
Buildout

But first ... eggs

● Self-contained zero-installation
distributions

● Dependencies
● Index and automatic download

– Includes downloading source distributions and
converting to eggs

● Eggs can advertise features
– e.g. scripts to be installed

Eggs!

Eggs are revolutionary!

IMO,
the advent of eggs

is the most important thing
happening with Python now!

Pay attention to eggs!

Eggs are simple

Eggs are directories
that can be included in sys.path.

(The fact that they can be installed as zip
files is incidental)

The hard part

The trick is actually including the eggs on
sys.path
– Deciding which eggs to include
– Constructing sys.path

Setuptools and easy_install

● Setuptools
– Access egg dependencies and other meta data
– Analyze dependencies and compute

compatible sets of eggs
– Building eggs

● Easy install
– Find distributions on the net
– Install build into specified locations
– Manage .pth files

Goal of easy_install

Be to Python as yum or apt are to linux
– Automatic download of distributions and

dependencies
– Don’t make users think -- be easy
– Install eggs into Python library
– Install scripts into Python/system

bin/scripts

easy_install meets these goals well.

I need something else

● Don’t modify python installation
● Don’t provide configuration at run time

(no PYTHONPATH required)
● No accidental upgrades
● Custom script generation
● Greater control over eggs used

– Specify specific versions
– Newest of everything

Buildout

● Create an assembly of parts
● Control how each part is created
● Single specification of assembly, composed

from multiple sources
● Support for change, through automated part

uninstall and reinstall.

Buildout History

● Needed to assemble systems with multiple
processes (databases, ZEO servers, app
servers, etc.) over multiple machines

● Initial version(s) were make based
● make does more than we want and is a

terrible scripting language
● Python prototype evolved over two years
● 1.0 version based on experience and

leveraging eggs

Buildout and eggs

Buildout gives me the control
to get what I need from eggs!

Parts

● Can be almost anything:
– programs
– libraries
– configuration files or changes to configuration

files
– etc.

● Name
● Recipe
● Configuration options

Recipes

● Implement parts
● Small Python classes or methods
● Different kinds:

– install
– uninstall (planned)
– modified (planned)

Buildout is Egg-Centric

● Recipes managed as eggs
● Support for developing Python software

using develop eggs
● APIs to support retrieval and installation of

eggs for use by recipes

Configuration Database

● Each buildout has a configuration database.
● Based on Python ConfigParser format with

extensions
● Configuration files can load other files
● Command-line options:
section:option=value

● Variable substitutions

Sample Configuration

 [buildout]
 develop = mkdir
 parts = data_dir
 log-level = INFO

 [data_dir]
 recipe = mkdir
 path = mystuff

Sample Recipe (in mkdir egg)
import logging, os

class Mkdir:

 def __init__(self, buildout, name, options):
 self.name = name
 self.options = options
 options['path'] = os.path.join(
 buildout['buildout']['directory'],
 options['path'])

 def install(self):
 path = self.options['path']
 if not os.path.isdir(path):
 logging.getLogger(self.name).info(
 'Creating directory %s', os.path.basename(path))
 os.mkdir(path)
 return path

Uninstallation

● The install method can return one or more
paths.

● If the configuration changes, or
if a part is no longer used,
the paths returned in by the last part install
are removed at the beginning of buildout
processing

Real-world example

● Developing a new security-policy,
zc.sharing, component for Zope 3

● Uses another component, zc.security, that is
being developed developed at the same time

● Subversion project for zc.sharing with
svn:external to zc.security

● buildout.cfg specified how to build out a
zope install and zope instance using
zc.security and it’s dependencies

buildout.cfg (1)

[buildout]
develop = . zc.security

parts = zope3 data instance

find-links = http://download.zope.org/distribution/

[zope3]
recipe = zc.recipe.zope3checkout
url = svn://svn.zope.org/repos/main/Zope3/trunk

[data]
recipe = zc.recipe.filestorage

http://download.zope.org/distribution/
http://download.zope.org/distribution/

buildout.cfg (2)

[instance]
recipe = zc.recipe.zope3instance
database = data
user = jim:123
eggs = zc.sharing

zcml =
 zc.resourcelibrary zc.resourcelibrary-meta
 zc.sharing-overrides:configure.zcml zc.sharing-meta
 zc.sharing:privs.zcml
 zc.sharing:zope.manager-admin.zcml
 zc.security
 zc.table
 zope.app.securitypolicy-meta
 zope.app.twisted
 zope.app.authentication

Installing zc.buildout

● Use easy_install to install zc.buildout
– You’ll get a buildout script in your Python bin/

scripts directory
● Use the bootstrap script

http://dev.zope.org/Buildout/bootstrap.py
– Typically checked into your project
– Downloads and installs setuptools and

zc.buildout into your buildout
– Get bin/buildout

(and bin/py_zc.buildout, which is handy for
running setup.py manually)

http://dev.zope.org/Buildout/bootstrap.py
http://dev.zope.org/Buildout/bootstrap.py

Status

● Under active development
● Ready for production
● Near term goals

– Better error reporting
– Windows support
– egg extras
– better control over egg versions

Questions?

http://dev.zope.org/Buildout

http://dev.zope.org/Buildout
http://dev.zope.org/Buildout

