
Speed up your Python code
EuroPython 2006

CERN, Geneva

Stefan Schwarzer
sschwarzer@sschwarzer.com

SSchwarzer.com

2006-07-05



Overview

Optimization mindset

When to optimize

Optimization process

Finding the bottlenecks

General optimization strategies

Analyzing algorithms with big-O notation

Optimization garden

Conclusions

Not in this talk:

Optimization of the Python interpreter

Other optimization of C code

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 2 / 21



Optimization mindset
Optimization is costly

Optimization is supposed to save time

But . . . it also has costs:

Costly developer time spent on the optimization itself

Optimization often makes the code more difficult to
comprehend, thus . . .

More costly developer time spent on bugfixes

More costly developer time spent on adding features

Optimize only if necessary:
The program has to run fast enough, but not faster !

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 3 / 21



Optimization mindset
Optimization is costly

Optimization is supposed to save time

But . . . it also has costs:

Costly developer time spent on the optimization itself

Optimization often makes the code more difficult to
comprehend, thus . . .

More costly developer time spent on bugfixes

More costly developer time spent on adding features

Optimize only if necessary:
The program has to run fast enough, but not faster !

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 3 / 21



Optimization mindset
Optimization is costly

Optimization is supposed to save time

But . . . it also has costs:

Costly developer time spent on the optimization itself

Optimization often makes the code more difficult to
comprehend, thus . . .

More costly developer time spent on bugfixes

More costly developer time spent on adding features

Optimize only if necessary:
The program has to run fast enough, but not faster !

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 3 / 21



Optimization mindset
Optimization is costly

Optimization is supposed to save time

But . . . it also has costs:

Costly developer time spent on the optimization itself

Optimization often makes the code more difficult to
comprehend, thus . . .

More costly developer time spent on bugfixes

More costly developer time spent on adding features

Optimize only if necessary:
The program has to run fast enough, but not faster !

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 3 / 21



Optimization mindset
Premature optimization is evil

Premature optimization is the root of all evil.

C.A. R. Hoare
(often misattributed to D. Knuth)

Don’t “optimize as you go”—
most of the time, the bottlenecks are elsewhere

In other words, don’t waste your time with useless optimization

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 4 / 21



When to optimize

Consider only realistic use cases

Slow startup may not matter for a rarely started program even
if it’s used for a long time after start
Speed may not matter that much for a program which is
usually run as a nightly cronjob

Consider actual user experience

Does the program feel slow?
To you / to one user / to several users?
How slow?
Noticable / annoying / unbearable?

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 5 / 21



Recommended optimization process

def optimize():
"""Recommended optimization process."""
assert got_architecture_right(), "fix architecture"
assert made_code_work(bugs=None), "fix bugs"
while code_is_too_slow():

wbn = find_worst_bottleneck(just_guess=False,
profile=True)

is_faster = try_to_optimize(wbn,
run_unit_tests=True, new_bugs=None)

if not is_faster:
undo_last_code_changes()

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 6 / 21



Recommended optimization process

def optimize():
"""Recommended optimization process."""

--> assert got_architecture_right(), "fix architecture"
assert made_code_work(bugs=None), "fix bugs"
while code_is_too_slow():

wbn = find_worst_bottleneck(just_guess=False,
profile=True)

is_faster = try_to_optimize(wbn,
run_unit_tests=True, new_bugs=None)

if not is_faster:
undo_last_code_changes()

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 6 / 21



Recommended optimization process

def optimize():
"""Recommended optimization process."""
assert got_architecture_right(), "fix architecture"

--> assert made_code_work(bugs=None), "fix bugs"
while code_is_too_slow():

wbn = find_worst_bottleneck(just_guess=False,
profile=True)

is_faster = try_to_optimize(wbn,
run_unit_tests=True, new_bugs=None)

if not is_faster:
undo_last_code_changes()

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 6 / 21



Recommended optimization process

def optimize():
"""Recommended optimization process."""
assert got_architecture_right(), "fix architecture"
assert made_code_work(bugs=None), "fix bugs"

--> while code_is_too_slow():
wbn = find_worst_bottleneck(just_guess=False,

profile=True)
is_faster = try_to_optimize(wbn,

run_unit_tests=True, new_bugs=None)
if not is_faster:

undo_last_code_changes()

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 6 / 21



Recommended optimization process

def optimize():
"""Recommended optimization process."""
assert got_architecture_right(), "fix architecture"
assert made_code_work(bugs=None), "fix bugs"
while code_is_too_slow():

--> wbn = find_worst_bottleneck(just_guess=False,
--> profile=True)

is_faster = try_to_optimize(wbn,
run_unit_tests=True, new_bugs=None)

if not is_faster:
undo_last_code_changes()

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 6 / 21



Recommended optimization process

def optimize():
"""Recommended optimization process."""
assert got_architecture_right(), "fix architecture"
assert made_code_work(bugs=None), "fix bugs"
while code_is_too_slow():

wbn = find_worst_bottleneck(just_guess=False,
profile=True)

--> is_faster = try_to_optimize(wbn,
--> run_unit_tests=True, new_bugs=None)

if not is_faster:
undo_last_code_changes()

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 6 / 21



Recommended optimization process

def optimize():
"""Recommended optimization process."""
assert got_architecture_right(), "fix architecture"
assert made_code_work(bugs=None), "fix bugs"
while code_is_too_slow():

wbn = find_worst_bottleneck(just_guess=False,
profile=True)

is_faster = try_to_optimize(wbn,
run_unit_tests=True, new_bugs=None)

--> if not is_faster:
--> undo_last_code_changes()

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 6 / 21



Finding the bottlenecks

Find out if the program speed is bound by
I/O (local file system, network) or CPU

Operating system tools (here: Unix)

Command line: time, top, dstat, . . .
GUI: gkrellm, xosview, . . .

Python tools

profile (cProfile in Python 2.5)
hotshot
print statements

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 7 / 21



General optimization strategies

Doing things faster (e. g. change algorithm)

Doing things less often (e. g. caching)

Both at the same time (e. g. DBMS instead of flat files)

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 8 / 21



Analyzing algorithms with big-O notation
Introduction

Terminology to explain which algorithms are slower or faster

Describes how an increase in the amount of data n
affects the running time

Written as O(n) , O(n ln n) , O(n2) , . . .

The term in parentheses (without constant factors)
is the most significant, less significant terms are left out;
i. e. instead of O(2.3n2 + 3n) it’s just O(n2)

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 9 / 21



Analyzing algorithms with big-O notation
Common big-Os

Order Said to be Examples
“. . . time”

O(1) constant key in dict
dict[key] = value
list.append(item)

O(ln n) logarithmic Binary search

O(n) linear item in sequence
str.join(list)

O(n ln n) list.sort()

O(n2) quadratic Nested loops (with constant time bodies)

Try to avoid O(n2) and slower algorithms if n is large

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 10 / 21



Analyzing algorithms with big-O notation
Common big-Os

Order Said to be Examples
“. . . time”

O(1) constant key in dict
dict[key] = value
list.append(item)

O(ln n) logarithmic Binary search

O(n) linear item in sequence
str.join(list)

O(n ln n) list.sort()

O(n2) quadratic Nested loops (with constant time bodies)

Try to avoid O(n2) and slower algorithms if n is large

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 10 / 21



Analyzing algorithms with big-O notation
Example: Finding common items in two lists

def intersection1(seq1, seq2): # approx. O(n^2)
result = {}
for item in seq1:

if item in seq2: result[item] = True
return result.keys()

def intersection2(seq1, seq2): # approx. O(n)
result = {}
dict2 = dict((item, True) for item in seq2)
for item in seq1:

if item in dict2: result[item] = True
return result.keys()

def intersection3(seq1, seq2): # approx. O(n)
return list(set(seq1) & set(seq2))

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 11 / 21



Analyzing algorithms with big-O notation
Example: Finding common items in two lists

def intersection1(seq1, seq2): # approx. O(n^2)
result = {}
for item in seq1:

if item in seq2: result[item] = True
return result.keys()

def intersection2(seq1, seq2): # approx. O(n)
result = {}
dict2 = dict((item, True) for item in seq2)
for item in seq1:

if item in dict2: result[item] = True
return result.keys()

def intersection3(seq1, seq2): # approx. O(n)
return list(set(seq1) & set(seq2))

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 11 / 21



Analyzing algorithms with big-O notation
Example: Finding common items in two lists

def intersection1(seq1, seq2): # approx. O(n^2)
result = {}
for item in seq1:

if item in seq2: result[item] = True
return result.keys()

def intersection2(seq1, seq2): # approx. O(n)
result = {}
dict2 = dict((item, True) for item in seq2)
for item in seq1:

if item in dict2: result[item] = True
return result.keys()

def intersection3(seq1, seq2): # approx. O(n)
return list(set(seq1) & set(seq2))

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 11 / 21



Optimization garden
Introduction

Depending on the situation, some of the hints on the next
pages may help, some may not

Strive for a good compromise for performance gain
on one hand and

Ease of code changes
Maintainability

on the other hand

Reach for “low-hanging fruit”

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 12 / 21



Optimization garden
Introduction

Depending on the situation, some of the hints on the next
pages may help, some may not

Strive for a good compromise for performance gain
on one hand and

Ease of code changes
Maintainability

on the other hand

Reach for “low-hanging fruit”

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 12 / 21



Optimization garden
Algorithms—Notes

Changing algorithms is the most promising optimization
approach—speedups of several hundred percent may be
possible

The same holds for changes of the architecture which can be
seen as algorithms at a higher level

Changing data structures can also have a huge effect, since
switching data structures (e. g. from lists to dictionaries)
implies changing the algorithms for data storage and retrieval

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 13 / 21



Optimization garden
Algorithms—Notes

Changing algorithms is the most promising optimization
approach—speedups of several hundred percent may be
possible

The same holds for changes of the architecture which can be
seen as algorithms at a higher level

Changing data structures can also have a huge effect, since
switching data structures (e. g. from lists to dictionaries)
implies changing the algorithms for data storage and retrieval

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 13 / 21



Optimization garden
Algorithms—Notes

Changing algorithms is the most promising optimization
approach—speedups of several hundred percent may be
possible

The same holds for changes of the architecture which can be
seen as algorithms at a higher level

Changing data structures can also have a huge effect, since
switching data structures (e. g. from lists to dictionaries)
implies changing the algorithms for data storage and retrieval

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 13 / 21



Optimization garden
Algorithms—General

Avoid nested loops (watch out for implicit loops)

Move loop-invariant code out of loops

Update only changed data in an object

Divide and conquer (e. g. binary search)

Cache instead of recompute or reload (may be error-prone)

But don’t exhaust memory, avoid swapping

Use multithreading for I/O-bound code (e. g. web spiders)

Consider replacing an algorithm instead of tuning it

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 14 / 21



Optimization garden
Algorithms—Files

Read a file completely and then process it if it’s small

Read and process a file line by line if it’s large

Instead of flat files, use database software
(e. g. *dbm modules, sqlite, PostgreSQL or MySQL)

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 15 / 21



Optimization garden
Hardware

Use faster computers

Provide more memory

Use faster hard disks

Use faster network hardware

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 16 / 21



Optimization garden
Python-specific—Very Python-specific ;-)

Use python -O

Avoid exec and eval

Avoid from module import *

Shortcut namespace searches (e. g. opj = os.path.join)

Use list.append and str.join to concatenate many strings

Use list or generator comprehensions instead of for loops

Avoid function/method calls; inline code

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 17 / 21



Optimization garden
Python-specific—Algorithm-related

In list.sort, use key rather than cmp argument

Use dictionaries or sets for containment tests

Use sets to find all items in a container
which are also in another (intersection)

Use sets to find all items in a container
which aren’t in another (difference)

Don’t copy objects (lists, dictionaries) routinely
(“just to be sure”) if they don’t change

Use own specialized code if a library function is too general

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 18 / 21



Optimization garden
Python-specific—Use C, code Python

Change code to use C-coded objects
(lists, tuples, dictionaries, sets)

Use built-in functions coded in C that do
the same as your Python code

Try Psyco, PyInline, Pyrex or weave

Use available C extension modules (e. g. scipy)

If everything else fails, convert slow Python code to a
C/C++ extension module (SWIG and similar tools can help)

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 19 / 21



Conclusions

Optimize only if necessary; don’t waste development time

When looking for bottlenecks, consider only real use cases and
user experience

Use a profiler to find bottlenecks, don’t guess

To speed up your software, do things faster or less often

Big-O notation can help to distinguish fast and slow
algorithms

There are lots of things you can try to speed up your Python
code: Use faster algorithms or hardware, or use
Python-specific tuning

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 20 / 21



Conclusions

Optimize only if necessary; don’t waste development time

When looking for bottlenecks, consider only real use cases and
user experience

Use a profiler to find bottlenecks, don’t guess

To speed up your software, do things faster or less often

Big-O notation can help to distinguish fast and slow
algorithms

There are lots of things you can try to speed up your Python
code: Use faster algorithms or hardware, or use
Python-specific tuning

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 20 / 21



Conclusions

Optimize only if necessary; don’t waste development time

When looking for bottlenecks, consider only real use cases and
user experience

Use a profiler to find bottlenecks, don’t guess

To speed up your software, do things faster or less often

Big-O notation can help to distinguish fast and slow
algorithms

There are lots of things you can try to speed up your Python
code: Use faster algorithms or hardware, or use
Python-specific tuning

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 20 / 21



Conclusions

Optimize only if necessary; don’t waste development time

When looking for bottlenecks, consider only real use cases and
user experience

Use a profiler to find bottlenecks, don’t guess

To speed up your software, do things faster or less often

Big-O notation can help to distinguish fast and slow
algorithms

There are lots of things you can try to speed up your Python
code: Use faster algorithms or hardware, or use
Python-specific tuning

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 20 / 21



Conclusions

Optimize only if necessary; don’t waste development time

When looking for bottlenecks, consider only real use cases and
user experience

Use a profiler to find bottlenecks, don’t guess

To speed up your software, do things faster or less often

Big-O notation can help to distinguish fast and slow
algorithms

There are lots of things you can try to speed up your Python
code: Use faster algorithms or hardware, or use
Python-specific tuning

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 20 / 21



Conclusions

Optimize only if necessary; don’t waste development time

When looking for bottlenecks, consider only real use cases and
user experience

Use a profiler to find bottlenecks, don’t guess

To speed up your software, do things faster or less often

Big-O notation can help to distinguish fast and slow
algorithms

There are lots of things you can try to speed up your Python
code: Use faster algorithms or hardware, or use
Python-specific tuning

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 20 / 21



Conclusions

Optimize only if necessary; don’t waste development time

When looking for bottlenecks, consider only real use cases and
user experience

Use a profiler to find bottlenecks, don’t guess

To speed up your software, do things faster or less often

Big-O notation can help to distinguish fast and slow
algorithms

There are lots of things you can try to speed up your Python
code: Use faster algorithms or hardware, or use
Python-specific tuning

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 20 / 21



Thank you for your attention! :-)
Questions? Discussion?

Speed up your Python code Stefan Schwarzer sschwarzer@sschwarzer.com 21 / 21


