

Outline

The lonely, masochistic world of radio astronomical
observations

Calibration: putting the toothpaste back in the tube

Donald Rumstfeld's strange but lucrative modelling
career

MeqTrees: models gone wild

A large snake saves the world

Optical Telescopes:
Point & Click?

NGC 346 in the Small Magellanic Cloud
Hubble Space Telescope ¢ ACS

NASA, ESA and A. Nota (STScl) STScl-PRC05-04

Radio Telescopes:
Point & what's the point?

Radio Telescope

" Incoming

/ Radic Waves

Radio waves reflect
off the dish and

focus at the tip.

Receivers amplify and detect
radio signals.

mwwwwwwmwwmwwwww

all-sky map of neutral hydrogen (A=21cm)

Observing In
The Fourier Plane

Fourier

P

transform

\

N

2N

Isomorphism!

F(u,v):ff f(x,y)exp(—2mi(ux+vy))dxdy

A Simple Radio Interferometer

* A correlator multiplies and
integrates signals from two
dishes

e Samples one point in the uv
plane.

A
v

Covering The UV Plane

AT
vy 5 N
Y B

e | et the Earth do the hard work!

A multi-wavelength, multi-scale tour of NGC253

image: Emil Lenc (Swinburne U., Australia)

* resolution of a single telescope: wavelength / diameter
e HST: d=2.4m, A=475nm: resolution ~ 0.05"
(1" = 1€/ 4km)

* resolution of interferometer: wavelength / baseline
e compact radio array (WSRT, VLA):

A=21cm, b=2km: resolution ~ 20"
* VLBI:

A=3mm, b=10000km: resolution ~ 0.00006 " 1!

I Calibration: Living With Observational
I Errors

SPLAT!

LI | LI |
1 LI |
11 L |
1 (W)
1]]]
| N

]

A\ o baseline(t) /T

L correlator J

* Phase errors change the
apparent “sky position”

Errors In the UV Plane:
Tangled Up (In Blue)

Fourier

P

transform

isomorphism!

 Fourier transform (& inverse) is an integration
* Error at any uv point affects the entire image
* Signal at any image point affects the entire uv plane

A Hidden Splat

colormap range: colormap range:
0~05Jy +1.5 mJy

Putting The Toothpaste
Back In The Tube

* make a combined model of the
bright sources + instrumental
errors

* fit model to data

* subtract best-fitting model from
data and look for residual signal

* dynamic range = ratio between
brightest and faintest detectable
signal

Left: residuals after fitting

a Oth-order model
colormap: £5 mdy
dynamic range: 1:100

Putting The Toothpaste
Back In The Tube

B . image is dominated by “crud”
(i.e. signal from the bright
sources that is unaccounted for
by the model)
¥ * dynamic range limited by level
of crud

& ° by improving the model we
increase the D/R

rans
.

| Left: residuals after fitting
B a linear model

colormap: £0.2 mJy
D/R: 1:2500

Putting The Toothpaste
Back In The Tube

& ° image Is dominated by “crud”

d (i.e. signal from the bright
sources that is unaccounted for
| by the model)

= * dynamic range limited by level
of crud

& * by improving the model we
increase the D/R

B [eft: residuals after fitting
8 a 2nd-order model

e colormap: 10 pdy
@ D/R: 1:50,000

Putting The Toothpaste
Back In The Tube

I image is dominated by “crud’
5 i (i.e. signal from the bright
sources that is unaccounted for
g8 by the model)
& = - dynamic range limited by level
& s of crud

&= Dby improving the model we
8= increase the DR

N Left: residuals after fitting
8 a 3rd-order model

S e Colormap: £0.2 py
00 e D/R:1:2,500,000

Putting The Toothpaste
Back In The Tube

| * Image is dominated by “crud’

(i.e. signal from the bright

sources that is unaccounted for

My brain hurts! by the model)

* dynamic range limited by level
of crud

* by improving the model we
increase the D/R

o V-

-::"_: - - - o o
7“ < ~. W 2{ 2 ‘
\
P - &= }
-
\ ’.‘3‘ !
§ -

Left: residuals after fitting
a 4th-order model

colormap: +10 ndy
8 D/R: 1:50,000,000

Putting The Toothpaste
Back In The Tube

* mage is dominated by “crud’
(i.e. signal from the bright
sources that is unaccounted for

My brain hurts! by the model)

9
e L
- ’?‘z.‘--:’\
R L .
> T @ =
14
/

* dynamic range limited by level
of crud

* by improving the model we
increase the D/R

.

\

{ i
L] —
{ (&

-

e
§ Left: residuals after fitting
SLT a 5th-order model

colormap: =10 ndy
D/R: 1:50,000,000

H.M. GOVERMNMMEMNT
PURLIC SERVICE FILMS

N¢42 HOW NOT TO BE SEEN

The Past:
Beautiful Engineering

The Future:
Just Plain Wierd

..And Weirder

/“MODELLING

The Modelling Conundrum

"... there are known knowns; there are things we
know we know. We also know there are known
unknowns; that is to say we know there are some
things we do not know. But there are also unknown
unknowns -- the ones we don't know we don't know.
-- Donald Rumsfeld, on the calibration of radio
astronomical data

)

MeqgTrees aka Timba:
A Modelling Toolkit

-9

U RS
N (,'..'

2k
8 3.3
):HESA .{UMEEE}HCK |

AND HE'S OKAY 2

I The Measurement Equation

R.R' = Gp.Go |EnE! ﬂ_i(rﬁi"_rj’ﬁﬂ)+ﬂ*" Ep.Er E_i(rﬁ#f"m-‘)+
%k = Y Rj“ Rk R';r RE® L e

J X J.

IFI’J‘ ('}j—l"}k)
Dp;EL;ERye +DR;DRkEL;EL;f

") % - | L —a(rfijﬁ—rjk) . o 5 _I(r;}j—rjﬁ)

6501

DpiEriELe + DR;DLRELERpe

MeqTrees = Expressions

f(o,0)

1 requests: an N-dimensional gridding
X,V

4 results: the value of some (scalar or
tensor) function F over the given grid:

F(x,y)

o tree: builds compound function from
primitive building blocks.

F(x,y)=f(a(x,y),b(x,y)+c(x,y))

Parm “A”:
a0+a1x+azy

Parm “B”:
b0+b1x2y2

Function “f”:
f(o,o)

F(x,y;a,b) g

F(x,y;a,b)=f(A(x,y;a),B(x,y; b))

Derivatives For Free

Solving For Parameters

F(x,y;c)

(x,y;c) ...

parm parm parm
model
predict

parm update: d¢

CondEq

conditioning equation

—>

!

Solver

Spigot

observed data

Other MeqTree Features

Computational kernel (node classes, etc.) written in C++.

Policy free!
— Nodes know nothing about radio astronomy.
— All domain-specific policy emerges from the tree structure.

Local intelligence
— Cache and reuse results, minimize computations, etc.

Reasonably fast
— within a factor of 2 of specifically optimized code.

Multithreaded: in the future distributed.

Runaway Complexity

My brain hurts!

Infinite flexibility brings infinite
complexity.

Real-life trees: 1000 ~ 20000 ~ 1 million
nodes.

Complexity-wise, same problems as very
large computer programs really.

...but very different in nature.

How to construct?

How to run, examine, test and debug?

TDL: Declaring Trees

b 1 * TDL = Tree Definition Language
* Implemeted in terms of Python
classes and operator methods.

L ns.F = Meq . Pow (- | Python
ns.a << Meqg.Parm,
(ns.b << Meqg.Parm(shape=(2,))) + 1
) i
ns.a = Meqg.Parm
F(x,y)=a(x,y)P*Vt ns.b = Meqg.Parm(shape=(2,))
ns.c =1
ns.F = Meqg.Pow(ns.a,ns.b+ns.c)

I TDL: Programming Trees

* Most trees have a regular, repetitive structure.
I Usually, you want to create a bunch of subtrees that look
the same, but have different node names.

* E.g. a calibration tree:
— Identical trees to implement the Measurement Equation per
each baseline (pair of antennas)
— similar trees to implement instrumental effects per each
antenna
— similar trees to implement models per sky source.

* We want for loops and if-else statements.

TDL: Programming Trees

“sky:1:2” « Lo
Add J:2
“J.-l ” “Jt:z”
' ConjTranspose
“predict:1:2”
MatrixMultiply

for antl,ant2 in baseline list:

VikZZ J, ank

* Use node qualifiers and
loops to create identical
subtrees.

ns.predict(antl,ant2) << Meq.MatrixMultiply(

ns.J(antl),

ns.sky(antl,ant2) << Meq.Add(*[ns.source(src,antl,ant2)

for src in source list]),

ns.Jt(ant2) << Meq.ConjTranspose(ns.J(ant2)));

TDL: Modularity

def make antenna phase model (Jnode):
for ant in antenna list:
px = Jnode(ant, 'phase','x') << Meq.Parm;
py = Jnode(ant, 'phase','y') << Meqg.Parm;
Jnode (ant) << Meqg.Matrix22(Meqg.Polar(l,px),0,
0,Meq.Polar(1l,py));

pass;

create nodes for antenna J terms, J =
name them “J:<ant>"
make antenna phase model(ns.J);

* An unqualified node can refer to a group of nodes as a whole.
» Easy to pass around collections of nodes.
* ...and of course “normal” Python structures can also be used.

TDL: Object-Orientedness

Direction
M RA, Dec
SkyComponent
X
visibility(nodes): None | ="
PointSource Patch

GaussianSource

Abstract class to model a
source on the sky.

Abstract method to create trees
for visibility predictions.
Subclasses implement specific
kinds of source models.

Hides specifics of source
models.

I TDL: Summary

* TDL: molding Python into a domain language.
I * Provides a simple syntax for declaring trees.

* |everages all the power of Python
— control structures & functions
— modules, packages -> code reuse
— object-orientedness

» Keeps the “messy stuff” (model definition and policy) in
the scripting domain.

» Keeps the “heavy lifting” (computations) in the C++
domain.

* Quantum jump in our ability to build MeqgTrees.

Fun (and Dangerous)
Things To Do With Trees

* |nterfacing to datasets

* Specifying run-time parameters
* Controlling execution

e Examining status

* Visualizing results

* Debugging a tree

 Batch operation, testing

This image is approved by Mr. Donald Rumsfeld

Embracing The Snake

tree
Python definitions. MeqTree
' cmds, queries,
ayer subscriptions server
results,
publications

 Data transparency
— all internal kernel structures have a Python representation,
can be packed into a message
* Examine everything, keep track of anything
— subscribe to node status -- so no overhead if not subscribed

* Python GUI (PyQt3 + PyQwt + ?)

Non-interactive Operation

tree
definitions

MeqTree
cmds, queries server

results

* GUI-less operations also supported
* Python control script runs TDL, talks to server
* Useful for batch operations and automated testing

Embedding The Snake

Simple Simple
node hode

D 4 AN

ayer

Most nodes have simple but CPU-intensive jobs
A few specific nodes engage in “messy policy”
Example: Solver
— various least-squares fit strategies possible, and they can be very application
specific
Solution: embed Python in the MeqTree kernel, have “messy nodes” call a user-
supplied control procedure to support complex behaviour.

THE END?

> \ \ :
& \ |
."#"Iﬂ. - ey,

-ﬁ' -

