Buildout




But first ... eggs

- Self-contained zero-installation
distributions

- Dependencies

- Index and automatic download

- Includes downloading source distributions and
converting to eggs

- Eggs can advertise features

- e.g. scripts to be installed

ZOPE



Eggs are revolutionary!

IMO,
the advent of eggs
Is the most important thing
happening with Python now!

Pay attention to eggs!

ZOPE



@ Eggs are simple

Eggs are directories

that can be included in sys.path.

(The fact that they can be installed as zip

files is incidental)
ZOPE




@ The hard part

The trick is actually including the eggs on
sys.path

- Deciding which eggs to include
- Constructing sys.path




Setuptools and easy_install

- Setuptools

- Access egg dependencies and other meta data

- Analyze dependencies and compute
compatible sets of eggs

- Building eggs
- Easy install
- Find distributions on the net
- Install build into specified locations
- Manage .pth files

ZOPE



Goal of easy_install

Be to Python as yum or apt are to linux

- Automatic download of distributions and
dependencies

- Don’t make users think -- be easy
- Install eggs into Python library

- Install scripts into Python/system
bin/scripts

easy_install meets these goals well.

ZOPE



@ | need something else

- Don’t modify python installation

- Don’t provide configuration at run time
(no PYTHONPATH required)

- No accidental upgrades
- Custom script generation
- Greater control over eggs used

- Specify specific versions
- Newest of everything




@ Buildout

- Create an assembly of parts
- Control how each part is created

- Single specification of assembly, composed
from multiple sources

- Support for change, through automated part
uninstall and reinstall.

ZOPE



Buildout History

- Needed to assemble systems with multiple
processes (databases, ZEO servers, app
servers, etc.) over multiple machines

- Initial version(s) were make based

- make does more than we want and is a

terrible scripting language
- Python prototype evolved over two years
- 1.0 version based on experience and

leveraging eggs
ZOPE




@ B Buildout and eggs

Buildout gives me the control
to get what | need from eggs!

ZOPE



&

- Can be almost anything:

- programs
- libraries

- configuration files or changes to configuration
files

- etlcC.
- Name

- Recipe

- Configuration options




@ Recipes

- Implement parts

- Small Python classes or methods
- Different kinds:

- install
- uninstall (planned)
- modified (planned)




@ Buildout is Egg-Centric

- Recipes managed as eggs

- Support for developing Python software
using develop eggs

- APIs to support retrieval and installation of

eggs for use by recipes




@ Configuration Database

- Each buildout has a configuration database.

- Based on Python ConfigParser format with
extensions

- Configuration files can load other files

- Command-line options:
section:option=value

- Variable substitutions




&

[buildout]

develop = mkdir
parts = data_dir
log-level = INFO

[data_dir]
recipe = mkdir
path = mystuff

Sample Configuration




Sample Recipe (in mkdir egg)

import logging, os
class Mkdir:

def __init__(self, buildout, name, options):
self.name = name
self.options = options
options['path’'] = os.path.join(
buildout['buildout']['directory'],
options['path'])

def install(self):
path = self.options['path’]
if not os.path.isdir(path):
logging.getLogger(self.name).info(
'Creating directory %s', os.path.basename(path))

os.mkdir(path)

return path




@ Uninstallation

- The install method can return one or more
paths.

- If the configuration changes, or
if a part is no longer used,
the paths returned in by the last part install
are removed at the beginning of buildout
processing

ZOPE



Real-world example

- Developing a new security-policy,
zc.sharing, component for Zope 3

- Uses another component, zc.security, that is
being developed developed at the same time

- Subversion project for zc.sharing with
svh:external to zc.security

- buildout.cfg specified how to build out a
zope install and zope instance using

zc.security and it’s dependencies
ZOPE




buildout.cfg (1)

[buildout]
develop = . zc.security

parts = zope3 data instance

find-1inks = http://download.zope.org/distribution/

[zope3]
recipe = zc.recipe.zope3checkout
url = svn://svn.zope.org/repos/main/Zope3/trunk

[data]
recipe = zc.recipe.filestorage

ZOPE



http://download.zope.org/distribution/
http://download.zope.org/distribution/

buildout.cfg (2)

[1nstance]

recipe = zc.recipe.zope3instance
database = data

user = jim:123

eggs = zc.sharing

zcml =
zCc.resourcelibrary zc.resourcelibrary-meta
zc.sharing-overrides:configure.zcml zc.sharing-meta
zC.sharing:privs.zcml
zC.sharing:zope.manager-admin.zcml
zC.security
zc.table
zope.app.securitypolicy-meta

zope.app.twisted
zope.app.authentication Z O P E




Installing zc.buildout

- Use easy_install to install zc.buildout

- You'll get a buildout script in your Python bin/
scripts directory

- Use the bootstrap script
http://dev.zope.org/Buildout/bootstrap.py

- Typically checked into your project

- Downloads and installs setuptools and
zc.buildout into your buildout

- Get bin/buildout
(and bin/py_zc.buildout, which is handy for

running setup.py manually) ZO P E



http://dev.zope.org/Buildout/bootstrap.py
http://dev.zope.org/Buildout/bootstrap.py

Status

- Under active development
- Ready for production

- Near term goals

- Better error reporting

- Windows support

- egg extras

- better control over egg versions




@ Questions?

http://dev.zope.org/Buildout



http://dev.zope.org/Buildout
http://dev.zope.org/Buildout

