
An Introduction to PyPy

Michael Hudson mwh@python.net
Heinrich-Heine-Univeristät Düsseldorf

 EuroPython 2006
 CERN, Geneva

What is PyPy?

• PyPy is:

• An implementation of Python

• A very flexible compiler framework,
targeted at interpreters

• An open source project (MIT license)

• A STREP (“Specific Targeted REsearch
Project”), partially funded by the EU

• A lot of fun!

Demo

• We can currently produce a binary that
looks very much like CPython to the user

• It’s not that fast (around the same speed as
Jython)

• Can also produce binaries that are more
capable than CPython – with stackless-style
coroutines, with logic variables, ...

Motivation

• PyPy grew out of a desire to modify/extend
the implementation of Python, for example to:

• increase performance (psyco-style JIT
compilation, better garbage collectors)

• add expressiveness (stackless-style
coroutines, logic programming)

• ease porting (to new platforms like the
JVM or CLI or to low memory situations)

Lofty goals, but
first...

• CPython is a fine implementation of Python
but:

• it’s written in C, which makes porting to,
for example, the CLI hard

• while psyco and stackless exist, they are
very hard to maintain as Python evolves

• some implementation decisions are very
hard to change (e.g. refcounting)

Enter the PyPy
platform
Specification of the Python language

Compiler Framework

Python
with JIT

Python
running on JVM

Python for an
embedded device

Python with
transactional memory

Python just the way
you like it

How do you specify
the Python language?

• The way we did it was to write an
interpreter for Python in RPython – a subset
of Python that is amenable to analysis

• This lets us write unit tests for our
specification/implementation that run on top
of CPython

• Can also test entire specification/
implementation in same way

The “What is
RPython?” question

• Restricted Python, or RPython, first and
foremost is Python

• It is a subset of Python that is static enough
– after initialization code has run – for our
analysis tools to cope with

• Somewhat Java-like – classes, methods, no
pointers, no operator overloading, but with
function pointers

The “What is
RPython?” question

• The definition of RPython is basically “what
our compiler can analyze” – so changes
(slowly) as toolchain does

• The property of “being RPython” belongs to
entire programs and not, say, functions or
modules because the annotator performs a
global analysis

Translation Aspects

• Our Python implementation is very high
level

• One of our Big Goals is to produce our
customized Python implementations without
compromising on this point

• We do this by weaving in so-called
‘translation aspects’ during the compilation
process

Compiler Framework

Flow Analysis

Annotator

RTyper

Backend

In more detail…

Standard Interpreter

Standard Object Space

Parser/Compiler

Bytecode Evaluator

written in RPython

written in full Python

Standard Interpreter

Standard Object Space

Parser/Compiler

Bytecode Evaluator

The Standard
Interpreter

The standard interpreter
does roughly speaking the

same job as CPython
does, and is split into three

chunks

CPython can be split along
the same lines with enough

imagination – hardly a
coincidence!

Standard Interpreter

Standard Object Space

Parser/Compiler

Bytecode Evaluator

The Standard
Interpreter

The bytecode evaluator
evaluates the same

bytecodes as CPython but
treats objects as black

boxes – it doesn’t care if
they are Python-like

values, abstract Variables
or even fruit

2 + 3 = 5

Variable + Constant = Variable
+ =

Standard Interpreter

The Standard
Interpreter

The Standard Object Space
implements objects that

look very much like
CPython’s – integers, lists,
dictionaries, classes, etc

(it’s a bit different on the
inside though)

Standard Object Space

Parser/Compiler

Bytecode Evaluator

Standard Interpreter

The Standard
Interpreter

The parser and compiler,
perhaps predictably, parses
Python code and compiles
it – to the same bytecode

as CPython uses

Will sometime soon allow
runtime modification of

the grammar of the
language

Standard Object Space

Parser/Compiler

Bytecode Evaluator

Standard Interpreter

Standard Object Space

Parser/Compiler

Bytecode Evaluator

The Standard
Interpreter

The standard interpreter is
pretty stable now,

implementing Python 2.4.3
(and some 2.5 features),

Some work to come on
the parser/compiler and
logic variable integration

Compiler
Framework

Flow Object Space

Annotator

RTyper

Backend

Compiler Framework

Flow Analysis

Annotator

RTyper

Backend

Compiler Framework

Flow Analysis

Annotator

RTyper

Backend

Compiler
Framework

Analyzes a single code
object to deduce control

flow

We have a funky pygame
flow graph viewer that we

use to view these flow
graphs

Compiler Framework

Flow Analysis

Annotator

RTyper

Backend

Compiler
Framework

Analyzes an entire
program to deduce type
and other information

Uses abstract
interpretation,

rescheduling and other
funky stuff

Compiler Framework

Flow Analysis

Annotator

RTyper

Backend

Compiler
Framework

Uses the information
found by the annotator to
decide how to lay out the
types used by the input
program in memory, and

translates high level
operations to lower level

more pointer-ish
operations

Compiler Framework

Flow Analysis

Annotator

RTyper

Backend

Compiler
Framework

Translates low level
operations and types from
the RTyper to (currently)

C, JavaScript or LLVM
code

Sounds like it should be
easy, in fact a bit painful

The Flow Model

• Flow analysis converts Python code (well,
bytecode) to data structures representing
control flow

• A few examples of expressions:

• c = a + b → v_c = add(v_a, v_b)

• z = x.y → v_z = getattr(v_x,“y”)

• t = f(u) → v_t = simple_call((f), v_u)

The Annotator

• Type annotation is a fairly widely known
concept – it associates variables with
information about which values they might
take at run time

• An unusual feature of PyPy’s approach is that
the annotator works on live objects

• This means it never sees initialization code,
so that can use exec and other insane tricks

The Annotator

• Does not modify the graphs; end result is
essentially a big dictionary mapping Variables
to information about what values that
Variable can take

• Read “Compiling dynamic language
implementations” on the web site for more

The RTyper

• RTyper takes as input an annotated RPython
program (e.g. our Python implementation)

• Performs “representation selection” and
converts high-level operations to low-level

• Potentially can target a C-ish, pointer-using
language or an OO language like Java or
Smalltalk with classes and instances (OO
backend not yet complete)

The Backend(s)

• Maintained backends: C, JavaScript, CLI/.NET
and LLVM (Smalltalk and Common Lisp
present but less active)

• All proceed in two phases:

• Traverse the forest of rtyped graphs,
computing names for everything

• Spit out the code

Status – what works

• The Standard Interpreter very nearly
complete

• The compiler framework:

• Produces standalone binaries

• C and LLVM backends well supported

• JavaScript backend works, but not for all of
PyPy

Status – what works

• The C backend supports three garbage
collection strategies:

• reference counting
• using the conservative Boehm-Demers-

Weiser collector
• a precise mark and sweep collector

written in Python

• “rctypes”, a way of using ctypes to interface
to arbitrary libraries in RPython programs

Status – what works

• The C backend supports “stackless” features
– coroutines, tasklets, recursion only limited
by RAM

• Can use OS threads with a simple “GIL-
thread” model

• Our Python specification/implementation
has remained free of all these
implementation decisions!

What we’re
working on now
• The Just-In-Time compiler – early stages,

works for a very simple language

• Logic programming – some working code,
interface and integration in progress

• Implementing more extension modules

• CLI (.NET) backend

• Optimizations

About the project

• Open source, of course (MIT license)

• Distributed – the 12 paid developers live in
6 countries, contributers from more

• Sprint driven development – focussed week
long coding sessions every ~6 weeks

• Extreme Programming practices: pair
programming, test-driven development

“We’re Hiring!”

• In the open source sense:

• Read documentation:

 http://codespeak.net/pypy/

• Come hang out in #pypy on freenode, post
to pypy-dev

• Sprinting after the conference! (join pypy-
sprint, say hi on that list)

