Speed up your Python code

EuroPython 2006
CERN, Geneva

Stefan Schwarzer
sschwarzer@sschwarzer.com

SSchwarzer.com

2006-07-05

Overview

m Optimization mindset
When to optimize
Optimization process
Finding the bottlenecks

Analyzing algorithms with big-O notation

[
[
[
m General optimization strategies
[
m Optimization garden

[

Conclusions

Not in this talk:
m Optimization of the Python interpreter

m Other optimization of C code

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 2/21 SSchwarzer..

Optimization mindset

Optimization is costly

Optimization is supposed to save time

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 3/21 SSchwarzer..

Optimization mindset

Optimization is costly

Optimization is supposed to save time

But ... it also has costs:

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 3/21 SSchwarzer..

Optimization mindset

Optimization is costly

Optimization is supposed to save time

But ... it also has costs:
m Costly developer time spent on the optimization itself

m Optimization often makes the code more difficult to
comprehend, thus ...

m More costly developer time spent on bugfixes

m More costly developer time spent on adding features

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 3/21 SSchwarzer..

Optimization mindset
Optimization is costly

Optimization is supposed to save time

But ... it also has costs:
m Costly developer time spent on the optimization itself

m Optimization often makes the code more difficult to
comprehend, thus ...

m More costly developer time spent on bugfixes

m More costly developer time spent on adding features

Optimize only if necessary:
The program has to run fast enough, but not faster!

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 3/21 SSchwarzer..

Optimization mindset

Premature optimization is evil

Premature optimization is the root of all evil.

C.A.R. Hoare
(often misattributed to D. Knuth)

m Don't “optimize as you go'—
most of the time, the bottlenecks are elsewhere

m In other words, don't waste your time with useless optimization

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 4/21 SSchwarzer..

When to optimize

m Consider only realistic use cases
m Slow startup may not matter for a rarely started program even
if it's used for a long time after start
m Speed may not matter that much for a program which is
usually run as a nightly cronjob

m Consider actual user experience

m Does the program feel slow?

To you / to one user / to several users?
= How slow?

Noticable / annoying / unbearable?

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 5/21 SSchwarzer..

Recommended optimization process

def optimize():
"""Recommended optimization process."""
assert got_architecture_right(), "fix architecture"
assert made_code_work(bugs=None), "fix bugs"
while code_is_too_slow():
wbn = find_worst_bottleneck(just_guess=False,
profile=True)
is_faster = try_to_optimize (wbn,
run_unit_tests=True, new_bugs=None)
if not is_faster:
undo_last_code_changes ()

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 6/21 SSchwarzer..

Recommended optimization process

def optimize():
"""Recommended optimization process."""
--> assert got_architecture_right(), "fix architecture"
assert made_code_work(bugs=None), "fix bugs"
while code_is_too_slow():
wbn = find_worst_bottleneck(just_guess=False,
profile=True)
is_faster = try_to_optimize (wbn,
run_unit_tests=True, new_bugs=None)
if not is_faster:
undo_last_code_changes ()

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 6/21 SSchwarzer..

Recommended optimization process

def optimize():
"""Recommended optimization process."""
assert got_architecture_right(), "fix architecture"
--> assert made_code_work(bugs=None), "fix bugs"
while code_is_too_slow():
wbn = find_worst_bottleneck(just_guess=False,
profile=True)
is_faster = try_to_optimize (wbn,
run_unit_tests=True, new_bugs=None)
if not is_faster:
undo_last_code_changes ()

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 6/21 SSchwarzer..

Recommended optimization process

def optimize():
"""Recommended optimization process."""
assert got_architecture_right(), "fix architecture"
assert made_code_work(bugs=None), "fix bugs"
--> while code_is_too_slow():
wbn = find_worst_bottleneck(just_guess=False,
profile=True)
is_faster = try_to_optimize (wbn,
run_unit_tests=True, new_bugs=None)
if not is_faster:
undo_last_code_changes ()

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 6/21 SSchwarzer..

Recommended optimization process

def optimize():
"""Recommended optimization process."""
assert got_architecture_right(), "fix architecture"
assert made_code_work(bugs=None), "fix bugs"
while code_is_too_slow():
-—> wbn = find_worst_bottleneck(just_guess=False,
-—> profile=True)
is_faster = try_to_optimize (wbn,
run_unit_tests=True, new_bugs=None)
if not is_faster:
undo_last_code_changes ()

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 6/21 SSchwarzer..

Recommended optimization process

def optimize():
"""Recommended optimization process."""
assert got_architecture_right(), "fix architecture"
assert made_code_work(bugs=None), "fix bugs"
while code_is_too_slow():
wbn = find_worst_bottleneck(just_guess=False,
profile=True)
-—> is_faster = try_to_optimize (wbn,
-—> run_unit_tests=True, new_bugs=None)
if not is_faster:
undo_last_code_changes ()

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 6/21 SSchwarzer..

Recommended optimization process

def optimize():

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 6/21

"""Recommended optimization process."""

assert got_architecture_right(), "fix architecture"
assert made_code_work(bugs=None), "fix bugs"

while code_is_too_slow():

wbn = find_worst_bottleneck(just_guess=False,
profile=True)
is_faster = try_to_optimize (wbn,
run_unit_tests=True, new_bugs=None)
if not is_faster:
undo_last_code_changes()

SS5chwarzer..

Finding the bottlenecks

m Find out if the program speed is bound by
[/O (local file system, network) or CPU
m Operating system tools (here: Unix)
m Command line: time, top, dstat, ...
m GUI: gkrellm, xosview, ...
m Python tools

m profile (cProfile in Python 2.5)
m hotshot
B print statements

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 7/21 SSchwarzer..

General optimization strategies

m Doing things faster (e.g. change algorithm)
m Doing things less often (e.g. caching)
m Both at the same time (e.g. DBMS instead of flat files)

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 8/21 SSchwarzer..

Analyzing algorithms with big-O notation

Introduction

m Terminology to explain which algorithms are slower or faster
m Describes how an increase in the amount of data n
affects the running time
m Written as O(n), O(nInn), O(n?), ...
m The term in parentheses (without constant factors)

is the most significant, less significant terms are left out;
i.e. instead of O(2.3n% + 3n) it's just O(n?)

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 9/21 SSchwarzer..

Analyzing algorithms with big-O notation
Common big-Os

Order Said to be Examples
Y. time”

0(1) constant key in dict
dict[key] = value
list.append(item)

O(Inn) logarithmic Binary search

O(n) linear item in sequence
str.join(list)

O(nlnn) list.sort()

O(n?) quadratic Nested loops (with constant time bodies)

Speed up your Python code

Stefan Schwarzer sschwarzer@sschwarzer.com

10/21

SS5chwarzer..

Analyzing algorithms with big-O notation
Common big-Os

Order Said to be Examples
Y. time”

0(1) constant key in dict
dict[key] = value
list.append(item)

O(Inn) logarithmic Binary search

O(n) linear item in sequence
str.join(list)

O(nlnn) list.sort()

O(n?) quadratic Nested loops (with constant time bodies)

Try to avoid O(n?) and slower algorithms if n is large

Speed up your Python code

Stefan Schwarzer sschwarzer@sschwarzer.com

10/21

SS5chwarzer..

Analyzing algorithms with big-O notation

Example: Finding common items in two lists

def intersectionl(seql, seq2): # approx. 0(n~2)
result = {}
for item in seql:
if item in seq2: result[item] = True
return result.keys()

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 11/21 55=hwﬂ'295nm

Analyzing algorithms with big-O notation

Example: Finding common items in two lists

def intersectionl(seql, seq2): # approx. 0(n"2)
result = {}
for item in seql:
if item in seq2: result[item] = True
return result.keys()

def intersection2(seql, seq2): # approx. 0(n)
result = {}
dict2 = dict((item, True) for item in seq2)
for item in seql:
if item in dict2: result[item] = True
return result.keys()

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 11/21 SSchwarzer..

Analyzing algorithms with big-O notation

Example: Finding common items in two lists

def intersectionl(seql, seq2): # approx. 0(n"2)
result = {}
for item in seql:
if item in seq2: result[item] = True
return result.keys()

def intersection2(seql, seq2): # approx. 0(n)
result = {}
dict2 = dict((item, True) for item in seq2)
for item in seql:
if item in dict2: result[item] = True
return result.keys()

def intersection3(seql, seq2): # approx. 0(n)
return list(set(seql) & set(seq2))

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 11/21 SSchwarzer..

Optimization garden
Introduction

m Depending on the situation, some of the hints on the next
pages may help, some may not

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 12/21 SSchwarzer..

Optimization garden

Introduction

m Depending on the situation, some of the hints on the next
pages may help, some may not

m Strive for a good compromise for performance gain
on one hand and

m Ease of code changes
m Maintainability

on the other hand

Reach for "low-hanging fruit”

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 12/21 SSchwarzer..

Optimization garden
Algorithms—Notes

m Changing algorithms is the most promising optimization

approach—speedups of several hundred percent may be
possible

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 13/21 SS5chwarzer...

Optimization garden
Algorithms—Notes

m Changing algorithms is the most promising optimization
approach—speedups of several hundred percent may be
possible

m The same holds for changes of the architecture which can be
seen as algorithms at a higher level

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 13/21 SSchwarzer..

Optimization garden
Algorithms—Notes

m Changing algorithms is the most promising optimization
approach—speedups of several hundred percent may be
possible

m The same holds for changes of the architecture which can be
seen as algorithms at a higher level

m Changing data structures can also have a huge effect, since
switching data structures (e.g. from lists to dictionaries)
implies changing the algorithms for data storage and retrieval

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 13/21 SSchwarzer..

Optimization garden
Algorithms—General

Avoid nested loops (watch out for implicit loops)

Move loop-invariant code out of loops

Update only changed data in an object

Divide and conquer (e.g. binary search)

Cache instead of recompute or reload (may be error-prone)
But don't exhaust memory, avoid swapping

Use multithreading for 1/O-bound code (e.g. web spiders)

Consider replacing an algorithm instead of tuning it

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 14 /21 SSchwarzer..

Optimization garden
Algorithms—TFiles

m Read a file completely and then process it if it's small
m Read and process a file line by line if it's large

m Instead of flat files, use database software
(e.g. *dbm modules, sqlite, PostgreSQL or MySQL)

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 15 /21 SSchwarzer..

Optimization garden
Hardware

m Use faster computers
m Provide more memory
m Use faster hard disks

m Use faster network hardware

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 16 /21

SS5chwarzer..

Optimization garden
Python-specific—Very Python-specific ;-)

Use python -0

Avoid exec and eval

Avoid from module import *

Shortcut namespace searches (e.g. opj = os.path.join)
Use list.append and str. join to concatenate many strings

Use list or generator comprehensions instead of for loops

Avoid function/method calls; inline code

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 17 /21 SSchwarzer..

Optimization garden
Python-specific—Algorithm-related

m In list.sort, use key rather than cmp argument
m Use dictionaries or sets for containment tests

m Use sets to find all items in a container
which are also in another (intersection)

m Use sets to find all items in a container
which aren't in another (difference)

m Don't copy objects (lists, dictionaries) routinely
(“just to be sure™) if they don't change

m Use own specialized code if a library function is too general

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 18 /21 SSchwarzer..

Optimization garden
Python-specific—Use C, code Python

m Change code to use C-coded objects
(lists, tuples, dictionaries, sets)

m Use built-in functions coded in C that do
the same as your Python code

m Try Psyco, Pylnline, Pyrex or weave

m Use available C extension modules (e. g. scipy)

If everything else fails, convert slow Python code to a
C/C++ extension module (SWIG and similar tools can help)

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 19/21 SSchwarzer..

Conclusions

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 20 /21

Conclusions

m Optimize only if necessary; don’t waste development time

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 20 /21 SSchwarzer..

Conclusions
m Optimize only if necessary; don’t waste development time

m When looking for bottlenecks, consider only real use cases and
user experience

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 20 /21 SSchwarzer..

Conclusions

m Optimize only if necessary; don’t waste development time

m When looking for bottlenecks, consider only real use cases and
user experience

m Use a profiler to find bottlenecks, don't guess

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 20 /21 SSchwarzer..

Conclusions

m Optimize only if necessary; don’t waste development time

m When looking for bottlenecks, consider only real use cases and
user experience

m Use a profiler to find bottlenecks, don't guess

m To speed up your software, do things faster or less often

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 20 /21 SSchwarzer..

Conclusions

m Optimize only if necessary; don’t waste development time

m When looking for bottlenecks, consider only real use cases and
user experience

Use a profiler to find bottlenecks, don't guess

To speed up your software, do things faster or less often

Big-O notation can help to distinguish fast and slow
algorithms

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 20/21 SSchwarzer..

Conclusions

m Optimize only if necessary; don’t waste development time

m When looking for bottlenecks, consider only real use cases and
user experience

m Use a profiler to find bottlenecks, don't guess
m To speed up your software, do things faster or less often

m Big-O notation can help to distinguish fast and slow
algorithms
m There are lots of things you can try to speed up your Python

code: Use faster algorithms or hardware, or use
Python-specific tuning

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 20/21 SSchwarzer..

Thank you for your attention! :-)

Questions? Discussion?

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 21/21

