaustive search
- branch and bound method
 - requires monotonicity property:

$$F \subset G : J(F) < J(G)$$

• when property does not hold, becomes suboptimal

Feature subsets generation

Example

29/38

Feature subsets generation

Incomplete search with suboptimal solution

• Order features with respect to J(f):

$$J(f_1) \geq J(f_2) \geq ... \geq J(f_D)$$

• select top m

$$\hat{F} = \{f_1, f_2, ..., f_m\}$$

• select best set from nested subsets: $S = \{\{f_1\}, \{f_1, f_2\}, ..., \{f_1, f_2, ..., f_D\}\}$ $\hat{F} = \arg \max I(F_1)$

$$\hat{F} = rg\max_{F \in S} J(F)$$

• Comments:

- simple to implement
- if J(f) is context unaware, so will be the features
- example: when features are correlated, it will take many redundant features

Feature subsets generation

Sequential search

- Sequential forward selection algorithm:
 - init: $k = 0, F_0 = \emptyset$
 - while *k* < *max_features*:
 - $f_{k+1} = \arg \max_{f \in F} J(F_k \cup \{f\})$

•
$$F_{k+1} = F_k \cup \{f_{k+1}\}$$

• if $J(F_{k+1}) < J(F_k)$: break

- return F_k
- Variants:
 - sequential backward selection
 - up-k forward search
 - down-p backward search
 - up-k down-p composite search
 - up-k down-(variable step size) composite search

Feature subsets generation

Randomised feature selection

2 Feature subsets generation

Randomised feature selection

Feature subsets generation Randomised feature selection

Randomization

- Random feature sets selection:
 - new feature subsets are generated completely at random
 - does not get stuck in local optimum
 - low probability to locate small optimal feature subset
 - sequential procedure of feature subset creation with inserted randomness
 - more prone to getting stuck in local optimum (though less than deterministic)
 - more efficiently locates small optimal feature subsets

Feature subsets generation Randomised feature selection

Randomization

- Means of randomization:
 - initialize an iterative algorithm with random initial features
 - apply algorithm to sample subset
 - at each iteration of sequential search look through random subset of features
 - genetic algorithms

Feature subsets generation Randomised feature selection

Genetic algorithms

- Each feature set $F = \{f_{i(1)}, f_{i(2)}, ..., f_{i(K)}\}$ is represented using binary vector $[b_1, b_2, ..., b_D]$ where $b_i = \mathbb{I}[f_i \in F]$
- Genetic operations:

• crossover
$$(b^1, b^2) = b$$
, where $b_i = \begin{cases} b_i^1 & \text{with probability } \frac{1}{2} \\ b_i^2 & \text{otherwise} \end{cases}$
• mutation $(b^1) = b$, where $b_i = \begin{cases} b_i^1 & \text{with probability } 1 - \alpha \\ \neg b_i^1 & \text{with probability } \alpha \end{cases}$

Feature subsets generation Randomised feature selection

Genetic algorithms

INPUT:

size of population Bsize of expanded population B'parameters of crossover and mutation θ maximum number of iterations T, minimum guality change ΔQ

ALGORITHM:

generate *B* feature sets randomly: $P^0 = \{S_1^0, S_2^0, ..., S_B^0\}$, set t = 1while $t \le T$ and $|Q^t - Q^{t-1}| > \Delta Q$: modify P^{t-1} using crossover and mutation: $P'^t = S'_1^t, S'_2^t, ..., S'_{B'} = \text{modify}(P^{t-1}|\theta)$ order transformed sets by decreasing quality: $Q(S'_{i(1)}) \ge Q(S'_{i(1)}) \ge ..., Q(S'_{i(B')})$ get *B* best representatives: $S_1^t, S_2^t, ..., S_B^t = \text{best_representatives}(P'^t, B)$ set next population to consist of best representatives: $P^t = \{S_{i(1)}^t, S_{i(2)}^t, ..., S_{i(B)}^t\}$ $Q^t = Q^t(S_{i(1)}^t)$ t = t + 1

Feature subsets generation Randomised feature selection

Modifications of genetic algorithm

- Augment P'^t with K best representatives from P^{t-1} to preserve attained quality
- Allow crossover only between best representatives
- Make mutation probability higher for good features (that frequently appear in best representatives)
- Crossover between more than two parents
- Simultaneously modify several populations and allow rare random transitions between them.

Feature subsets generation Randomised feature selection

Other

- Feature selection using:
 - L₁ regularization
 - feature importances of trees
- Compositions
 - different algorithms
 - different subsamples
- Stability measures
 - Jaccard distance: $D(S_1, S_2) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|}$
 - for K outputs: $\frac{2}{K(K-2)} \sum_{i < j} D(S_i, S_j)$
- Feature selection compositions yield more stable selections.