Beam-beam simulations for FCC-ee (tt)

D. Zhou

Acknowledgements: K. Ohmi and K. Oide

8th FCC-ee Optics Design meeting, Aug. 21, 2015

Outline

Introduction

- Lattice designed by K. Oide
- Lattice version: FCCee_t_42_{3,4a}_cw.sad

> Motivations

- Beam-beam issues
- Interplay of beam-beam and lattice nonlinearity

Beam-beam simulations

- BBWS: Weak-strong with linear map
- SAD: Weak-strong with realistic lattice

> Summary

1. Parameters for half ring

C (km)	49019.4	49009.9
E (GeV)	175	175
Number of IPs	1	1
№	51	51
N _p (10 ¹¹)	2.6	2.6
Full crossing angle(rad)	0.03	0.03
ε _x (nm)	2	2
ε _y (pm)	2	2
β _x * (m)	1	1
β _y * (mm)	1	2
σ _z (mm) ^{sr} [BS ¹⁾]	2.39 [3.13]	2.39 [3.13]
σ _δ (10 ⁻³) ^{SR} [BS ¹)]	1.33 [1.74]	1.33 [1.74]
Betatron tune v_x/v_y	162.52/163.57	162.52/163.57
Synch. tune Vs	0.0472	0.0472
Damping rate/turn (10 ⁻²) [x/y/z]	0.942/0.942/1.857	0.942/0.942/1.857
Geometric Lum./IP(10 ³⁴ cm ⁻² s ⁻¹)	2.4 [2.0]	2.0 [1.7]

¹⁾Ref. K. Ohmi, THPRI004, IPAC'14 (Eq. (5))

2. BBWS simulations

BBWS developed by K. Ohmi

- Crab waist (CW) transform for weak beam
- No CW for strong beam

• Beamstrahlung included. For symmetric beams, the bunch length is also updated for the strong beam, but transverse beam sizes not updated.

2. BBWS simulations: Lum. tune scan

w/o CW w/o BS (Black dot indicates [.52,.57]) β_y*=1mm

2. BBWS simulations: Lum. tune scan (cont.) w/o CW w/ BS (Black dot indicates [.52,.57])

• $\beta_v^* = 1$ mm

1

2. BBWS simulations: Lum. tune scan (cont.) ➤ w/ CW w/o BS (Black dot indicates [.52,.57]) ● β_v*=1mm

2. BBWS simulations: Lum. tune scan (cont.) ➤ w/ CW w/ BS (Black dot indicates [.52,.57]) ● βy*=1mm

2. BBWS simulations: Lum. tune scan

w/o CW w/o BS (Black dot indicates [.52,.57]) β_y*=2mm

2. BBWS simulations: Lum. tune scan (cont.) w/o CW w/ BS (Black dot indicates [.52,.57])

10

• β_y*=2mm

2. BBWS simulations: Lum. tune scan (cont.) ➤ w/ CW w/o BS (Black dot indicates [.52,.57]) ● β_v*=2mm

2. BBWS simulations: Lum. tune scan (cont.) ➤ w/ CW w/ BS (Black dot indicates [.52,.57]) ● βy*=2mm

2. BBWS simulations: Specific luminosity

Conditions:

- w/ and w/o crab waist (CW)
- w/ and w/o beamstrahlung (BS)
- Working point: [.52, .57]
- Cyan line indicates geometric luminosity

2. BBWS simulations: Specific luminosity (cont.)

14

Corresponding beam parameters [rms values]

- β_y*=1mm
- BS correlates trans. and long. emittances
- BB resonances enhance trans.-long. coupling

2. BBWS simulations: Specific luminosity (cont.)

Corresponding beam parameters [rms values]

- β_y*=2mm
- Lum. ~8% higher than β_y^* =1mm at NP=2.6E11 w/ CW w/ BS

2. BBWS simulations: Lum. Scan

> Compare $\beta_y^* = 1$ mm and $\beta_y^* = 2$ mm (NP=2.6E11)

16

• β_y*=1mm (w/ CW w/ BS):

• β_y*=2mm (w/ CW w/ BS):

2. BBWS simulations: Beam tail

> Compare $\beta_y^* = 1$ mm and $\beta_y^* = 2$ mm

• β_y*=1mm (w/ CW w/ BS):

• β_y*=2mm (w/ CW w/ BS):

2. BBWS simulations: Beam tail

Compare w/ and w/ CW (NP=2.6E11)

• β_y*=1mm (w/ BS):

• β_y*=2mm (w/ BS):

3. Interplay of BB and latt. nonlin.

> SAD element-by-element tracking options:

• Case-1: Damping/excitation lumped at IP (similar to BBWS): beam always unstable

$$M = M_{\rm RAD} \circ M_{\rm BB} \circ M_0$$

• Case-2: Damping/excitation lumped at FRF: beam reaches equilibrium, instability appear at high current

 $M = M_{\rm RAD} \circ M_{\rm IP \rightarrow FRF} \circ M_{\rm BB} \circ M_{\rm FRF \rightarrow IP}$

• Case-3: Damping/excitation turned on at each element: beam unstable even w/o BB

• Case-4: Damping turned on at each element and excitation lumped at FRF: beam might be unstable w/ BB [depend on tune?]

> Lumped damping/excitation:

$$\vec{x} = (x, p_x, y, p_y, z, \delta)^T$$

$$\vec{X} = M_{p2n}\vec{x}$$

$$\vec{\lambda} = (1 - D_x, 1 - D_x, 1 - D_y, 1 - D_y, 1 - D_z, 1 - D_z)$$

$$\vec{r} = \text{GaussRandom}[6]^T$$

$$\vec{\beta}_D = \sqrt{2(\epsilon_x D_x, \epsilon_x D_x, \epsilon_y D_y, \epsilon_y D_y, \epsilon_z D_z, \epsilon_z D_z)}$$

$$\vec{X}_1 = \vec{\lambda} \cdot \vec{X}_0 + \vec{\beta}_D \cdot \vec{r}$$

$$\vec{x}_1 = M_{p2n}^{-1}\vec{x}_0$$

Turn-by-turn rms beam sizes: β_y*=1mm, NP=2.6E11, ν_x/ν_y=162.52/163.57

Red: Case-4 w/o BB Green: Case-4 w/ BB Blue: Case-2 w/ BB Magenta: Case-2 w/o BB Cyan: Nominal value

Beam tail:

A_x

 $\beta_v^* = 1$ mm, NP=2.6E11, $v_x/v_v = 162.52/163.57$

A_x

Ax

Turn-by-turn rms beam sizes (Case-2): β_y*=1mm, NP=0.01-4E11, v_x/v_y=162.52/163.57

Beam tail (Case-2):

 $\beta_y^* = 1$ mm, NP=0.01-4E11, $v_x/v_y = 162.52/163.57$

0 0

A_x

Turn-by-turn rms beam sizes (Case-2):
β_y*=2mm, NP=0.01-4E11, v_x/v_y=162.52/163.57

Specific luminosity (Case-2):

 $\beta_y^* = 1/2$ mm, NP=2.6E11, $v_x/v_y = 162.52/163.57$

• Almost no (or tiny) interplay of BB and LN?

• A realistic machine has more LN (or imperfections) when going to the engineering stage

Beam tail (Case-2, w/ CW w/o BS):

 $\beta_y^* = 1$ mm, NP=2.6E11, $v_x/v_y = 162.52/163.57$:

27

$\beta_y^* = 2mm$, NP=2.6E11, $v_x/v_y = 162.52/163.57$:

4. Summary

BBWS simulations

- Optimal working point likely to be around [.51,.56]
- β_y^* =2mm gives better lum. than β_y^* =1mm
- β_y^* =1mm shows larger good lum. area in the tune space than β_y^* =2mm
 - CW suppresses beam tail, and no lum. gain
- SAD simulations

 No significant loss of lum. or beam tail due to interplay of BB and LN

 Beam loss observed with element-by-element damping/ excitation, or with high beam current (to be understood)