
py.execnet:
ad-hoc networking

holger.krekel@merlinux.de at
EuroPython 2006, CERN/Geneva

overview of py lib(s)
• overview on ‘py’ lib:

• py.path: local and subversion filesystem objects

• py.execnet: ad-hoc distribution of programs

• py.log: (exp) provides a simple logging mechanism

• py.code: nice introspection and dynamic compiling

• py.xml: providing simple xml/html object generation

• py.magic: provides greenlets (see Armins talk)

• py.compat: cross version 2.4.1 backported modules

• aims at uniformly running on python 2.2 onwards

Reasons for distributing
services

•

• remote access to local system resources

• security

• reliability

• scalability

Network Protocols

• Network Protocols between services/systems

• Remote Method invocation (Java/Corba/Pyro)

• Chat (text) based protocols (http/smtp/DNS/...)

• “Web” services (SOAP/xmlrpc...)

• Very good for interoparability

• Global Standards are useful for large scale co-
operative programs!

The “Standard” problem

• Standardized protocols commonly require:

• matching/Compatible software versions

• prior installation, configuration and setup

• overhead on designing, testing and maintaining the
standard!

• “global identity” (GUID) schemes for referencing

py.execnet concepts
• client side injects local protocol code (”remote_exec”)

• client and “other side” interact through Channels

• Channels can receive and send arbitrary marshallable
Python structures

• asynchronously executing program fragements implement
synchronous program flow (blocking on channel
operations)

• similarity to Stackless Communication model (tasklets/
Channels)

channels and gateways

• gateways hold connections to other processes (wherever)

• gateway.remote_exec() allows you to run source code on
the remote side

• Communication via symmetric channels

• interactive example

Example: svnhotsync

• synchronises a remote repo to a local one

• no temp/spool files

• server and client side code less than 100 lines

• runs very reliably for around 10 systems

Example: remote file
processing

• (Real life) Problem: a remote system processes data from a
“data_in” directory and produces “data_out” items.

• doing this via sftp or rsync+ssh has race conditions and is
icky to implement robustly, also the remote system can
not be used concurrently. Setting up RMI systems has a
lot of development and maitenance/deployment overhead.

• solution: use ssh+python, deploy the protocol and
data_in/data_out code from the “using” client side.

Status

• py.execnet is usable for 2-peer distribution / deployment

• “Makes distribution easy but sharing state hard”

• channels cannot span multiple gateways/hops yet

• basically works on win32, osx and linux (ssh not on win32)

development

• basic works from Holger Krekel, Armin Rigo, Jan Balster
2003-2006

• is part of the py lib, used by py.test

• MIT License

• partly funded by the EU IST programme

• source living at http://codespeak.net/svn/py/dist, GPL

• unit-tested on various levels (py.test)

Future

• current development happens on a “demand” basis

• from ourselves/involved parties, py.test requirements

• from contributors/users/external sponsoring parties

• support for better sharing

• extending to multi-peer (P2P) architecture

• Dev Contact at py-dev@codespeak.net,

• training/support possible

