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Feature selection

Feature selection is a process of selecting a subset of original

features with minimum loss of information related to �nal task

(classi�cation, regression, etc.)
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Applications of feature selection

Why feature selection?

increase predictive accuracy of classi�er
improve optimization stability by removing multicollinearity
increase computational e�ciency
reduce cost of future data collection
make classi�er more interpretable

Not always necessary step:

some methods have implicit feature selection

decision trees and tree-based (RF, ERT, boosting)

regularization
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Types of features

De�ne f - the feature, F = {f1, f2, ...fD} - full set of features,
S = F\{f }.

Strongly relevant feature:

p(y |f ,S) 6= p(y |S)

Weakly relevant feature:

p(y |f ,S) = p(y |S), but ∃S ′ ⊂ S : p(y |f ,S ′) 6= p(y |S ′)

Irrelevant feature:

∀S ′ ⊂ S : p(y |f ,S ′) = p(y |S ′)

Aim of feature selection

Find minimal subset S ⊂ F such that P(y |S) ≈ P(y |F ), i.e. leave
only relevant and non-redundant features.
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Re�ning redundant features

Consider a set of interrelated random variablesZ = {z1, z2, ...zD}

De�nition 1

Subset S of Z is called is called a Markov blanket of zi if
P(zi |S ,Z ) = P(zi |S) .

For Markov network Markov

blanket consists of all nodes

connected to Y .

For Bayesian network Markov

blanket consists of: parents,

children and children other

parents.

Only features from Markov blanket of y inside set {f1, f2, ...fD , y} are
needed.

Markov blanket may be found by special algorithms such as IAMB.
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Speci�cation

Need to specify:

quality criteria J(X )
subset generation method S1,S2,S3, ...
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Types of feature selection algorithms

Completeness of search:

Complete

exhaustive search complexity is C d
D for |F | = D and |S | = d .

Suboptimal

deterministic
random (deterministic with randomness / completely random)

Integration with predictor

independent (�lter methods)
uses predictor quality (wrapper methods)
is embedded inside classi�er (embedded methods)
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Classifer dependency types

�lter methods

rely only on general measures of dependency between features
and output
more universal
are computationally e�cient

wrapper methods

subsets of variables are evaluated with respect to the quality of
�nal classi�cation
give better performance than �lter methods
more computationally demanding

embedded methods

feature selection is built into the classi�er
feature selection and model tuning are done jointly
example: classi�cation trees, methods with L1 regularization.
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Filter methods

Table of Contents

1 Filter methods

Probability measures

Context relevant measures

2 Feature subsets generation
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Filter methods

Correlation

two class:

ρ(f , y) =

∑
i (fi − f̄ )(yi − ȳ)[∑

i (fi − f̄ )2
∑

i (yi − ȳ)2
]1/2

multiclass ω1, ω2, ...ωC (micro averaged ρ(f , yc) c = 1, 2, ...C .)

R2 =

∑C
c=1

[∑
i (fi − f̄ )(yic − ȳc)

]2∑C
c=1

∑
i (fi − f̄ )2

∑
i (yic − ȳc)2

Bene�ts:

simple to compute
applicable both to continuous and discrete features/output.
does not require calculation of p.d.f.
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Filter methods

Correlation for non-linear relationship

Correlation captures only linear relationship

Example: X ∼ Uniform[−1, 1], Y = X 2:

E {(X − EX ) (Y − EY )} = E
{
X (X 2 − EX 2)

}
= EX 3 − EXEX 2 = 0

Other examples of data and its correlation:
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Filter methods

Entropy

Entropy of random variable Y :

H(Y ) = −
∑
y

p(y) ln p(y)

level of uncertainty of Y
proportional to the average number of bits needed to code the
outcome of Y using optimal coding scheme (− ln p(y) for
outcome y).

Entropy of Y after observing X :

H(Y |X ) = −
∑
x

p(x)
∑
y

p(y |x) ln p(y |x)
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Filter methods

Kullback-Leibler divergence

Kullback-Leibler divergence

For two p.d.f. P(x) and Q(x) Kullback-Leibler divergence

KL(P||Q) equals
∑

x P(x) ln P(x)
Q(x)

Properties:

de�ned only for P(x) and Q(x) such that
Q(x) = 0⇒ P(x) = 0
KL(P||Q) ≥ 0
P(x) = Q(x)∀x if and only if KL(P||Q) = 0 (for discrete r.v.)
KL(P||Q) 6= KL(Q||P)
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Filter methods

Kullback-Leibler divergence

Symmetrical distance: KLsym(P||Q) = KL(P||Q) + KL(Q||P)

Information theoretic meaning:

true data distribution P(x)
estimated data distribution Q(x)

KL(P||Q) = −
∑
x

P(x) lnQ(x) +
∑
x

P(x) lnP(x)

KL(P||Q) shows how much longer will be the average length
of the code word.
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Filter methods

Mutual information

Mutual information measures how much X gives information

about Y :

MI (X ,Y ) = H(Y )− H(Y |X )

=
∑
x ,y

p(x , y) ln

[
p(x , y)

p(x)p(y)

]

Properties:

MI (X ,Y ) = MI (Y ,X )

MI (X ,Y ) = KL(p(x , y), p(x)p(y)) ≥ 0

MI (X < Y ) ≤ min {H(X ),H(Y )}
X ,Y - independent, then MI (X ,Y ) = 0

X completely identi�es Y , then

MI (X ,Y ) = H(Y ) ≤ H(X )
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Filter methods

Mutual information for feature selection

Normalized variant NMI (X ,Y ) = MI (X ,Y )
H(Y ) equals

zero, when P(Y |X ) = P(Y )
one, when X completely identi�es Y .

Properties of MI and NMI :

identi�es arbitrary non-linear dependencies
requires calculation of probability distributions
continuous variables need to be discretized
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Filter methods

Probability measures

1 Filter methods

Probability measures

Context relevant measures
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Filter methods

Probability measures

Probabilistic distance

Measure of relevance: p(x |ω1) vs. p(x |ω2)
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Filter methods

Probability measures

Examples of distances

Distances between probability density functions f (x) and g(x):

Total variation: 1
2

´
|f (x)− g(x)|dx ,

Euclidean: 1
2

(´
(f (x)− g(x))2dx

)1/2
Hellinger:

(
1
2

´ (√
f (x)−

√
g(x)

)2
dx

)1/2

Symmentrical KL:
´

(f (x)− g(x)) ln f (x)
g(x)dx

Distances between cumulative probability functions: F (x)
and G (x):

Kolmogorov: supx |F (x)− G (x)|
Kantorovich:

´
|F (x)− G (x)|dx

Lp:
(´
|F (x)− G (x)|pdx

)1/p
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Filter methods

Probability measures

Other

Multiclass extensions:

Suppose, we have a distance score J(ωi , ωj).
We can extend it to multiclass case using:

J = max
ωi ,ωj

J(ωi , ωj)

J =
∑
i<j

p(ωi )p(ωj)J(ωi , ωj)

Comparison with general p.d.f:

We can also compare p(x |ωi ) vs. p(x) using

J =
∑C

i=1 p(ωi )D (p(x |ωi ), p(x)):

Cherno�: J =
∑C

i=1 p(ωi )
{
− log

´
ps(x |ωi )p

1−s(x)
}
dx

Bhattacharyya: J =
∑C

i=1 p(ωi )
{
− log

´
(p(x |ωi )p(x))

1
2 dx

}
Patrick-Fisher: J =

∑C
i=1 p(ωi )

{´
[p(x |ωi )− p(x)]2dx

}1/2
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Filter methods

Context relevant measures

1 Filter methods

Probability measures

Context relevant measures
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Filter methods

Context relevant measures

Relevance in context

Individually features may not predict the class, but may be relevant

together:

p(y |x1) = p(y), p(y |x2) = p(y), but p(y |x1, x2) 6= p(y)

corr [X ,Y ] and MI (X ,Y ) measure only individual feature

relevance.

we could estimate MI ([X1,X2, ...XK ],Y ) but for large K
p(X1,X2, ...XK ) would be inaccurate.

21/38



Kitov Victor - Feature selection

Filter methods

Context relevant measures

Relief criterion

INPUT:
Training set (x1, y1), (x2, y2), ...(xN , yN)
Number of neighbours K
Distance metric d(x , x ′) # usually Euclidean

for each pattern xn in x1, x2, ...xN:
calculate K nearest neighbours of the same class yi:

xs(n,1), xs(n,2), ...xs(n,K)

calculate K nearest neighbours of class different from yi:
xd(n,1), xd(n,2), ...xd(n,K)

for each feature fi in f1, f2, ...fD:

calculate relevance R(fi ) =
∑N

n=1

∑K
k=1

|x in−x id(n,k)|

|x in−x i
s(n,k)

|

OUTPUT:
feature relevances R
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Filter methods

Context relevant measures

Cluster measures

General idea of cluster measures

Feature subset is good if observations belonging to di�erent classes

group into di�erent clusters.
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Filter methods

Context relevant measures

Cluster measures

De�ne:

zic = I[yi = ωc ], N-number of samples, Ni -number of samples

belonging to class ωi .

m = 1
N

∑
i xi , mc = 1

Nc

∑
i zicxi , j = 1, 2, ...C .

Global covariance: Σ = 1
N

∑
i (x −m)(x −m)T ,

Intraclass covariances: Σc = 1
Nc

∑
i zic(xi −mc)(xi −mc)T

Within class covariance: SW =
∑C

c=1
Nc
N Σc

Between class covariance: SB =
∑C

c=1
Nc
N (mj −m)(mj −m)

Interpretation

Within class covariance shows how samples are scattered within

classes.

Between class covariance shows how classes are scattered between

each other.
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Filter methods

Context relevant measures

Scatter magnitude

Theorem 1

Every real symmetric matrix A ∈ Rnxn can be factorized as

A = UΣUT

where Σ is diagonal and U is orthogonal. Σ = diag{λ1, λ2, ...λn}
and U = [u1, u2, ...un] where λi , i = 1, 2, ...n are eigenvalues and

ui ∈ Rnx1 are corresponding eigenvectors.

UT is basis transform corresponding to rotation, so only Σ
re�ects scatter.

Aggregate measures of scatter trΣ =
∑

i λi and detΣ =
∏

i λi

Since tr
[
P−1BP

]
= trB and det

[
P−1BP

]
= detB , we can

estimate scatter with trA = trΣ and detA = detΣ
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Filter methods

Context relevant measures

Clusterization quality

Good clustering: SW is small and SB ,Σ are big.

Cluster discriminability metrics:

Tr{S−1W SB},
Tr{SB}
Tr{SW }

,
detΣ

detSW

Resume

Pairwise feature measures

fail to estimate relevance in context of other features
are robust to curse of dimensionality

Context aware measures:

estimate relevance in context of other features
prone to curse of dimensionality
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Feature subsets generation

Table of Contents

1 Filter methods

2 Feature subsets generation

Randomised feature selection
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Feature subsets generation

Complete search with optimal solution

exhaustive search

branch and bound method

requires monotonicity property:

F ⊂ G : J(F ) < J(G )

when property does not hold, becomes suboptimal
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Feature subsets generation

Example
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Feature subsets generation

Incomplete search with suboptimal solution

Order features with respect to J(f ):

J(f1) ≥ J(f2) ≥ ... ≥ J(fD)

select top m
F̂ = {f1, f2, ...fm}

select best set from nested subsets:
S = {{f1}, {f1, f2}, ...{f1, f2, ...fD}}

F̂ = argmax
F∈S

J(F )

Comments:

simple to implement
if J(f ) is context unaware, so will be the features
example: when features are correlated, it will take many
redundant features
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Feature subsets generation

Sequential search

Sequential forward selection algorithm:

init: k = 0, F0 = ∅
while k < max_features:

fk+1 = argmaxf∈F J(Fk ∪ {f })
Fk+1 = Fk ∪ {fk+1}
if J(Fk+1) < J(Fk): break
k=k+1

return Fk

Variants:

sequential backward selection
up-k forward search
down-p backward search
up-k down-p composite search
up-k down-(variable step size) composite search
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Feature subsets generation

Randomised feature selection

2 Feature subsets generation

Randomised feature selection
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Feature subsets generation

Randomised feature selection

Randomization

Random feature sets selection:

new feature subsets are generated completely at random

does not get stuck in local optimum
low probability to locate small optimal feature subset

sequential procedure of feature subset creation with inserted
randomness

more prone to getting stuck in local optimum (though less
than deterministic)
more e�ciently locates small optimal feature subsets
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Feature subsets generation

Randomised feature selection

Randomization

Means of randomization:

initialize an iterative algorithm with random initial features
apply algorithm to sample subset
at each iteration of sequential search look through random
subset of features
genetic algorithms
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Feature subsets generation

Randomised feature selection

Genetic algorithms

Each feature set F = {fi(1), fi(2), ...fi(K)} is represented using

binary vector [b1, b2, ...bD ] where bi = I[fi ∈ F ]

Genetic operations:

crossover(b1, b2) = b, where bi =

{
b1i with probability 1

2

b2i otherwise

mutation(b1) = b, where bi =

{
b1i with probability 1− α
¬b1i with probability α
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Feature subsets generation

Randomised feature selection

Genetic algorithms

INPUT:
size of population B
size of expanded population B ′

parameters of crossover and mutation θ
maximum number of iterations T, minimum quality change ∆Q

ALGORITHM:

generate B feature sets randomly: P0 = {S0
1 , S

0
2 , ...S

0
B}, set t = 1

while t <= T and |Qt − Qt−1| > ∆Q:

modify P t−1 using crossover and mutation:

P ′
t

= S ′
t
1, S
′t
2, ...S

′t
B′ = modify(P t−1|θ)

order transformed sets by decreasing quality:

Q(S ′
t
i(1)) ≥ Q(S ′

t
i(1)) ≥ ...Q(S ′

t
i(B′))

get B best representatives:

S t
1, S

t
2, ...S

t
B = best_representatives(P ′

t
,B)

set next population to consist of best representatives:
P t = {S t

i(1), S
t
i(2), ...S

t
i(B)}

Qt = Qt(S t
i(1))

t = t + 1
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Feature subsets generation

Randomised feature selection

Modi�cations of genetic algorithm

Augment P ′t with K best representatives from Pt−1 to

preserve attained quality

Allow crossover only between best representatives

Make mutation probability higher for good features (that

frequently appear in best representatives)

Crossover between more than two parents

Simultaneously modify several populations and allow rare

random transitions between them.

37/38



Kitov Victor - Feature selection

Feature subsets generation

Randomised feature selection

Other

Feature selection using:

L1 regularization
feature importances of trees

Compositions

di�erent algorithms
di�erent subsamples

Stability measures

Jaccard distance: D(S1,S2) = |S1∩S2|
|S1∪S2|

for K outputs: 2

K(K−2)
∑

i<j D(Si ,Sj)

Feature selection compositions yield more stable selections.

38/38


	Filter methods
	Probability measures
	Context relevant measures

	Feature subsets generation
	Randomised feature selection


