
Subversioned System 
Configuration

holger.krekel@merlinux.de 
at EuroPython July 2006, CERN/Geneva



versioning system configs

• (linux) distributions need customization and configuration

• multiple people (sysadmins, developer) want to modify 
text configuration files

• some changes need reviews from others to prevent bad 
side effects

• without tool support this is all fragile and hard to track!



directly versioning?

• Using subversion, bzr, ... to directly version system configs 
induces problems and limitation: 

• user/root separation of permissions

• system directories turn into Working Copies 

• Working copies need to be group-accessable/writable 
etc.

• contradicts the goal of “minimal intrusiveness”



indirectly versioning!

• Write a frontend that delegates versioning operations to 
an underlying versioning system

• map “to-be-versioned” files into user-specific working 
copies

• bidirectionally transform ownership/permission info

• use features of underlying versioning system (notification, 
history, diffs)



vadm: using it

• perequesites:

• svn installation (including svnadmin)

• sudo rights for executing user

• a repository (can be a fresh one)

vadm init file:///sysrepo/mysystem

vadm add/remove/commit/diff/log /path/to/configfile

simply use the subversion commands you know!



notifications

• Install a post-commit hook into subversion repo to signal 
admins/developers about system changes

• a daily cron job may commit any pending changes

• a file containing paths to be versioned



experiences

• We currently use vadm to control some 20 systems

• with daily auto-committing it has proven to be a valuable 
tool, lowering the barrier to make changes to a running 
system

• you can find out who edited particular lines

• we’d like to version on a “cluster” basis 



Versioning clusters

• Versioning multiple “similar” machines:

• distinguishing “per-system” and “cluster” changes

• allow for multiple clusters in hierarchical order?

• per-system would take preference

• a “cluster” vadm should only require ssh + local svn config



more cluster considerations

• remotely access system states/configs (without manually 
logging in)

• ensure low-latency approaches: the slower the tool gets 
the less it will be used

• don’t require a server-side daemon other than sshd?

• but allow for centralized repositories



Suggested semantics

• a URL defines a group of versioned files

• each system has a stack of such URLs

• URLs can be marked:

• auto-update: changes automatically copied to system

• manual-update: changes need manual trigger



Other considerations

• versioning package installation information

• auto-versioning directories (signalling additions/removals)

• auto-commits: determining who likely made the change? 
Integration into Nagios to signal a pending commit/
update

• Speeding up versioning of hundreds of system files

• Plugging in other versioning systems?



Development history

• in 2002/2003 initial steps by Jens-Uwe Mager and Holger 
Krekel

• rewrites and refinements until today

• source living at http://codespeak.net/svn/vadm/dist, GPL

• unit-tested on various levels (py.test)

• driven by demands from codespeak and other system 
administration



vadm future

• development happens on a “demand” basis

• from ourselves/involved parties

• from contributors/users

• from external paying parties

• release planned in 2006, GPL license

• sysadmin training/support possible

• Contact at holger@merlinux.de


