
Pyphant - A Python framework for
modelling reusable data processing

tasks

Klaus Zimmermann Lorenz Quack

Andreas W. Liehr

Servicegroup Scientific Data Processing∗

Freiburg Materials Research Center

University of Freiburg

Europython2006-paper.tex 1114 2006-07-18 10:21:44Z obi

We are presenting the Python framework Pyphant for the creation and
application of data flow models. The central idea of this approach is to en-
capsulate each data processing step in one unit which we call worker. A
worker receives input via sockets and provides the results of its data pro-
cessing via plugs. These can be inserted into other workers’ sockets. The
resulting directed graph is called recipe. Classes for these objects comprise
the Pyphant core. To implement actual processing steps Pyphant relies on
third party plug-ins which extend the basic worker class and can be dis-
tributed in so-called Pyphant-worker-archives (PWA).

On top of the core Pyphant offers a data exchange layer on basis of scipy
arrays and PIL images which facilitates the interoperability of the workers.
A third layer comprises textual and graphical user interfaces. The latter
allows for the interactive construction of recipes, the former for the batch
processing of data.

Our contribution discusses the Pyphant framework and presents an exam-
ple recipe for determining the length scale of aggregated polymeric phases
building an amphiphilic conetwork from an Atomic Force Microscopy (AFM)
phase mode image.

∗e-mail: servicegruppe.wissinfo@fmf.uni-freiburg.de

1

Europython 2006 – Refereed Paper Track

1 Introduction

Working as computer scientist in an interdisciplinary scientific community often means
adapting a previously developed data processing algorithm to the very special context
of a new project. An example might be given by image processing [1]. Consider you
already have developed an algorithm which determines the particle size distribution of a
certain blend of materials on basis of an Atomic Force Microscopy (AFM) measurement.
Given the measurement of a different material you probably have to apply different pre-
processing steps to the primary data and adapt filter parameters like thresholding values
in order to match the characteristics of the new sample. If you think of a programming
environment which assists the adaption of this data analysis algorithm you will very
quickly consider a flow-based programming paradigm. This ansatz was invented in the
late sixties [2] and is quite established which can be seen from the variety of commer-
cial and OpenSource tools applying flow-based programming in the context of visual
programming languages [3]. Concerning data analysis several flow-based environments
have been implemented in Python, just to mention the visualization tool ViPEr [4] or
the Modular toolkit for Data Processing (MDP) [5]. It also has been demonstrated, that
Python is perfectly suited to integrate several different software tools e.g. for computa-
tion and visualization into a consistent data analysis environment [6].

Inspired from these approaches and having in mind that quite different data analysis
tools ranging from standard algorithms of statistics or image processing up to specialized
tools developed in the context of material research [7, 8, 9] have to be integrated into
a consistent visual programming environment, we started to think about the presented
Python framework. A major prerequisite was, that the resulting environment should
be suitable not only for the creative work of the specialized scientist but also for stan-
dardised data processing of the daily laboratory routine or a large scale data analysis
campaign computed in a grid computing environment [10]. This balancing act results in
the Pyphant framework enabling the fast integration of software modules into so-called
workers, which receive input data via sockets and provide their cached results via plugs.
The data analysis algorithms are composed as directed graphs within the Graphical User
Interface (GUI) wxPyphant. The interactive evaluation of the algorithm is established
on basis of an extensible set of Visualizers interfacing the matplotlib library [11]. And
finally the algorithm can be saved as Pyphant Recipe Archive (PRA) which provides a
Command Line Interface (CLI).

The article starts with an overview of the Pyphant framework and continues with a
real life example demonstrating the estimation of the length scale of a phase separated
polymer blend. In a second part we are discussing the technical details of the Pyphant
implementation. Finally we are summarising our work.

2 Framework

Pyphant is a layered, plugin-based framework suitable for the modelling and execution
of a wide range of data processing tasks. It is built on the idea that many computing

Zimmermann, Quack, Liehr 2 Pyphant

Europython 2006 – Refereed Paper Track

Figure 1: The Pyphant framework consists of a core layer comprising worker, connector,
recipe, and DataContainer objects. Workers for specialized data processing
tasks can be provided by PythonWorkerArchives. User Interfaces (UIs) are
given at hand in form of the Graphical User Interface (GUI) wxPyphant and
a Command Line Interface (CLI) for the individual recipe.

algorithms can be structured into a graph of distinct steps. In Pyphant those steps are
represented by so-called workers, which also form the nodes in the directed graph. Such
an algorithm is called recipe following the famous textbook Numerical Recipes [12] and
conceiving the development of a data analysis algorithm as the composition of a meal
from certain available ingredients.

Fig. 1 shows an overview of the structure of the Pyphant framework. At its base we
find the core. Apart from the workers and the recipe we have the connectors which are
used to model the edges of our graph and usually are members of the workers. Pyphant’s
core is completed by the DataContainer class. While the most basic incarnation of a
Pyphant application does not impose any restriction on the data format exchanged
among workers, we added this container format to enhance the interoperability of the
various workers.

On top of the core we find the User-Interface-layer (UI-layer), which comes in two
flavours. We have implemented a simple Graphical User Interface (GUI) called wx-
Python which realizes the visual programming paradigm. Also provided is a Command
Line Interface (CLI) which interfaces individual recipes, such that a certain GUI-crafted
recipe becomes a standalone tool. This feature is very useful concerning the daily lab-
oratory routine or the analysis of large data sets. Especially if such a large scale data
mining should be performed in a Grid-Computing environment like the Black Forrest
Grid [10].

That’s all for the Pyphant framework. However, it would not be useful if it wasn’t for
the plugins which do the actual work. The most important kind of plugin is the worker
plugin. We will cover this topic in the technical part of the paper. For now it suffices
to notice that workers are bundled in PyphantWorkerArchives (PWA). Another kind of
plugin is the visualization plugin which is used by the GUI to visualize data in a suitable
format.

Zimmermann, Quack, Liehr 3 Pyphant

Europython 2006 – Refereed Paper Track

Figure 2: Atomic Force Microscopy (AFM) phase mode image of an amphiphilic poly(2-
hydroxyethyl acrylate)-l -poly(dimethylsiloxane) (PHEA-l -PDMS) conetwork
with 23 wt % PDMS. PHEA shows light and PDMS dark.

Now that you have a rough idea of Pyphant, let’s start with a real life example of a
Pyphant application.

3 Image Processing Example

In this real life example we will explain all steps needed to estimate the width distribution
of an aggregated polymer phase from an Atomic Force Microscopy (AFM) phase mode
image. The example starts with loading the primary data, preprocessing the data and
finally determining the size of the detected features. A possible evaluation step is also
discussed.

Fig. 2 shows an AFM phase mode image of an amphiphilic poly(2-hydroxyethyl
acrylate)-l -poly(dimethylsiloxane) (PHEA-l -PDMS) conetwork with 23 wt % PDMS
[13]. In this visualization the PHEA and PDMS phase show light and dark, respectively.
The question is to determine the width of the PDMS phase.

The complete Pyphant recipe is depicted as snapshot of the GUI in Fig. 3. On the
right hand side of the GUI the toolbox of available workers is visualized. Each worker
can be placed by drag and drop on the canvas. Clearly visible are the individual workers
as white boxes which are connected by arrows pointing from the plug of one worker to
the socket of another worker. The colour of the connectors indicate different types of

Zimmermann, Quack, Liehr 4 Pyphant

Europython 2006 – Refereed Paper Track

Figure 3: Pyphant recipe composed in the wxPyphant GUI. Workers are visualized as
white boxes with sockets placed in their upper left corner and available plugs
localised in their lower right corner. By right-clicking a plug a context menu
with visualization plugins is provided.

DataContainer. Red indicates an array/image DataContainer, while blue denotes an
array/matrix DataContainer. Please note the context menu emerging from the plug
of the DiffWorker. It enables the interactive examination of the computed results by
interfacing the matplotlib library [11] via visualisation plugins. Let’s have a short look
at the algorithm:

1. Loading the image
This is pretty straight forward. Pyphant provides an ImageLoaderWorker which
simply loads an image file from the location given in the workers configuration.
The respective dialog can be opened by right-clicking the worker. This scheme
holds for all configuration dialogs of all worker. The loaded image is provided as
gray-scale image at the red plug. As the worker internaly uses the Python Imaging
Library (PIL) [14] it supports a great variaty of file formats.

Zimmermann, Quack, Liehr 5 Pyphant

Europython 2006 – Refereed Paper Track

(a) (b)

Figure 4: (a) Visualization of DistanceMapper result. The feature size is colour coded
in units of pixel. (b) Display detail of difference between AFM image and
skeleton of found features. Here the PDMS phase shows red, while the skeleton
is represented by blue lines.

2. Removing noise
Next we want to remove noise from the image. For this task the PILMedianWorker
is applied. It can be configured by the size of the applied kernel and the number
of smoothing runs. Here we have chosen a 5× 5 kernel and five smoothing runs.

3. Applying a threshold
Now we want to seperate the dark features which represent the PDMS phase from
the background. This is achived through the ThresholdingWorker. It compares
every pixel of the smoothed image with a given threshold and returns a binary
image such that the pixel of comprising features are set to 0x00, while the pixels
of the background are set to 0xFF. In this example the threshold is set to 90. The
threshold is chosen, such that the fraction of the image being covered by features
corresponds to the volume fraction of PDMS of the sample.

4. Measuring the size of the features
To this point we have a binary image representing the features we are taking into
account. Now we would like to determine their size by calculating the distance of
each pixel to the nearest background pixel [1, S. 427ff.]. This task is done by the
DistanceMapper. The resulting grey-scale image is shown in Fig. 4a with artifical
colours.

5. Morphological transform
In order to retrieve the width of the features, they are skeletonized. This is achieved
by iteratively removing the outer pixels of each feature, until the inner core pixels
remain [15, Chapter 25].

6. Checking result of skeleton computation
The skeleton of the features can be compared with the primary data by feeding
both images to the DiffWorker. By right clicking the plug of the DiffWorker a

Zimmermann, Quack, Liehr 6 Pyphant

Europython 2006 – Refereed Paper Track

Figure 5: Width distribution of the PDMS phase. The result is obtained from the AFM
phase mode image depicted in Fig. 2 with the Pyphant recipe shown in Fig. 3.
PILMedianWorker: 5× 5 kernel, 5 runs. ThresholdWorker: threshold 90.

visualisation method can be chosen from the context menu. A display detail of
the result is depicted in Fig. 4b.

7. Determining the width of the features
The skeleton of the features is applied as a mask to the distance map. This results
in a skeleton image, where the brightness of each skeleton pixel corresponds to the
width of the feature at the respective position. While this image is provided by
the red plug, the blue plug returns the result as N ×3 matrix representation. Here
each skeleton pixel is specified by its lateral position and the respective feature
width.

8. Computing the histogram
By now the recipe produces the information we are interessted in. The only thing
left to do is to compute a histogram from the data provided. This is done by
the HistogramWorker. The resulting histogram presenting the length scale of the
PDMS phase is shown in Fig. 5. The width distribution of the PDMS phase
determined by the Pyphant recipe matches the results of Bruns et. al. [13].

Zimmermann, Quack, Liehr 7 Pyphant

Europython 2006 – Refereed Paper Track

4 The Pyphant Core

In this section we will describe the Pyphant core in greater detail. First we will show
an example of a worker, then the worker base class in general. Next we will describe
the connection facilities that link the workers into the recipe and the efficient computing
model this suggests. Finally we discuss the DataContainer which is the preferred data
exchange class, designed for a maximum of worker interoperability.

4.1 The Worker

4.1.1 The DiffWorker - a Practical Example

1 from pyphant . core import (Worker , Connectors ,
2 DataContainer)
3
4 import ImageChops
5
6 def createWorker (r e c ipe , annotat ions ={}) :
7 return DiffWorker (r e c ipe , annotat ions)
8
9 WORKER INFO = Worker . WorkerInfo (”DiffWorker ” , createWorker)

10
11 class DiffWorker (Worker . Worker) :
12 s o c k e t s = [(” image1” , Connectors .TYPE IMAGE) ,
13 (” image2” , Connectors .TYPE IMAGE)]
14
15 @Worker . plug (Connectors .TYPE IMAGE)
16 def d i f f Image s (s e l f , image1 , image2) :
17 im1=image1 . getS l i ceAsImage ()
18 im2=image2 . getS l i ceAsImage ()
19 r e s u l t=ImageChops . d i f f e r e n c e (im1 , im2)
20 return DataContainer . DataContainer (r e s u l t)

Listing 1: DiffWorker

Listing 1 shows the DiffWorker. It takes two images and provides their difference image.
The actual work is performed by PIL[14] (Lst. 1, l. 19). First of all the sockets are
declared. These are the input facilities of the worker. They are declared with a name
and a type. The latter is used to provide visual hints to the user, the former to identify
the socket later (Lst. 1, l.16). Note that there is no declaration of output facilities.
Those are referred to as plugs and are immediately coupled with a calculation method.
This can be observed in line 15 et sqq. There we define diffImages, a common method
that takes two arguments. Their names coincide with the aforementioned socket names.
The author of the worker is not required to deal specially with his input. He simply
declares a method and Pyphant takes care of the data-handling necessary. All he has to
do is prefix his plug with the Worker.plug decorator, declaring the return type.

Zimmermann, Quack, Liehr 8 Pyphant

Europython 2006 – Refereed Paper Track

In front of the actual class definition we see a factory function (Lst. 1, l.6) and the
WORKER INFO constant, that carries a reference to the factory. This constant must be
provided by every worker module and is used by the framework to identify the worker
prior to its instantiation, for example in the toolbar you see on the right hand side of
Fig. 3.

4.1.2 The General Worker

In section 4.1.1 we have presented an example for a simple worker. Let’s take a look at
excerpts from the worker module:

9 def plug (returnType) :
10 def setPlug (plug) :
11 s e t a t t r (plug , ’ i sP lug ’ , True)
12 s e t a t t r (plug , ’ returnType ’ , returnType)
13 return plug
14 return setPlug

Listing 2: Plug decorator of Worker module

This is the plug decorator. It is merely used as a marker, adding some meta information
to the plug method. These are employed by the WorkerFactory metaclass (Lst. 3) for
finding the plugs, which are subsequently utilised to construct the plug instances, among
the methods of a worker.

22 class WorkerFactory (type) :
23 def i n i t (c l s , name , bases , c d i c t) :
24 c l s . p lug s =[]
25 for f in f i l t e r (lambda key : i sP lug (key , c d i c t) , c d i c t) :
26 c l s . p lug s . append ((f , c d i c t [f]))
27 super (WorkerFactory , c l s) . i n i t (name , bases , c d i c t)

Listing 3: WorkerFactory metaclass of Worker module

Next we have the Worker class itself. Of special interest is the construction. At
runtime of the Worker. init method every Worker instance will have three attributes:
sockets, plugs and params. All of them are lists, describing the respective, requested

objects. You have seen the sockets list being filled in Listing 1. The list of plugs is
constructed by the WorkerFactory metaclass on basis of the plug decorators (Lst. 3).
The params list contains parameter descriptions, and is filled like the socket list if the
worker has parameters. Actually parameters are a special type of socket but we will
come back to this in Section 4.2.

For every entry in those lists a corresponding connector instance is created as member
of the worker. This way the Worker class functions as a factory for its own connectors.

Zimmermann, Quack, Liehr 9 Pyphant

Europython 2006 – Refereed Paper Track

4.2 The Connectors

The Connectors module defines the type constants and the FullSocketError, which is
raised when someone attempts to insert a plug into an already used socket.

Apart from that this is of course the place to find the connector classes, i.e. Connector,
Socket, and Plug.

13
14 class Connector (ob j e c t) :
15 def i n i t (s e l f , worker , name , type=DEFAULT DATA TYPE) :
16 s e l f . worker=worker
17 s e l f . name=name
18 s e l f . type=type
19 s e l f . i sEx t e r n a l=True
20 def g e t I sEx t e rna l (s e l f) :
21 return s e l f . i sEx t e r n a l
22 def s e t I sEx t e r n a l (s e l f , i sEx t e rna l) :
23 i f i sEx t e rna l != s e l f . i sEx t e rna l :
24 s e l f . i sEx t e r n a l=i sEx t e rna l
25 s e l f . worker . connector sExterna l i za t ionStateChanged (s e l f)
26 i sEx t e rna l=property (g e t I sExt e rna l , s e t I sEx t e r n a l)

Listing 4: Connector class of Connectors module

In Listing 4 you see the Connector class. It is the base class for sockets and plugs. As
you can see every connector carries a reference to its worker (Lst. 4, l.16) as well as an
identifying name (l.17). Furthermore there is the isExternal property (Lst. 4, l.19). It
denotes whether the connector is exposed to input from outside the worker. It might
not be external if either a default value is available, a socket is not needed or a plug is
not available due to the specific configuration of a worker.

The socket plays host to at most one plug and keeps track of the connection. If a
connection is broken or the respective plug becomes invalid the socket will invalidate
itself and its worker, which in turn invalidates all its plugs. This way the invalidation
propagates through the recipe until all concerned workers are informed.

Finally we have the Plug. It is perhaps the most interesting connector since it is the
one responsible for the multithreading.

61 class Computer (thread ing . Thread) :
62 def i n i t (s e l f , method) :
63 thread ing . Thread . i n i t (s e l f)
64 s e l f . method=method
65 s e l f . r e s u l t=None
66 def run (s e l f) :
67 i f s e l f . method :
68 s e l f . r e s u l t=s e l f . method ()

Listing 5: Computer class of connectors module

Zimmermann, Quack, Liehr 10 Pyphant

Europython 2006 – Refereed Paper Track

70 def createWrapper (method) :
71 args , varargs , varkw , d e f a u l t s=in sp e c t . g e ta rg spec (method)
72 so cke t s=args [1 :]
73 name=method . func name+’PyphantWrapper ’
74 l=’ de f ’+name+’ (method=method) :\n ’
75 for s in s o cke t s :
76 l+=’ \ t ’+s+’=Computer (method . im s e l f . getSocket (” ’+s+’ ”) .

ge tResu l t) \n ’
77 for s in s o cke t s :
78 l+=’ \ t ’+s+’ . s t a r t () \n ’
79 for s in s o cke t s :
80 l+=’ \ t ’+s+’ . j o i n () \n ’
81 l+=’ \ t r e tu rn method (’#<−That Space i s very important
82 for s in s o cke t s :
83 l+=s+’=’+s+’ . r e s u l t , ’
84 l=l [:−1]+ ’) \n ’
85 exec l
86 return eva l (name)

Listing 6: createWrapper helper of connectors module

In order to accomplish threading the framework needs a little help from

1. the Computer class (Listing 5) and

2. the createWrapper method (Listing 6).

While the Computer class encapsulates the thread running the various calculation tasks
the createWrapper method is used to create at construction time of the plug a matching
wrapper for the calculation method of the worker. To this end it constructs a method
that starts one thread for every socket used by the plug and joins them back with the
main thread prior to calling the plug itself with the fetched results as its arguments.

When the plug is queried via its getResult method it checks for an already available
result, and only generates a new one when necessary, also handling the required locking
transparently.

4.3 The Pyphant Execution Model

How is a Pyphant recipe executed? Actually it is not so much executed as evaluated.
The naive approach to execution might be to determine an execution order for the graph,
then executing each node in a top to bottom order. Pyphant instead starts from the
bottom node(s) and fetches the required results of previous calculations. This way only
needed results are calculated. For example the UltimatePointsCalculator provides two
results:

1. An image, that shows the found extrema visually, and

Zimmermann, Quack, Liehr 11 Pyphant

Europython 2006 – Refereed Paper Track

2. a mere list of the found extrema.

While in a pure computer oriented recipe the list might be needed for further processing
it can be convenient to have an immediate visual feedback on the success of the operation,
for example to determine the usefulness of ones image preprocessing. However, only the
requested result is calculated, thus saving time and computing power by avoiding the
calculation of the entire node.

Furthermore this order of execution allows for an easy caching of already computed
results: When a plug is queried it simply provides the last computed result without even
bothering the worker unless it has been invalidated meanwhile.

Another feature of this execution approach is the simple implementation of multi-
threading. In case a plug has no or only an invalidated result Pyphant retrieves the data
from every socket used by that plug in parallel, each in its own thread. Thus a non-
trivial recipe automatically leads to a pseudo-parallized execution within the restrictions
imposed on Pyphant by the global interpreter lock [16].

4.4 The DataContainer

Most often when talking about data, we are talking about physical quantities. While
there is a wide variety thatof, they share a couple of properties:

• They have a dimension unit like m, kg, s.

• Discrete data sets are usually composed of one or more abscissae and one or more
ordinates, because for the same set of sampling points different physical quantities
have been measured.

• Slices of the data are of interest. For example it is common to look at slices of a
Computed Tomography to examine it.

These considerations led us to the idea of a common data exchange class, which found
its first incarnation in the DataContainer.

The primary data format is the scipy array. One DataContainer comprises one scipy
array. Any data used within a Pyphant application based on the DataContainer must
be convertible to scipy arrays. In addition further formats may be supported. At
the moment we support PIL images as a secondary data format for two dimensional
arrays. The DataContainer provides a data property that always yields the array, a
getSliceAsImage and a setImageAsSlice method. The idea for the future is to allow
the extraction of arbitrary slices from the possibly multi-dimensional array. For now
they simply treat the whole, two dimensional array as an image. The two formats are
transparently and lazily converted, i.e. if the data is requested as an image it is converted
to the image and all changes made to the images are kept there until the array is asked
for and vice-versa. This is done to save computing time in the case where a couple of
consecutive steps only deal with images until one worker converts it to the array which
is used henceforth.

Zimmermann, Quack, Liehr 12 Pyphant

Europython 2006 – Refereed Paper Track

5 The User Interfaces

We employed a clean encapsulation of the core of Pyphant. This allows for a variety
of User Interfaces (UI). For now we have implemented a simple Graphical User Inter-
face (GUI) based on the wxPython toolkit and a Command Line Interface (CLI). You
already got a glimpse at the GUI in Section 3. In this section we will elaborate on the
technicalities of the GUI, which also gives a good example of a Pyphant application.
Then we will discuss the CLI, which is designed to facilitate the application of one spe-
cific recipe to a set of similar data, e.g. to analyse the images of different runs of the
same experiment.

5.1 wxPyphant - the Graphical User Interface

A screenshot of the Graphical User Interface (GUI) is seen in Fig. 3. On the left hand
side of the client area of the window you see the canvas. This is were you put the
desired workers and link them. The arrangement of the workers and their connections
are conducted via an intuitive drag and drop interface. To get them on the canvas
in the first place you drag the desired worker from the toolbar on the right onto the
canvas. What happens behind the curtains is the following: The GUI has acquired a
WORKER INFO for every known worker and had constructed a corresponding represen-
tative in the toolbar. When this is dragged onto the canvas the factory method provided
by that WORKER INFO is called in order to construct a worker of that kind. Then a
corresponding GUI object is created and integrated into the recipe. While the GUI as
a whole is based on the wxPython toolkit, the canvas is based on the Object Graphics
Library (OGL), which in its latest form is part of wxPython.

Apart from the construction of recipes wxPyphant allows for the immediate inspec-
tion of intermediate results by right clicking on the appropriate plugs. Upon a right
click a menu is shown, that offers all suitable visualisations. These can be provided by
visualisation plugins and are filtered according to the data type of the plug. Finally the
GUI features the saving and loading of recipes. This is realised by simple pickling with
a little bit of extra care with regards to method handling.

The WORKER INFO objects are collected on startup of the GUI by the following auto
discovery mechanism: By default Pyphant has a home directory which is called .pyphant
and is located in the users home directory. Inside Pyphant’s home directory there
is a workers directory which contains an arbitrary number of PyphantWorkerArchives
(PWA). By definition these are .tar.bz2 files, that contain a config.xml file which lists
the provided workers. These are loaded and registered with a central management class,
the so-called WorkerRepository using the respective WORKER INFO constants.

5.2 The Command Line Interface

The Command Line Interface (CLI) is given a pickled recipe as argument and loads the
recipe, by unpickling it. In a second step all nodes of the recipe are identified that have
no plugs but only sockets. The results of these workers can be retrieved by calling the

Zimmermann, Quack, Liehr 13 Pyphant

Europython 2006 – Refereed Paper Track

special method .execute on them. Workers of this kind are referred to as sinks. They
are the most important distinction between recipes intended only for the GUI and those
intended for the command line. To obtain a useful command line recipe one needs to
include at least one sink. Unfortunately at the moment the CLI must be adapted for
every new recipe in order to add the handling of command line parameters e.g. for
changing an image filename. However this is expected to be resolved soon.

Thanks to the encapsulation of the core the CLI does not depend on the availability
of a graphical environment at all, which allows to deploy recipes visually crafted on
workstations into a powerful computing environment. This is especially important for
more complex tasks, where the computation easily can take days.

6 Summary and Outlock

Pyphant is a flexible framework for the composition of data-flow models. It offers easy
integration of new computing nodes and a multithreading execution of entire workflows
without special burdens on the user. Its CLI allows for the application of carefully crafted
recipes in a computing environment under the lack of graphical services or possibly the
integration into completly different applications.

Concerning the application of the Pyphant framework we are planning to extend the
ImageProcessing PWA by more tools and provide a PWA for solving ill-posed problems
on basis of non-linear regularisation methods. Possibly the family of PWAs can be
extended even further to entirely different projects in need of a similar GUI. Furthermore
we are going to enhance the DataContainer as hinted in Sec. 4.4 and improve on the
CLI in order to support command line parameters and their automatic coercion into the
appropriate worker parameters.

Acknowledgement

The authors like to thank M. C. Röttger, J. Honerkamp, and Nico Bruns for fruitful
discussions on the topic. The financial support by the German BMBF (Project No.:
03C0354A) is gratefully acknowledged.

References

[1] John C. Russ. The Image Processing Handbook. CRC Press, Boca Raton, 4 edition,
2002.

[2] John Paul Morrison. Flow-based programming: A New Approach to Application
Development. VNR computer library. Van Nostrand Reinhold, New York, 1994.
http://www.jpaulmorrison.com/fbp/index.shtml.

[3] Wikipedia. Visual programming language. http://en.wikipedia.org/wiki/

Visual programming language.

Zimmermann, Quack, Liehr 14 Pyphant

Europython 2006 – Refereed Paper Track

[4] Michel F. Sanner, Daniel Stoffler, and Arthur J. Olson. ViPEr a Visual Program-
ming Environment for Python. In 10th International Python Conference, February
2002. http://www.scripps.edu/∼sanner/html/papers/IPC02.pdf.

[5] Pietro Berkes and Tiziano Zito. Modular toolkit for Data Processing (MDP).
http://mdp-toolkit.sourceforge.net, 2006.

[6] M. F. Sanner, B. S. Duncan, C. J. Carrillo, and A. J. Olson. Integrating Computa-
tion and Visualization for Biomolecular Analysis: An Example Using Python and
AVS. In Proc. Pacific Symposium in Biocomputing ‘99, pages 401–412, 1999.

[7] J. Honerkamp and J. Weese. A nonlinear regularization method for the calculation
of relaxation spectra. Rheologica Acta, 32(65):73, 1993.

[8] T. Roths, M. Marth, J. Weese, and J. Honerkamp. A generalized regularization
method for nonlinear ill-posedproblems enhanced for nonlinear regularization terms.
Computer Physics Communication, 139:279–296, 2001.

[9] M. Bohnert, R. Walther, T. Roths, and J. Honerkamp. A Monte Carlo-based
model for steady-state diffuse reflectance spectrometry in human skin: estimation
of carbon monoxide concentration in livor mortis. Int J Legal Med, 119:355–362,
2005.

[10] R. Backofen, H.-G. Borrmann, W. Deck, L. De Raedt, K. Desch, M. Diesmann,
M. Geier, A. Greiner, W. R. Hess, J. Honerkamp, St. Jankowski, I. Krossing, A. W.
Liehr, A. Karwath, R. Klöfkorn, R. Pesché, T. Potjans, M. C. Röttger, L-Schmidt-
Thieme, G. Schneider, B. Voß, B. Wiebelt, P. Wienemann, and V.-H. Winterer.
A bottom-up approach to grid-computing at a university: the black-forrest-grid
initiative. Praxis der Informationsverarbeitung und Kommunikation, 29(2):81–89,
2006.

[11] John Hunter. Matplotlib. http://matplotlib.sourceforge.net, 2006.

[12] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.
Numerical Recipes in C. The Art of Scientific Computing. Cambridge University
Press, Cambridge, 2 edition, 1996.

[13] Nico Bruns, Jonas Scherble, Laura Hartmann, Ralf Thomann, Béla Ián, Rolf
Mühlhaupt, and Joerg C. Tiller. Nanophase Separated Amphiphilic Conetwork
Coatings and Membranes. Macromolecules, 38:2431–2438, 2005.

[14] Secret Labs AB. Python Imaging Library (PIL). http://www.pythonware.com/

products/pil.

[15] Steven W. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing.
California Technical Publishing, San Diego, 1997. http://www.dspguide.com/

pdfbook.htm.

Zimmermann, Quack, Liehr 15 Pyphant

Europython 2006 – Refereed Paper Track

[16] Peyton McCollough. Basic threading in python. http://www.devshed.com/c/a/

Python/Basic-Threading-in-Python, 2005.

Zimmermann, Quack, Liehr 16 Pyphant

