Analysis of the BCCM functionality

D. Belohrad, J. Kral

August 21, 2015

D. Belohrad, J. Kral

Analysis presented

- System status
- The ADC dynamic range reuse
- MD of bunch position for FBCT/BCTI/BCTW
- How the threshold is setup
- Analysis of the physics run
- Analysis of the scrubbing run
- Conclusions

Installation overview

D. Belohrad, J. Kral

Analysis of the BCCM functionality

 $^{3}/_{24}$

Performed checks

- Signal amplitudes verification \rightarrow assure that all 4 BCCM systems receive the beam signal of approximately of the same amplitude
- ADC dynamic range verification: $\approx 1.35 \times 10^{11}$ charges per bunch use 55% of the ADC dynamic range \rightarrow full scale measurements of 2.5×10^{11} ch/b are possible
- Occasionally BST bunch and turn clock missing, related to BST restarts.
- Network errors observed, causing temporary BCCM disconnects. 10 disconnects observed in 1.5 month time observation period not affecting the protective function of the equipment.
- System running with current FW for more than 1.5 month without service interruption

MD - Common notes

- FBCTs are known to be bunch position and length dependent. Recent MD measurements show a change of 0.3 to 0.7 %mm⁻¹ depending of plane ¹.
- BCTI (Integrating Current Transformer, Bergoz) and BCTW (Wall Current Transformer, CERN) were measured in this MD:
 - \circ BCTI < 0.01 0.02%mm⁻¹
 - $\circ \ \mathsf{BCTW} < 0.001\% \mathsf{mm}^{\text{-1}}$

How these imperfections affect the BCCM measurements?

¹Credit M. Krupa et al., LHC MD398

D. Belohrad, J. Kral

Bunch position MD

LHC MD398: Verification of the dependence of the BCTF measurements on beam position and bunch length (20/07/2015)

BE/BI: M. Gasior, M. Krupa, L. Soby, T. Lefevre BE/OP: R. Alemany Fernandez, M. Poier

FBCT and BCTI wrt bunch position

1 turn moving averager window:

Analysis of the BCCM functionalit

7/24

FBCT and BCTI wrt bunch position

1024 turn moving averager window:

Analysis of the BCCM functionality

⁸/₂₄

How the threshold is setup

/24

Setting the threshold - 1T explanation

• On a single turn the value of DIFF should be a replica of ABS, taking into account the noise figures:

• for 1T window the noise is non-negligible, amplitude $\pm 1 \times 10^{10}$ ch/b.

D. Belohrad, J. Kral

Setting the threshold - other windows

 On other windows, the DIFF value can be anywhere between half and max ABS, as well taking into account the noise floor, which increases uncertainty.

What does that mean?

- If we want to setup the threshold to e.g. 3×10^{11} lost in single turn:
 - for the 1T window, with 1×10^{10} noise amplitude we have to set the threshold to (3×10^{11}) $2\cdot (1\times 10^{10})$ to have a 100% certainty to catch 3×10^{11} and 'some' certainty to catch 2.8×10^{11}
 - for all other windows, e.g. for 4 turn window the DIFF for 3×10^{11} (per-turn) can be anywhere between 1.5×10^{11} to 3×10^{11} , again including the noise, which is however in higher turn window-lengths less dominant ($4T = \approx 5 \times 10^9$). So to catch 3×10^{11} with >99% probability the threshold has to be set roughly to 1.5×10^{11} .

Analysis of the physics run

Physics - quiet background, 'injection losses':

Analysis of the BCCM functionality

24

Analysis of the physics run

Physics - quiet background, 'injection losses':

D. Belohrad, J. Kral

For comparison: BCTI of the same run

Physics - quiet background, 'injection losses':

D. Belohrad, J. Kral

Analysis of the BCCM functionalit

¹⁴/₂₄

Into the details (1) - DIFF values

• With 'large signals' the DIFF calculus fits with the prediction, what about low-intensity beams?

D. Belohrad, J. Kral

Into the details (2) - DIFF values

• With 'large signals' the DIFF calculus fits with the prediction, what about low-intensity beams?

D. Belohrad, J. Kral

Analysis of the BCCM functionality

16

Into the details (3) - DIFF values

• With 'large signals' the DIFF calculus fits with the prediction, what about low-intensity beams?

D. Belohrad, J. Kral

Analysis of the scrubbing run

Scrubbing started on Saturday 25th July, finished \approx 7th August. Typical scrubbing run (single turn recalc):

D. Belohrad, J. Kral

Detail

D. Belohrad, J. Kral

Detail

cfo-ua47-bccm-b2a 140 / clo-ua47-bcom-b2a ABS 1T MAX / do-ua47-bcon-b2a ABS 4T MAX 120 / cfo-upd7-bccm-b2a ARS 16T MAX cfo-ua47-bccm+b2a ABS 64T MAX /cto-ua47-bcon-b2a ABS 256T MAX 100 to-us47-bcom-b2a ABS 1024T MAX Absolute [-] (x1e+12) 80 60 40 20 31 30 30 31 01 01 Jul - Aug, 2015 (x1e+09) 300 DIFF [-] (x1e+09) 200 100 _____ 0 ²⁰/24 -----THE 1 14 и назы

Into the details - Injection FBCT

• Injection: FBCT detects 'injection losses':

But they are 'fake'. Neither BCTI nor BCTW connected to BCCMs detect them.

D. Belohrad, J. Kral

Into the details - Injection ICT

• Injection: FBCT detects 'injection losses':

But they are 'fake'. Neither BCTI nor BCTW connected to BCCMs detect them.

D. Belohrad, J. Kral

Conclusions

- I have 'just started' the analysis of the 1.5 month data capture
- So far no dump request without a reason.
- For scrubbing, there is a clear limitation in what kind of signal is obtained from FBCT:
 - $\circ\,$ FBCT signal change during injection, measured by 1T can easily artificially create losses of $5{\times}10^{11}$ p/t
 - $\circ\,$ standard DIFF background during scrubbing requires at least $6{\times}10^{11}$ p/t threshold
- For physics the currently used thresholds are satisfactory, again limited by behaviour at injection
- The BCCMs using BCTI and BCTW much improve the measurement quality → no injection peaks, more understandable/predictable behaviour.
- Detailed analysis of the DIFF signal amplitude behaviour is ongoing.

Proposal

- make the system alive
- change the thresholds to satisfy both physics and scrubbing:
 - $\circ~$ single turn window to $1{\times}10^{12}$ >99% detection probability of $2{\times}10^{12}$
 - $\circ\,$ all other windows $6{\times}10^{11}$ >99% detection probability of $1.2{\times}10^{12},$ and not to cause spurious triggers during scrubbing on longer windows.
- $\bullet\,$ Then, depending of performance we might lower the 1T for other than 450GeV