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Abstract

PyJIT is a new framework for providing just-in-time compilation from
within Python programs. The idea is to generate machine code at run-
time, and inline our data as we go. We show that this can provide dra-
matic speed-ups versus compiled code, by reducing memory-bandwidth
use and simplifying the executable code. At the core we use the Low

Level Virtual Machine (LLVM) which has facilities for creating machine
dependant code on the fly. PyJIT handles conversion to LLVM Static
Single Assignment form, and has a compiler that accepts a subset of the
Python syntax, including basic control flow. We demonstrate applications
in vectorized operations and numerical linear algebra, tree structures for
machine learning, and optimization techniques using interval arithmetic.

1 Introduction

Whenever an operation depends on complex but static data, it is a candidate
for a Just In Time (JIT) compilation strategy. The idea is to hard-code (inline)
this data into the executable code. Speedups then occur because the CPU is
less memory bound.

Here is a pseudo-example. Suppose we have a filter1 operation to apply
to a stream of data. The filter has some parameters, but they stay constant
over the whole stream:

for item in stream:

filter( parameters, item )

Instead of this, once the parameters become known we push them into the
filter operation by generating a function filter 1, at runtime, with these values
hardcoded:

1not to be confused with the Python builtin
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for item in stream:

filter_1( item )

This kind of dynamic inlining is not possible with compiled code, because
once code has been compiled the set of functions is fixed.

The inlining can be explicit or implicit, and there are several possibilities
to consider. If the data represents control flow we can generate corresponding
control flow directly. If the data contains values that form part of an opera-
tion we can inline those values into the operations themselves. There may be
redundancy in a calculation, or a caching strategy that dictates how to traverse
memory, that is impossible to predict (pre-code) until the data arrives.

The Low Level Virtual Machine (LLVM) is a collection of C++ libraries
designed to be used in the back end of compilers. It is able to produce optimized
machine code instructions from an assembly language. This assembly can be
either directly parsed (as text) by LLVM or programmatically constructed using
LLVM’s C++ interface.

At the lowest level, PyJIT exposes a number of Python classes that map
directly to syntactic elements of LLVM assembly. There is also a rewriting
mechanism for converting those elements to the Static Single Assignment (SSA)
form which LLVM expects. The third ingredient is a compiler that supports a
small subset of the Python language, including basic control flow.

Python AST
↓

compiler

↓

low level API → assembly −→ assembly → LLVM
to ssa

PyJIT components

There are two ways of driving PyJIT: either from Python source code (via
an AST) or by constructing the assembly objects with a low level API.

1.1 Overview of Applications

The “holy grail” of many efforts is to speed up Python execution. In the first
application we present, we treat Python source code as the static data. Here
the user is the (runtime) programmer and we seek a way to “inline” the source
itself into executable code.

In the second application we take a filter operation from numerical linear
algebra, similar to the pseudo-example above.

The third application is from machine learning. This data, decision trees,
encodes control flow. Each node in the tree is an if statement of some sort, and
we can generate corresponding branch statements in the assembly.
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The final example involves evaluating large mathematical expressions. This
time the control flow is trivial: we “unroll” the tree (bottom-up) into a sequence
of arithmetic operations. In this case the PyJIT approach yields performance
which is comparable with a compiled, stack based evaluation engine.

2 The PyJIT Compiler

Here we present an overview of the PyJIT compiler component. We will look
at examples of its use in the applications below.

The PyJIT compiler component generates assembly. As input it accepts a
subset of the Python syntax. It is essentially piggy-backing onto the Python
syntax; the goal is not to translate whole Python programs but to be able to
write simple numeric processing functions in a higher level language. Surpris-
ingly, this turns out to be quite useful.

The compiler works by visiting the Abstract Syntax Tree (AST) of Python
functions. There are several passes. One pass generates the units of control
flow (the Basic Blocks, see below). Another pass propagates type information,
starting with the function signature.

Sequence indexing operations are treated as C-array like operations, and are
translated into the corresponding memory load or store operation. The compiler
implements pointer arithmetic (adding or subtracting an offset from a pointer
variable), and struct member access via the usual attribute syntax.

All these operations are reasonably easy to translate into the assembly lan-
guage. But, generating correct assembly for non-trivial control flow is rather
more tricky. Thus, one useful aspect of the compiler is its ability to generate
code for if statements and while loops.

3 The Low Level Virtual Machine

The LLVM assembly is a platform independant assembly language [2]. There is
no notion of registers; variables can be created freely.

The type system covers most of the types from the c-level: basic integer and
floating point types, as well as typed pointers, structs, arrays, and packed types
(used in SIMD operations).

Functions are built from a sequence of basic blocks. Each block contains
a sequence of instructions, and ends with a terminator instruction directing
control flow to either another basic block or to return from the function.

3.1 Static Single Assignment Form

LLVM assembly is required to be in Static Single Assignment (SSA) form, which
means that each variable is assigned to (appears as an lvalue) only once. In
practice this can be done by “versioning”: we decorate the variable’s name with
a version number. Each time a we assign to that variable, we increment the
version:

3



i0 = 4

i1 = i0 + 16

i2 = i1 + 16

The advantage here is that we can easily deduce the flow of data: at every
location where a variable is used we can find the instruction where that data
came from, because it was assigned to exactly once.

A moment’s reflection reveals the difficulty with this: how do we compute
with a variable that could have travelled many paths to get here ?

if test:

i = 1

else:

i = 0

j = i + 1

Or how does one build a while loop, since we need to both initialize a counter
and then increment it, which requires two assignments to the same variable?

def count(n):

i = 0

while i < n:

i = i + 1

What we are trying to do is fold multiple values into one value. The place
where this folding occurs, where control flow is converging, is called a join point.
SSA form has a special instruction called a φ-instruction which is placed at the
joins. These are placed at the beginning of a basic block and list possible values
along with the basic block each value came from.

So, each time we assign to a variable, we give it a new name, and whenever
we need to merge two variables (from different histories) we use a φ-instruction.

Here is assembly for the while loop. Comments come after the semi-colon,
and the variables are indicated with the % sign:

void %count(int %n) {

bb.0: ; BASIC BLOCK 0

br label %bb.1 ; BRANCH

bb.1: ; BASIC BLOCK 1

%i.0 = phi int [ %i.1, %bb.2 ], [ 0, %bb.0 ]

; PHI

%var.0 = setlt int %i.0, %n ; var.0 = i.0 < n

br bool %var.0, label %bb.2, label %bb.3

; IF BRANCH

bb.2: ; BASIC BLOCK 2

%i.1 = add int %i.0, 1 ; i.1 = i.0 + 1

br label %bb.1 ; BRANCH
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bb.3: ; BASIC BLOCK 3

ret void ; RETURN

}

The problem of finding where to insert φ-instructions is non-trivial. For each
basic block assigning to some variable it involves finding the first successors that
may see other values for that variable (coming from other basic blocks). Such
successors are known as the dominance frontier for that basic block [4].

The SSA form enables many compiler optimizations. PyJIT handles Con-
stant propagation. LLVM is able to perform Dead code elimination, Strength
reduction and Register allocation. SSA also assists in Code re-ordering, Paral-
lelization and Partial redundancy elimination.

4 Applications

For the following benchmarks and timings we use a dual core 3.2GHz Intel Pen-
tium 4 machine with 800MHz FSB, and 1GB 400MHz DDR SDRAM Memory.

Times are real times (wall clock times), averaged over many repetitions,
except for the CG operations which were only performed once.

Software used: LLVM version 1.7, compiled without assertions or debug
info. gcc version 3.4.1. debian gnu-linux, sarge, with libc SSE bug-fix. NumPy
version 0.9.9.2537 (SVN). Python 2.4.3. NumExpr revision 1762. Psyco-1.5
revision 27794.

4.1 Vector Operations

Numpy is a Python library for the manipulation of arrays. The array elements
must be of a fixed size, eg., 32 bit int’s.

The trick with writing high performance code in NumPy is to “vectorize”
each operation. Instead of looping over an array and performing operations on
each element (too expensive at the Python level), one decomposes the operation
into primatives that are implemented inside of NumPy as a c-code for loop.

This example takes two arrays: values, and weights. It sums elements of
the weights array whose corresponding element in the values array is below a
given cutoff. Some values are regarded as unknown, these are stored as NaN’s
and do not contribute to the final weight.

To implement this in NumPy, we first record the result of the filter operation
in a boolean mask array, then build an integer array containing the indices of
the nonzero elements of the mask, use those indices to select a subarray of the
original weights array, and then finally we sum those elements:

def get_weight( cutoff, values, weights ):

k_mask = -numpy.isnan(values) # mask of known values

lt_mask = (values<cutoff) & k_mask

lt_indices = numpy.nonzero(lt_mask) # array of indices

lt_weights = weights[ lt_indices ] # a new array
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return numpy.sum( lt_weights )

The equivalent Python code using a while loop is more straightforward but
for large arrays it is around 200 times slower.

def get_weight( cutoff, values, weights, N ):

i = 0

weight = 0.0

while i < N:

value = values[i]

if isnan( value )!=0 and value<cutoff:

weight = weight + weights[i]

i = i + 1

return weight

However, this is now in a form where we can use PyJIT to compile it to
LLVM assembly:

ll = compile(get_weight,

[ llasm.double, llasm.double.pointer,

llasm.double.pointer, llasm.int_],

isnan=llasm.int_ )

The compile function takes as arguments the Python function to compile,
the signature of the function, and any keyword arguments are interpreted as
types of variables: in this case we need to state the return type of isnan (a
standard c library function).

For the benchmarks we use uniform random arrays for weights and values,
5% NaN’s, and a cutoff that selects half the weights for summing. N is the size
of the input vectors (arrays).

N Python Psyco NumPy PyJIT final speedup
1e3 6.6mS 3.5mS 160µS 34µS x4.7
1e4 44mS 31mS 700µS 270µS x2.6
1e5 430mS 300mS 7.2mS 2.8mS x2.5
1e6 4.2S 3.0S 71mS 27mS x2.7

Timings for get weights function

The essential difficulty with the NumPy version is that it creates and tra-
verses big temporary arrays: four different mask arrays, each with N elements,
an array of indices, and a final temporary array to sum over. After each step
of the calculation the array result has (mostly) left the cache: performance
degrades as we need to use memory bandwidth to reload this array.
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NumExpr 2 is able to combat this cache abuse by performing the calculations
blockwise on the arrays. It uses a small virtual machine, written in C, that is
driven by a bytecode. The bytecode is compiled from python expressions.

Psyco is a JIT for python. It works by observing variables at runtime and
generating machine code operations for any native types. However, performance
suffers when it comes across an operation that cannot be handled natively: then
it must call back into the CPython interpreter. In the previous case calling the
isnan function triggered this behaviour.

In order to favourably compare these tools, for the next benchmark we do
a simpler calculation. The NumPy where function selects elements from two
arrays based on a boolean condition array. To get maximum performance out
of Psyco we used the python array module to store the arrays.

N Python NumPy Psyco NumExpr PyJIT
1e3 490µS 100µS 45µS 27µS 20µS
1e4 5.0mS 780µS 430µS 250µS 120µS
1e5 51mS 9.4mS 4.4mS 3.5mS 1.4mS
1e6 510mS 94mS 44mS 35mS 13mS

Timings for where(a<cutoff,b,c)

4.2 Numerical Linear Algebra

PETSc, the Portable, Extensible Toolkit for Scientific Computation, is a library
of C routines revolving around linear algebra components. It can handle sparse
and dense matrices, either distributed across several computers for parallel com-
putation, or existing on a single computer for a sequential computation.

Matrix free methods refer to the ability for PETSc to use “abstract”(shell)
matrices that are not necessarily based on an array of data: the user provides
callbacks for performing operations using this matrix, such as matrix vector
multiplication. Other PETSc components, such as the linear solvers, can then
be used with these shell matrices.

We examine the problem of solving a linear system

Ax = b

For A we use an n by n tridiagonal matrix with 2 on the diagonal and −1
on the off diagonals:

A =









2 −1 0 0 0
−1 2 −1 0 0 · · ·

0 −1 2 −1 0
...

. . .









2by David M. Cooke and Tim Hochberg
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And the rhs vector, b = [1, 0, · · · , 0, 1]t.
We compare the performance of using a PETSc sparse AIJ matrix (these use

compressed sparse row storage) with a shell matrix that has its matrix vector
multiply operation implemented as a PyJIT function:

n AIJ time PyJIT time speedup
1e4 480µS 75µS x6.3
1e5 4980µS 373µS x13
1e6 46mS 290µS x16

Timings for Matrix Vector Multiply

Once this operation is implemented it is enough for the resulting matrix
shell to be used in PETSc’s linear equation solver’s, in particular we test the
conjugate gradient (CG) solver.

n iterations AIJ time PyJIT time speedup
1e4 5000 3.3S 1.3S x2.6
1e5 10000 83S 43S x1.9

Timings for CG Solver (no preconditioning)

The following source code implements the operation:

def mymult(x, y, n):

y[n-1] = 2.0 * x[n-1] - x[n-2]

i = n-2

while i > 0:

y[i] = 2.0 * x[i] - x[i-1] - x[i+1]

i = i - 1

y[0] = 2.0 * x[0] - x[1]

4.3 Decision Trees

Decision trees provide a simple approach to machine learning [3]. The data
consists of a number of example cases, each case has certain attributes and an
outcome label. The goal is to be able to predict the outcome of new cases based
on the attributes only.

The algorithm works by recursively splitting the cases, using a test on the
attributes that partition the labels the best.

For discrete attributes we can split the cases into classes that contain only
that value of the attribute. For continuous attributes we choose a threshold and
split the cases into those where this attribute is lower than the threshold and
those where this attribute is greater than the threshold.

For example, we might try to predict if it will rain based on other attributes
such as “is the sun shining?”, temperature and humidity. Here we have two
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kinds of attributes: “is the sun shining?” has a discrete value, either “yes” or
“no”, and the other attributes have continuous values. The example cases will
come from past history:

Sunny Temp Humidity Rain ?
yes 69 70 no
yes 72 95 no
yes 75 70 no
yes 80 90 no
yes 85 85 no
no 64 65 no
no 65 70 yes
no 68 80 yes
no 70 96 yes
no 71 80 yes
no 72 90 no
no 75 80 yes
no 81 75 no
no 83 78 no

What we see straight away is that if we split on the “Sunny” attribute, the
“yes” partition is entirely “no rain”. Then, for the “not sunny” partition if we
further split on the temperature attribute with a cutoff at 71.5; those with lower
temperature predict as “yes rain” and those with greater temperature predict
as “no rain” we see that we correctly predict 7 of the given cases and make an
error on another 2 cases:

if Sunny == "yes":

Rain = "no" # 5 correct

elif Sunny == "no":

if Temp < 71.5:

Rain = "yes" # 4 correct, 1 error

elif Temp >= 71.5:

Rain = "no" # 3 correct, 1 error

At this point there are no further subdivisions which will improve the error
rate, so construction terminates.

The tree construction boils down to choosing the best splitting criterion at
each level of the tree. This is a brute force search for a maximum, and there
is only a little data that can be set constant during the search. Therefore the
PyJIT approach does no better than compiled code. However, evaluating the
tree over a test set of cases is where a jit strategy provides big wins. We use
PyJIT to construct the decision tree directly in terms of control flow instruc-
tions.
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Here is the assembly, with memory access operations removed for clarity:

bb.1:

switch int %Sunny, label %bb.0

[int 0, label %bb.2 int 1, label %bb.3]; Sunny = 0 or 1

bb.2:

ret int 0; no rain

bb.3:

%result = setlt double %Temp, 71.5; temp < 71.5 ?

br bool %result, label %bb.4, label %bb.5

bb.4:

ret int 1; rain

bb.5:

ret int 0; no rain

bb.0:

ret int -1; error

This was compared with a straight forward implementation in C. It is a non-
recursive for-loop that traverses the tree to the leaves. The nodes of the tree
are 24-byte structs, allocated in an arena to improve cache performance. The
C version has to traverse the tree data structure as well as evaluating the test
data and so ends up being slower than the PyJIT version which only needs to
read the test data. We also compare with a Python version that uses NumPy.

For the following benchmark we use synthetic binary trees, and an ordered
data set that exercises the paths to the leaves. We have two kinds of tree,
easy and hard. In the hard case, the data is fed to the tree in a way that
maximizes cache misses: each traversal of the tree uses code (control flow) that
has the least in common with the previous traversal. Conversely, the easy case
minimizes cache misses: the control flow changes the least possible between data
items.

tree tree code codegen Python C PyJIT final
size shape size time time time time speedup
511 easy 1580B 0.35S 730mS 18mS 6.7mS x2.8
511 hard 1580B 0.37S 730mS 20mS 7.7mS x2.6
2047 easy 6188B 0.80S 1.1S 27mS 11mS x2.6
2047 hard 6188B 0.81S 1.2S 36mS 21mS x1.7
8191 easy 24620B 2.7S 2.8S 34mS 15mS x2.3
8191 hard 24620B 2.7S 2.6S 49mS 29mS x1.7

Decision tree benchmarks
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4.4 Interval Arithmetic

Interval Arithmetic is based on two ideas. First, instead of using higher and
higher precision to represent real numbers, we store lower and upper bounds (an
interval) that are represented exactly using machine floating point numbers.

3.141 π π π 3.142

We don’t know what the number is exactly but we know it is inside the
interval somewhere (maybe at one of the endpoints).

The second idea is that we carry out all our arithmetic operations on these
intervals such that the resulting interval encloses all possible values:

x y x ∗ y

0 1 2 3 4 5 8 15 16

We enlarge the result if necessary so that the endpoints are represented
exactly in the machine.

Calculations involving intervals amount to a (computer generated) mathe-
matical proof: it guarantees that the result of the calculation is inside an interval
[1].

Unfortunately, this guarantee can sometimes become extremely weak, as the
interval explodes. What happens is that as the calculation progresses it loses
information about the corellations between the values in the calculation.

A simple example is given by subtracting an interval from itself. The “real”
answer is zero; a very small interval, but we end up with something considerably
larger:

xx − x

−2 −1 0 1 2 3 4

Methods exist to counter this effect by augmenting the interval object with
information describing how its value depends on another value; for example,
derivative information.

This method carried to its extreme leads to the following idea. We treat
a calculation lazily, ie., as an interval valued function of intervals. Then, to
find a tight interval enclosing the result we use a minimization/maximization
algorithm which has been extended to handle interval values. For example, as
we apply a bisection algorithm to the calculation f(x) = x − x we see that the
resulting interval approaches zero.
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x1 x2

x1 − x1

x2 − x2

−2 −1 0 1 2 3 4

The implementation of this requires that function evaluations be as fast as
possible.

We compared a version using PyJIT with compiled code. The compiled
code used arenas containing the tree; each node has a function pointer and
child pointers, each leaf records an index to an interval value. The code then
traverses this tree using an instruction stack and an intermediate value stack.
The PyJIT version carries out the same operations except it can completely
“unroll” the tree traversal.

The two approaches yield similar performance, however the author cannot
escape the feeling that writing the code for emitting PyJIT constructs was a lot
easier than writing a stack based interpreter in c.

5 Related Work and Future Directions

The PyPy project was the main inspiration for this work. They are able to
translate a significant portion of the Python language (RPython) which includes
all of the Python object semantics, and also provide JIT related facilities. PyJIT
is specifically targeted at either generating low-level assembly code that does not
correspond to any source code, or using a small portion of the Python syntax
and semantics to drive compilation to assembly.

The Python Specializing Compiler (Psyco) is an extremely useful tool for
speeding up Python programs. It’s Python coverage is fairly complete, in that
the code will call back into CPython whenever it encounters an operation that
cannot be handled natively. The tradeoff is that whenever this happens it is
slow again. Also there is no easy way to extend the system; and the only way
to generate functions dynamically is via python source code.

There are other compilers such as Shed Skin and Pyrex but these rely on a
full C/C++ compiler and are not really targeted at dynamic code generation.
Pyrex needs an augmented syntax, essentially c-code mixed with python code.
ShedSkin’s Python coverage is incomplete.

From here, it is a short hop for PyJIT to being able to translate all of the
Python semantics into assembly, similar to Pyrex and Psyco. However, one
killer application will be translating NumPy semantics into optimized code, as
was done by hand in section 4.1. It is also clear that the PyPy project has
significant overlap with the present effort, and this needs to be investigated
further.

6 Conclusion

PyJIT uses LLVM to generate extremely fast code on the fly.
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This technique forces us to think differently about algorithm design. The
biggest wins come when static contextual data is large compared to the dy-
namic data, and dictates some aspect of the control flow. We then get big
improvements in performance by inlining this data into the executable code.
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