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RECAPITULATION
classification, regression
kNN classifier and regressor
ROC curve, ROC AUC



Given knowledge about distributions, we can build optimal
classifier

OPTIMAL BAYESIAN CLASSIFIER

=
p(y = 1 | x)
p(y = 0 | x)

p(y = 1) p(x | y = 1)
p(y = 0) p(x | y = 0)

But distributions are complex, contain many parameters.



QDA

QDA follows generative approach.



LOGISTIC REGRESSION

Decision function d(x) =< w, x > +w0

Sharp rule: = sgn d(x)y ̂ 



Optimizing weights  to maximize log-likelihood

LOGISTIC REGRESSION

Smooth rule:

d(x) =< w, x > +w0

(x)p+1

(x)p−1

=
=
σ(d(x))
σ(−d(x))

w, w0

 = − ln( ( )) = L( , ) → min
1
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pyi
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N ∑
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LOGISTIC LOSS
Loss penalty for single observation

L( , ) = − ln( ( )) = {xi yi pyi
xi

ln(1 + ),e−d( )xi

ln(1 + ),ed( )xi

= +1yi

= −1yi



GRADIENT DESCENT & STOCHASTIC
OPTIMIZATION

Problem: 
finding  to minimize 

 is step size 
(also `shrinkage`, `learning rate`)

w 

w ← w − η
∂
∂w

η



STOCHASTIC GRADIENT DESCENT
 = L( , ) → min

1
N ∑

i

xi yi

On each iteration make a step with respect to only one
event:

1. take  — random event from training data

2. 

i

w ← w − η
∂( , )xi yi

∂w
Each iteration is done much faster, but training process is
less stable.



POLYNOMIAL DECISION RULE
d(x) = + +w0 ∑

i

wixi ∑
ij

wijxixj

is again linear model, introduce new features:

and reusing logistic regression.

z = {1} ∪ { ∪ {xi}i xixj}ij

d(x) = ∑
i

wizi

We can add  as one more variable to dataset and
forget about intercept

= 1x0

d(x) = + =w0 ∑N
i=1 wixi ∑N

i=0 wixi



PROJECTING IN HIGHER DIMENSION SPACE
SVM with polynomial kernel visualization

After adding new features, classes may become separable.



 is projection operator (which adds new features).

Assume

and look for optimal 

We need only kernel: 

KERNEL TRICK
P

d(x) = < w, P(x) >

w = P( )∑
i

αi xi

αi

d(x) = < P( ), P(x) >= K( , x)∑
i

αi xi ∑
i

αi xi

K(x, y) =< P(x), P(y) >



Popular kernel is gaussian Radial Basis Function:

Corresponds to projection to Hilbert space.

KERNEL TRICK

K(x, y) = e−c||x−y||2

Exercise: find a correspong projection.



SVM selects decision rule with maximal possible margin.

SUPPORT VECTOR MACHINE



SVM uses different loss function (only signal losses
compared):

HINGE LOSS FUNCTION



SVM + RBF KERNEL



SVM + RBF KERNEL



OVERFITTING

Knn with k=1 gives ideal classification of training data.



OVERFITTING



There are two definitions of overfitting, which often
coincide.

DIFFERENCE-OVERFITTING
There is significant difference in quality of predictions
between train and test.

COMPLEXITY-OVERFITTING
Formula has too high complexity (e.g. too many
parameters), increasing the number of parameters drives to
lower quality.



MEASURING QUALITY
To get unbiased estimate, one should test formula on
independent samples (and be sure that no train information
was given to algorithm during training)

In most cases, simply splitting data into train and holdout is
enough.

More approaches in seminar.



Difference-overfitting is inessential, provided that we
measure quality on holdout (though easy to check).

Complexity-overfitting is problem — we need to test
different parameters for optimality (more examples through
the course).

Don't use distribution comparison to detect overfitting





REGULARIZATION
When number of weights is high, overfitting is very probable

Adding regularization term to loss function:

 = L( , ) + → min
1
N ∑

i

xi yi reg

 regularization : 
 regularization: 

 regularization: 

L2 = α |reg ∑j wj |2

L1 = β | |reg ∑j wj

+L1 L2 = α | + β | |reg ∑j wj |2 ∑j wj



,  — REGULARIZATIONSL2 L1

L2 regularization L1 (solid), L1 + L2 (dashed)



REGULARIZATIONS
 regularization encourages sparsityL1





 REGULARIZATIONSLp

=Lp ∑i wp
i

What is the expression for ?
 

But nobody uses it, even . Why?
Because it is not convex

L0
= [ ≠ 0]L0 ∑i wi

, 0 < p < 1Lp



LOGISTIC REGRESSION
classifier based on linear decision rule
training is reduced to convex optimization
other decision rules are achieved by adding new features 
stochastic optimization is used
can handle > 1000 features, requires regularization
no iteraction between features



[ARTIFICIAL] NEURAL NETWORKS
Based on our understanding of natural neural networks

neurons are organized in networks
receptors activate some neurons, neurons are activating
other neurons, etc.
connection is via synapses



STRUCTURE OF ARTIFICIAL FEED-
FORWARD NETWORK



ACTIVATION OF NEURON

Neuron states: n = { 1,
0,

activated
not activated

Let  to be state of  to be weight of connection between 
-th neuron and output neuron:

ni wi
i

n = { 1,
0,

> 0∑i wini

otherwise∑i

Problem: find set of weights, that minimizes error on train
dataset. (discrete optimization)



SMOOTH ACTIVATIONS:
ONE HIDDEN
LAYER

= σ( )hi ∑
j

wijxj

= σ( )yi ∑
i

vijhj



VISUALIZATION OF NN



NEURAL NETWORKS
Powerful general purpose algorithm for classification and
regression
Non-interpretable formula
Optimization problem is non-convex with local optimums
and has many parameters 
Stochastic optimization speeds up process and helps not to
be caught in local minimum.
Overfitting due to large amount of parameters 

 — regularizations (and other tricks),L1 L2



 MINUTES BREAKx



DEEP LEARNING
Gradient diminishes as number of hidden layers grows.
Usually 1-2 hidden layers are used.

But modern ANN for image recognition have 7-15 layers.





CONVOLUTIONAL NEURAL NETWORK





DECISION TREES
Example: predict outside play based on weather conditions.





DECISION TREES: IDEA



DECISION TREES



DECISION TREES



DECISION TREE
fast & intuitive prediction
building optimal decision tree is 
building tree from root using greedy optimization 

each time we split one leaf, finding optimal feature and
threshold
need criterion to select best splitting (feature, threshold)

NP complete

https://people.csail.mit.edu/rivest/HyafilRivest-ConstructingOptimalBinaryDecisionTreesIsNPComplete.pdf


SPLITTING CRITERIONS
 TotalImpurity = impurity(leaf ) × size(leaf )∑leaf

Misclass.
Gini

Entropy

=
=
=

min(p, 1 − p)
p(1 − p)
− p log p − (1 − p) log(1 − p)



SPLITTING CRITERIONS
Why using Gini or Entropy not misclassification?



REGRESSION TREE
Greedy optimization (minimizing MSE):

GlobalMSE ∼ ( −∑i yi y ̂ i)2

Can be rewritten as:

GlobalMSE ∼ MSE(leaf) × size(leaf)∑leaf

MSE(leaf) is like 'impurity' of leaf

MSE(leaf) = ( −1
size(leaf) ∑i∈leaf yi y ̂ i)2













In most cases, regression trees are optimizing MSE:

GlobalMSE ∼ ( −∑
i

yi y ̂ i)
2

But other options also exist, i.e. MAE:

GlobalMAE ∼ | − |∑
i

yi y ̂ i

For MAE optimal value of leaf is median, not mean.



DECISION TREES INSTABILITY
Little variation in training dataset produce different
classification rule.



PRE-STOPPING OF DECISION TREE
Tree keeps splitting until each event is correctly classified.



PRE-STOPPING
We can stop the process of splitting by imposing different
restrictions.

limit the depth of tree
set minimal number of samples needed to split the leaf
limit the minimal number of samples in leaf
more advanced: maximal number of leaves in tree

Any combinations of rules above is possible.



no prepruning max_depth

min # of samples in leaf maximal number of leaves



POST-PRUNING
When tree tree is already built we can try optimize it to
simplify formula.

Generally, much slower than pre-stopping.







SUMMARY OF DECISION TREE
1. Very intuitive algorithm for regression and classification
2. Fast prediction
3. Scale-independent
4. Supports multiclassification

But

1. Training optimal tree is NP-complex
2. Trained greedily by optimizing Gini index or entropy (fast!)
3. Non-stable
4. Uses only trivial conditions



MISSING VALUES IN DECISION TREES

If event being predicted lacks , we use prior probabilities.x1



FEATURE IMPORTANCES

Different approaches exist to measure importance of feature
in final model

Importance of feature  quality provided by one feature≠



FEATURE IMPORTANCES
tree: counting number of splits made over this feature
tree: counting gain in purity (e.g. Gini) 
fast and adequate
common recipe: train without one feature, 
compare quality on test with/without one feature

requires many evaluations

common recipe: feature shuffling 

take one column in test dataset and shuffle them. Compare
quality with/without shuffling.



THE END
Tomorrow: ensembles and boosting


