
2006 Cenix BioScience GmbH

Design by Contract in Python: Present and Future

Aaron Bingham
bingham@cenix-bioscience.com

 



2 006 Cenix BioScience GmbH

®What is DbC?

Big Idea:

Formally document client and provider 
responsibilities, and have the system 

automatically check the 
documentation against the 

implementation.



2 006 Cenix BioScience GmbH

®

Why DbC?

• Documentation quality
• precision and accuracy

• Implementation quality
• DbC complements testing
• Simpler code through clear responsibilities
• Fewer defensive programming checks reduces code size and error 

rate
• Supports design and design-implementation transition



2 006 Cenix BioScience GmbH

®Principles

• Contracts are part of the system documentation
• Contracts are written as logical assertions about program behavior
• Contracts are verified automatically (usually at runtime)



2 006 Cenix BioScience GmbH

®Assertions: the 3 contractual forms

• Preconditions
• Define client responsibilities
• Checked before method execution
• ORed with superclass preconditions
• May only be weakened by subclasses

• Postconditions
• Define provider responsibilities
• Checked after method execution
• ANDed with superclass postconditions
• May be strengthend by subclasses

• Class invariants
• Define class-internal consistency constraints
• Checked before and after qualified (inter-object) calls
• Checked after call even when exceptions are raised



2 006 Cenix BioScience GmbH

®Assertions: additional forms

• Loop invariants
• Loop variants: check for termination
• Checks: Equivalent to Python's assert statement.
• Useful, but have nothing to do with contracts per se



2 006 Cenix BioScience GmbH

®OLD

• Initial values of instance and arguments are saved.
• Allows checking for correct state transitions in postconditions



2 006 Cenix BioScience GmbH

®Example: a stack using Logilab Aspects

•Abstract data type (stack.adt)
•Abstract base class with contract (stack.py)
•Concrete implementation (stack.py)



2 006 Cenix BioScience GmbH

®Specifications and implementations 

• Bertrand Meyer, Eiffel programming language
• The original

• Terrence Way, PEP 316 / Contracts for Python
• Uses contracts embedded in docstrings

• Logilab Aspects
• Includes contract aspect
• Broadly similar to PEP 316

• Reinhold Plösch, Design by Contract for Python
• Paper, implementation not available

• Daniel Arbuckle, PyDBC
• Uses metaclasses

• Dmitry Dvoinikov, IPDBC
• Uses common base class



2 006 Cenix BioScience GmbH

®Implementation comparison

Feature Eiffel Contract Aspects Plösch IPDBC PyDBC
OLD yes (3) yes (1) yes (2) yes (2) no no
Return values yes yes yes ? yes no (4)
Parameters in postcondition yes yes yes yes yes no (4)
Precondition strengthening yes yes yes ? no no
Violations raise exceptions yes yes yes no (7) yes yes
Contracts visible in docs yes yes yes yes no no
Private assertions hidden in docs yes no no no n/a n/a
Named assertions yes no no no no no
Private attribute names n/a no (4) no (4) ? yes yes
Module and function contracts n/a (5) yes yes no no no
Integrated type checking n/a (6) no no yes no no

(1) Shallow copies of explicitly listed values
(2) Deep copies
(3) Copy depth depends on storage declarations
(4) Support could be added relatively easily
(5) Every function and every variable in Eiffel must be part of some class
(6) Eiffel is statically typed
(7) Violations are logged to a file



2 006 Cenix BioScience GmbH

®Conclusions: state of implementations

• A solution using decorators would be interesting for comparison
• Only Contract and Aspects are workable solutions right now
• Both have similar bugs in inheritance handling; both should be 

fixable.
• Both need support for transparent private-attribute name-mangling
• Aspects needs to at least indicate the line number of the failing 

assertion



2 006 Cenix BioScience GmbH

®Conclusions: required support

• Documentation tools: hide assertions involving private and protected 
attributes

• Need a tool to control contract checking at package, module, class, 
and method level without editing affected module

• We're not far off!



2 006 Cenix BioScience GmbH

®References

• Arbuckle, Daniel; PyDBC; http://www.nongnu.org/pydbc/
• Dvoinikov, Dimitry; Yet Another Design by Contract Module for 

Python; 
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/436834

• Logilab; Aspects; http://www.logilab.org/projects/aspects
• Meyer, Bertrand; Object-Oriented Software Development, 2nd Edition
• Plösch, Reinhold; Design by Contract for Python; 

http://www.google.de/url?sa=U&start=1&q=http://www.swe.uni-linz.ac.at/publications/abstract/TR-SE-97.24
• Way, Terrence; Contracts for Python; 

http://www.wayforward.net/pycontract
• Way, Terrence; PEP 316 – Programming by Contract for Python; 

http://www.python.org/dev/peps/pep-0316/

http://www.nongnu.org/pydbc/
http://www.logilab.org/projects/aspects
http://www.wayforward.net/pycontract
http://www.python.org/dev/peps/pep-0316/

