

PyJIT Dynamic Code Generation From Runtime Data

Simon Burton

Simon.Burton@nicta.com.au

National ICT Australia

Overview

Introduction

PyJIT components

Low Level Virtual Machine (LLVM)

Applications

- Numerical Linear Algebra
- Decision Trees
- Vectorized Operations
- Interval Arithmetic

Conclusion

Introduction

Just-in-time Compilation

- Generate machine code at run-time
- Use "online" knowledge
- Some algorithms then run faster than compiled code

Introduction

Pseudo-example

```
for item in stream:
  filter( parameters, item )
```

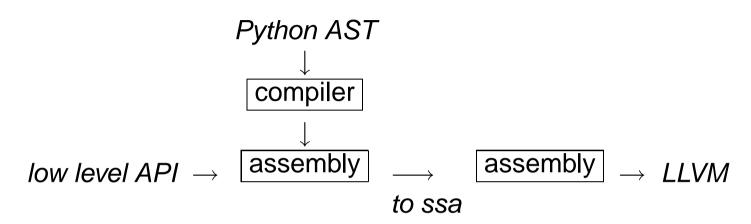
- apply a filter operation to a stream of data
- filter has parameters set at run-time

Inline the parameters

```
for item in stream:
   filter_1( item )
```

- generate a new function filter_1
- compile to machine code

PyJIT Components



Drive PyJIT with python source code

- Operations on native types supported (int, float, etc.)
- Good for numeric processing

Drive PyJIT with low-level constructs

- Construct the basic blocks
- Then insert branch and arithmetic instructions

Low Level Virtual Machine

BSD licensed

- Large C++ library
- Can be used as a backend for GCC

Uses simple yet powerful assembly code

- primitive types: integer, floating point
- compound types: structs, arrays, packed (for SIMD)

Optimizes code

- Strength reduction
- Dead code elimination

Generates CPU specific instructions

- SSE, 3dNOW, Altivec
- very fast!

Numerical Linear Algebra

- We use the Portable, Extensible Toolkit for Scientific Computing (PETSc)
- We construct a PETSc "shell" matrix
- All operations with this matrix are implemented with call-backs

Numerical Linear Algebra

- Tri-diagonal Matrix
- Multiplication by this matrix is implemented as a call-back:

```
def mymult(x, y, n):
    y[n-1] = 2.0 * x[n-1] - x[n-2]
    i = n-2
    while i > 0:
        y[i] = 2.0 * x[i] - x[i-1] - x[i+1]
        i = i - 1
        y[0] = 2.0 * x[0] - x[1]
```


Numerical Linear Algebra

n	AIJ time	PyJIT time	speedup
1e4	480μ S	75μ S	x 6.3
1e5	$4980 \mu S$	373μ S	x 13
1e6	46 mS	$290 \mu S$	x 16

- We compare performance with PETSc's sparse matrix
- This is a toy problem

Decision Trees: Construction

Input data

- Sequence of training cases
- Each case has a set of attributes, and an "outcome".

Build a "classifier"

- A tree of if statements
- Leaves specify the outcome

Decision Trees: example dataset

Sunny	Temp	Humidity	Rain?
yes	69	70	no
yes	72	95	no
yes	75	70	no
yes	80	90	no
yes	85	85	no
no	64	65	no
no	65	70	yes
no	68	80	yes
no	70	96	yes
no	71	80	yes
no	72	90	no
no	75	80	yes
no	81	75	no
no	83	78	no

Decision Trees: example classifier

```
if Sunny == "yes":
    Rain = "no"  # 5 correct
elif Sunny == "no":
    if Temp < 71.5:
        Rain = "yes" # 4 correct, 1 error
elif Temp >= 71.5:
        Rain = "no" # 3 correct, 1 error
```


Decision Trees: benchmarks

tree	tree	code	codegen	С	PyJIT	speed
size	shape	size	time	time	time	up
511	easy	1.5kB	0.35 S	18 mS	6.7 mS	x 2.8
511	hard	1.5kB	0.37 S	20 mS	7.7 mS	x 2.6
2047	easy	6.0kB	0.80 S	27 mS	11 mS	x 2.6
2047	hard	6.0kB	0.81 S	36 mS	21 mS	x 1.7
8191	easy	24kB	2.7 S	34 mS	15 mS	x 2.3
8191	hard	24kB	2.7 S	49 mS	29 mS	x 1.7

- Code generation time is significant
- Use in boosting

Vectorized operations: where

```
where(a<cutoff,b,c)
```

- a, b, c : arrays with the same length
- construct a result array with elements from b or c
- result[i] = (a[i] < cutoff) ? b[i] : c[i]</pre>

Vectorized operations: where

N	Python	NumPy	Psyco	NumExpr	PyJIT
1e3	490μ S	100μ S	45μ S	27μ S	20μ S
1e4	5.0 mS	780μ S	$430 \mu S$	250μ S	120μ S
1e5	51 mS	9.4 mS	4.4mS	3.5 mS	1.4 mS
1e6	510 mS	94 mS	44mS	35 mS	13 mS

NumExpr is a tiny VM writen in C

- recent work by David M. Cooke, and Tim Hochberg
- for operating on NumPy arrays
- handles simple pointwise calculations
- performs operations blockwise to help caching behaviour

Vectorized operations: while-loop

```
def get_weight( cutoff, values, weights, N ):
    i = 0
    weight = 0.0
    while i < N:
        value = values[i]
        if isnan( value )!=0 and value<cutoff:
            weight = weight + weights[i]
        i = i + 1
    return weight</pre>
```

- loop over every element of the values array
- sum weights as we go
- too slow to run this directly in Python

Vectorized operations: NumPy

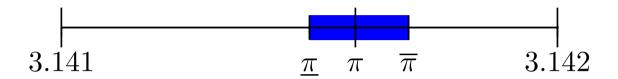
```
def get_weight( cutoff, values, weights ):
    k_mask = -numpy.isnan(values)  # mask of known values
    lt_mask = (values<cutoff) & k_mask
    lt_indices = numpy.nonzero(lt_mask) # array of indices
    lt_weights = weights[ lt_indices ] # a new array
    return numpy.sum( lt_weights )</pre>
```

- Trick: rewrite loop as a succession of vectorized operations
- while-loop is now "inside", at the C-level

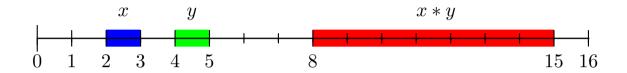
Vectorized operations: benchmarks

N	Python	Psyco	NumPy	PyJIT	speedup
1e3			160μ S	,	
$\overline{1e4}$	44mS	31 mS	700μ S	270μ S	x 2.6
1e5	430 mS	300 mS	7.2 mS	2.8 mS	$\mathbf{x}2.5$
1e6	4.2 S	3.0 S	71 mS	27 mS	x 2.7

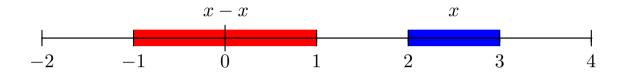
- Psyco is stumped by the call to isnan
- Numpy is more than 50 times faster than the while-loop
- PyJIT applied to the while-loop is faster still



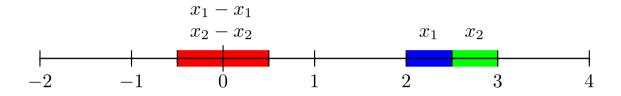
- Don't just round to the nearest floating point number
- Store a lower and upper bound



- carry out operations so that resulting interval encloses all possible values
- Enlarge the result if necessary so that end-points are represented exactly
- Interval calculations amount to a mathematical proof



- Problem: calculations become weak as the intervals explode
- ullet A simple subtraction, x-x, is way bigger than it needs to be



- Solution: solve an optimization problem
- Treat calculations lazily
- Generate a function on the fly and hand this to an optimization routine
- PyJIT yields similar performance to a compiled version

Conclusion

Data is Code

- Changes the way we think about algorithms
- Inline static data to gain speed increase
- CPU's are smart: inlining does not always work better

What next?

- Translate entire python programs (like Psyco)
- Implement NumPy semantics, with optimizations