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Just-in-time Compilation

Generate machine code at run-time
Use "online" knowledge
Some algorithms then run faster than compiled code
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Pseudo-example

for item in stream:

filter( parameters, item )

apply a filter operation to a stream of data
filter has parameters set at run-time

Inline the parameters

for item in stream:

filter 1( item )

generate a new function filter 1

compile to machine code
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Python AST
↓

compiler

↓

low level API → assembly −→ assembly → LLVM
to ssa

Drive PyJIT with python source code

Operations on native types supported (int, float, etc.)
Good for numeric processing

Drive PyJIT with low-level constructs

Construct the basic blocks
Then insert branch and arithmetic instructions
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BSD licensed

Large C++ library
Can be used as a backend for GCC

Uses simple yet powerful assembly code

primitive types: integer, floating point
compound types: structs, arrays, packed (for SIMD)

Optimizes code

Strength reduction
Dead code elimination

Generates CPU specific instructions

SSE, 3dNOW, Altivec
very fast!
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Numerical Linear Algebra

We use the Portable, Extensible Toolkit for Scientific
Computing (PETSc)
We construct a PETSc “shell” matrix
All operations with this matrix are implemented with call-
backs
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Numerical Linear Algebra

Tri-diagonal Matrix
Multiplication by this matrix is implemented as a call-
back:

def mymult(x, y, n):

y[n-1] = 2.0 * x[n-1] - x[n-2]

i = n-2

while i > 0:

y[i] = 2.0 * x[i] - x[i-1] - x[i+1]

i = i - 1

y[0] = 2.0 * x[0] - x[1]
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Numerical Linear Algebra

n AIJ time PyJIT time speedup
1e4 480µS 75µS x6.3

1e5 4980µS 373µS x13

1e6 46mS 290µS x16

We compare performance with PETSc’s sparse matrix
This is a toy problem
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Decision Trees: Construction

Input data

Sequence of training cases
Each case has a set of attributes, and an “outcome”.

Build a “classifier”

A tree of if statements
Leaves specify the outcome
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Decision Trees: example dataset

Sunny Temp Humidity Rain ?

yes 69 70 no

yes 72 95 no

yes 75 70 no

yes 80 90 no

yes 85 85 no

no 64 65 no

no 65 70 yes

no 68 80 yes

no 70 96 yes

no 71 80 yes

no 72 90 no

no 75 80 yes

no 81 75 no

no 83 78 no
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Decision Trees: example classifier

if Sunny == "yes":

Rain = "no" # 5 correct

elif Sunny == "no":

if Temp < 71.5:

Rain = "yes" # 4 correct, 1 error

elif Temp >= 71.5:

Rain = "no" # 3 correct, 1 error
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Decision Trees: benchmarks

tree tree code codegen C PyJIT speed
size shape size time time time up
511 easy 1.5kB 0.35S 18mS 6.7mS x2.8

511 hard 1.5kB 0.37S 20mS 7.7mS x2.6

2047 easy 6.0kB 0.80S 27mS 11mS x2.6

2047 hard 6.0kB 0.81S 36mS 21mS x1.7

8191 easy 24kB 2.7S 34mS 15mS x2.3

8191 hard 24kB 2.7S 49mS 29mS x1.7

Code generation time is significant
Use in boosting
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Vectorized operations: where

where(a<cutoff,b,c)

a, b, c : arrays with the same length
construct a result array with elements from b or c
result[i] = (a[i] < cutoff) ? b[i] : c[i]
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Vectorized operations: where

N Python NumPy Psyco NumExpr PyJIT
1e3 490µS 100µS 45µS 27µS 20µS
1e4 5.0mS 780µS 430µS 250µS 120µS
1e5 51mS 9.4mS 4.4mS 3.5mS 1.4mS
1e6 510mS 94mS 44mS 35mS 13mS

NumExpr is a tiny VM writen in C

recent work by David M. Cooke, and Tim Hochberg
for operating on NumPy arrays
handles simple pointwise calculations
performs operations blockwise to help caching be-
haviour
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Vectorized operations: while-loop

def get weight( cutoff, values, weights, N ):

i = 0

weight = 0.0

while i < N:

value = values[i]

if isnan( value )!=0 and value<cutoff:

weight = weight + weights[i]

i = i + 1

return weight

loop over every element of the values array
sum weights as we go
too slow to run this directly in Python
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Vectorized operations: NumPy

def get weight( cutoff, values, weights ):

k mask = -numpy.isnan(values) # mask of known values

lt mask = (values<cutoff) & k mask

lt indices = numpy.nonzero(lt mask) # array of indices

lt weights = weights[ lt indices ] # a new array

return numpy.sum( lt weights )

Trick: rewrite loop as a succession of vectorized opera-
tions
while-loop is now “inside”, at the C-level
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Vectorized operations: benchmarks

N Python Psyco NumPy PyJIT speedup
1e3 6.6mS 3.5mS 160µS 34µS x4.7

1e4 44mS 31mS 700µS 270µS x2.6

1e5 430mS 300mS 7.2mS 2.8mS x2.5

1e6 4.2S 3.0S 71mS 27mS x2.7

Psyco is stumped by the call to isnan

Numpy is more than 50 times faster than the while-loop
PyJIT applied to the while-loop is faster still
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Interval Arithmetic

3.141 π π π 3.142

Don’t just round to the nearest floating point number
Store a lower and upper bound
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Interval Arithmetic

x y x ∗ y

0 1 2 3 4 5 8 15 16

carry out operations so that resulting interval encloses
all possible values
Enlarge the result if necessary so that end-points are
represented exactly
Interval calculations amount to a mathematical proof
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Interval Arithmetic

xx − x

−2 −1 0 1 2 3 4

Problem: calculations become weak as the intervals ex-
plode
A simple subtraction, x − x, is way bigger than it needs
to be
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Interval Arithmetic

x1 x2

x1 − x1

x2 − x2

−2 −1 0 1 2 3 4

Solution: solve an optimization problem
Treat calculations lazily
Generate a function on the fly and hand this to an opti-
mization routine
PyJIT yields similar performance to a compiled version
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Data is Code

Changes the way we think about algorithms
Inline static data to gain speed increase
CPU’s are smart: inlining does not always work better

What next ?

Translate entire python programs (like Psyco)
Implement NumPy semantics, with optimizations
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