Lattice Kaon Physics

An Overview

Chris Sachrajda

Department of Physics and Astronomy
University of Southampton
Southampton SO17 1BJ
UK

Kaon 2016
University of Birmingham
14-17 September 2016

Southâmperon
 School of Physics
 and Astronomy

1. Introduction

- The mission of lattice calculations is to evaluate hadronic effects.
- "Standard" lattice calculations in flavour physics are of matrix elements of local operators between single hadron states $\left\langle h_{2}\left(p_{2}\right)\right| O(0)\left|h_{1}\left(p_{1}\right)\right\rangle$ (or $\langle 0| O(0)|h(p)\rangle$).
- For example, in the evaluation of ϵ_{K}, we need to calculate (schematically)

(gluons and quark loops not shown.)
- The process is short-distance dominated and so we can approximate the above by a perturbatively calculable (Wilson) coefficient C times

where the black dot represents the insertion of the local operator $\left(\bar{s} \gamma_{\mu}\left(1-\gamma^{5}\right) d\right)\left(\bar{s} \gamma_{\mu}\left(1-\gamma^{5}\right) d\right)$.
- In the standard model only this single operator contributes.
- In generic BSM theories there are 5 possible $\Delta S=2$ operators contributing.

Such standard calculations have been performed for a long time!

Detailed record - Cited by 142 records
94. The Kaon B Parameter and K- pi and K- pi pi Transition Amplitudes on the Lattice
 Published in Nucl.Phys. B306 (1988) 677
CERN-TH-4905/87
DOI: 10.1016/0550-3213(88)90439-7
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
CERN Document Server; CERN Library Record
Detailed record - Cited by 133 records
95. Pion Structure Functions From Lattice \{QCD\}
G. Martinelli, Christopher T. Sachrajda (CERN). Jun 1987. 13 pp.

Published in Phys.Lett. B196 (1987) 184
CERN-TH-4766/87
DOI: 10.1016/0370-2693(87) $90601-0$
References | BibTeX I LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
CERN Document Server; ADS Abstract Service
Detailed record - Cited by 53 records 504 .
96. The Pion's structure function: A Lattice computation of the first two moments

Christopher T. Sachrajda (CERN \& Southampton U.). 1987.
Conference: C87-06-25
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
Detailed record
97. A Lattice Calculation of the Second Moment of the Pion's Distribution Amplitude
G. Martinelli, Christopher T. Sachrajda (CERN). Jan 1987. 12 pp.

Published in Phys.Lett. B190 (1987) 151
CERN-TH-4637-87
DOI: $10.1016 / 0370-2693(87) 90858-6$
References | BibTeX I LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
CERN Document Server; ADS Abstract Service
Detailed record - Cited by 70 records
98. Nucleon Wave Functions From Lattice Gauge Theories: Renormalization of Baryonic Operators
D.G. Richards, Christopher T. Sachrajda, C.J. Scott (Southampton U.). Sep 29, 1986. 32 pp.

Published in Nucl.Phys. B286 (1987) 683
SHEP-85-86-24
DOI: 10.1016/0550-3213(87)90459-7
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
CERN Library Record

- In recent years the precision with which such standard quantities can be computed has improved immensely.
- Computations can now be performed at with $2,2+1,2+1+1$ dynamical quarks at physical masses.
- Some sample results from the FLAG collaboration:

	$N_{f}=2$	$N_{f}=2+1$	$N_{f}=2+1+1$
f_{K} / f_{π}	$1.205(6)(17)$	$1.192(5)$	$1.193(3)$
\hat{B}_{K}	$0.727(22)(12)$	$0.7625(97)$	$0.717(18)(16)$
$f_{+}(0)$	$0.9560(57)(62)$	$0.9677(27)$	$0.9704(24)(22)$

- Lattice studies of neutral-kaon mixing will be reviewed by Weonjong Lee.
- In this talk I want to introduce some new directions in lattice kaon physics \Rightarrow prospectus for Kaon 2019.
- The topics will then be discussed in more detail in the following talks.

New Directions in Lattice Kaon Physics

Outline of talk:

11 Introduction
2. Isospin breaking contributions to decay amplitudes
G.Martinelli
X.Feng

3 Long-distance contributions to flavour changing processes

$$
\iint d^{4} x d^{4} y\langle f| T\left[Q_{1}(x) Q_{2}(y)\right]|i\rangle .
$$

(a) Δm_{K} and ϵ_{K}
(b) Rare kaon decays
(4) $K \rightarrow \pi \pi$ decays.
N.Garron
(5) Summary and conclusions

Thank you to my collaborators from the RBC-UKQCD Collaboration and from Rome (em corrections) for such stimulating collaborations on the topics of this talk.

- "Standard" QCD calculations have been performed in the isospin limit, i.e. with $m_{u}=m_{d}$, so to improve the precision still further isospin breaking effects (including electromagnetism) need to be included.
- These are

$$
O\left(\frac{m_{u}-m_{d}}{\Lambda_{\mathrm{QCD}}}\right) \text { and } O(\alpha)
$$

i.e. $O(1 \%)$ or so.

- Such calculations for the spectrum have been performed for a few years now, with perhaps the most noteworthy result being

BMW Collaboration, arXiv:1406.4088

$$
m_{n}-m_{p}=1.51(16)(23) \mathrm{MeV}
$$

to be compared to the experimental value of $1.2933322(4) \mathrm{MeV}$.

- I stress that including electromagnetic effects, where the photon is massless of course, required considerable theoretical progress, e.g.

$$
\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}} \cdots \Rightarrow \frac{1}{L^{3} T} \sum_{k} \frac{1}{k^{2}} \cdots
$$

and we have to control the contribution of the zero mode in the sum.
－Calculating electromagnetic corrections to decay amplitudes has an added major complication，not present in computations of the spectrum，
the presence of infrared divergences
－This implies that when studying weak decays，such as e．g．$K^{+} \rightarrow \ell^{+} \nu$ the physical observable must include soft photons in the final state

$$
\Gamma\left(K^{+} \rightarrow \ell^{+} \nu_{\ell}(\gamma)\right)=\Gamma\left(K^{+} \rightarrow \ell^{+} \nu_{\ell}\right)+\Gamma\left(K^{+} \rightarrow \ell^{+} \nu_{\ell} \gamma\right) .
$$

F．Bloch and A．Nordsieck，PR $\underline{52}$（1937） 54
－Last year we proposed a method for including electromagnetic corrections in decay amplitudes and are developing it further as well as testing it numerically．

N．Carrasco et al．，arXiv：1502．00257
－I stress that in order to implement this method successfully，it will be be necessary to work with the experimental community to ensure that we are calculating quantities which correspond to the experimental measurements．

3（a）－Long－Distance Effects－The $K_{L}-K_{S}$ Mass Difference

> N.H.Christ, T.Izubuchi, CTS, A.Soni \& J.Yu (RBC-UKQCD), arXiv:1212.5931
> Z.Bai, N.H.Christ, T.Izubuchi, CTS, A.Soni \& J.Yu (RBC-UKQCD), arXiv:1406.0916
> Z.Bai (RBC-UKQCD), arXiv:1411.3210

$$
\Delta m_{K} \equiv m_{K_{L}}-m_{K_{S}}=3.483(6) \times 10^{-12} \mathrm{MeV}
$$

－Historically led to the prediction of the energy scale of the charm quark．
Mohapatra，Rao \＆Marshak（1968）；GIM（1970）；Gaillard \＆Lee（1974）
－Tiny quantity \Rightarrow places strong constraints on BSM Physics．
－Within the standard model，Δm_{K} arises from $K^{0}-\bar{K}^{0}$ mixing at second order in the weak interactions：

$$
\Delta m_{K}=2 \mathcal{P} \sum_{\alpha} \frac{\left\langle\bar{K}^{0}\right| H_{W}|\alpha\rangle\langle\alpha| H_{W}\left|K^{0}\right\rangle}{m_{K}-E_{\alpha}},
$$

where the sum over $|\alpha\rangle$ includes an energy－momentum integral．
－I will use Δm_{K} to illustrate generic features present in the evaluation of long－distance effects．

The fiducial volume

- How do you prepare the states $h_{1,2}$ in the generic integrated correlation function:

$$
\int d^{4} x \int d^{4} y\left\langle h_{2}\right| T\left\{O_{1}(x) O_{2}(y)\right\}\left|h_{1}\right\rangle,
$$

when the time of the operators is integrated?

- The practical solution is to integrate over a large subinterval in time $t_{A} \leq t_{x, y} \leq t_{B}$, but to create h_{1} and to annihilate h_{2} well outside of this region.
- This is the natural modification of standard field theory for which the asymptotic states are prepared at $t \rightarrow \pm \infty$ and then the operators are integrated over all time.
- This approach has been successfully implemented in the projects which will be reviewed by Xu Feng.

- Δm_{K} is given by

$$
\Delta m_{K} \equiv m_{K_{L}}-m_{K_{S}}=2 \mathcal{P} \sum_{\alpha} \frac{\left\langle\bar{K}^{0}\right| \mathcal{H}_{W}|\alpha\rangle\langle\alpha| \mathcal{H}_{W}\left|K^{0}\right\rangle}{m_{K}-E_{\alpha}}=3.483(6) \times 10^{-12} \mathrm{MeV} .
$$

- The above correlation function gives $\left(T=t_{B}-t_{A}+1\right)$

$$
\begin{aligned}
C_{4}\left(t_{A}, t_{B} ; t_{i}, t_{f}\right)=\left|Z_{K}\right|^{2} e^{-m_{K}\left(t_{f}-t_{i}\right)} & \sum_{n} \frac{\left\langle\bar{K}^{0}\right| \mathcal{H}_{W}|n\rangle\langle n| \mathcal{H}_{W}\left|K^{0}\right\rangle}{\left(m_{K}-E_{n}\right)^{2}} \times \\
& \left\{e^{\left(M_{K}-E_{n}\right) T}-\left(m_{K}-E_{n}\right) T-1\right\} .
\end{aligned}
$$

- From the coefficient of T we can therefore obtain

$$
\Delta m_{K}^{\mathrm{FV}} \equiv 2 \sum_{n} \frac{\left\langle\bar{K}^{0}\right| \mathcal{H}_{W}|n\rangle\langle n| \mathcal{H}_{W}\left|K^{0}\right\rangle}{\left(m_{K}-E_{n}\right)} .
$$

Exponentially growing exponentials

$C_{4}\left(t_{A}, t_{B} ; t_{i}, t_{f}\right)=\left|Z_{K}\right|^{2} e^{-m_{K}\left(t_{f}-t_{i}\right)} \sum_{n} \frac{\left\langle\bar{K}^{0}\right| \mathcal{H}_{W}|n\rangle\langle n| \mathcal{H}_{W}\left|K^{0}\right\rangle}{\left(m_{K}-E_{n}\right)^{2}} \times$

$$
\left\{e^{\left(M_{K}-E_{n}\right) T}-\left(m_{K}-E_{n}\right) T-1\right\}
$$

- The presence of terms which (potentially) grow exponentially in T is a generic feature of calculations of matrix elements of bilocal operators.

Ultraviolet divergences in the calculation of Δm_{K}

- The $\Delta S=1$ effective Weak Hamiltonian takes the form:

$$
H_{W}=\frac{G_{F}}{\sqrt{2}} \sum_{q, q^{\prime}=u, c} V_{q d} V_{q^{\prime} s}^{*}\left(C_{1} Q_{1}^{q q^{\prime}}+C_{2} Q_{2}^{q q^{\prime}}\right)
$$

where the $\left\{Q_{i}^{q q^{\prime}}\right\}_{i=1,2}$ are current-current operators, defined as:

$$
\begin{aligned}
& Q_{1}^{q q^{\prime}}=\left(\bar{s}_{i} \gamma^{\mu}\left(1-\gamma^{5}\right) d_{i}\right)\left(\bar{q}_{j} \gamma^{\mu}\left(1-\gamma^{5}\right) q_{j}^{\prime}\right) \\
& Q_{2}^{q q^{\prime}}=\left(\bar{s}_{i} \gamma^{\mu}\left(1-\gamma^{5}\right) d_{j}\right)\left(\bar{q}_{j} \gamma^{\mu}\left(1-\gamma^{5}\right) q_{i}^{\prime}\right) .
\end{aligned}
$$

- As the two H_{W} approach each other, we have the potential of new ultraviolet divergences.
- Taking the u-quark component of the operators \Rightarrow a quadratic divergence.

- GIM mechanism \& $V-A$ nature of the currents \Rightarrow elimination of both quadratic and logarithmic divergences.
- This is not the case for ϵ_{K} or for $K \rightarrow \pi \nu \bar{\nu}$ rare kaons decays.
－We reported on a full calculation of Δm_{K} on a $24^{3} \times 64 \times 16$ lattice（with DWF and the Iwasaki gauge action），$m_{\pi}=330 \mathrm{MeV}, m_{K}=575 \mathrm{MeV}, m_{c}^{\overline{\mathrm{Ms}}}(2 \mathrm{GeV})=949 \mathrm{MeV}$ ， $\left(1 / a=1.729(28) \mathrm{GeV}\right.$ and $\left.a m_{\text {res }}=0.00308(4)\right)$ ．
－At these unphysical parameters we find

$$
\Delta m_{K}=3.19(41)(96) \times 10^{-12} \mathrm{MeV}
$$

to be compared to the physical value $3.483(6) \times 10^{-12} \mathrm{MeV}$ ．
－Agreement with physical value may well be fortuitous，but it is nevertheless reassuring to obtain results of the correct order．
－Systematic error dominated by discretization effects related to the charm quark mass，which we estimate at 30% ．
－Here $m_{K}<2 m_{\pi}$ and so we do not have exponentially growing two－pion terms．
－Ziyuan Bai later reported on an exploratory calculation with $m_{\pi}=171 \mathrm{MeV}$ ， $m_{K}=492 \mathrm{MeV}$ and with two unphysical c－quark masses aimed at studying the contribution from two－pion intermediate states．
－Two－pion contribution to Δm_{K} is very small and the corresponding finite－volume corrections were negligible．

Z．Bai，arXiv：1411．3210

Δm_{K} and ϵ_{K}

- Examples of the slopes for Δm_{K}

- At lattice 2016 this July, Z.Bai presented his latest exploratory studies of the long-distance contributions to ϵ_{K}, albeit at unphysical masses. He showed that he was able to perform the renormalization with the bilinear operators.
- Conclusion - We now understand how to perform these calculations, which will be performed on the next generation of machines - timescale O(2-3 years).
- The FCNC rare-kaon decays $K \rightarrow \pi \ell^{+} \ell^{-}$or $K \rightarrow \pi \nu \bar{\nu}$ are, as we all know, particularly important in tests of the Standard Model and hence in signatures of New Physics.
- The evaluation of the long-distance contributions to the amplitudes for rare kaon decays $K \rightarrow \pi \ell^{+} \ell^{-}$or $K \rightarrow \pi \nu \bar{\nu}$ also requires the evaluation of matrix elements of the form

$$
\iint d^{4} x d^{4} y\langle f| T\left[Q_{1}(x) Q_{2}(y)\right]|i\rangle .
$$

- The general features we have seen for Δm_{K} and ϵ_{K} are also present here:
- The requirement to define a fiducial volume.
- The presence of exponentially growing terms when there are intermediate states lighter than the kaon.
- The need, in general, to control the additional UV divergences as Q_{1} and Q_{2} approach each other.

The rare kaon decays $K^{+} \rightarrow \pi^{+} \ell^{+} \ell^{-}$and $K_{S} \rightarrow \pi^{0} \ell^{+} \ell^{-}$

$$
\begin{aligned}
T_{i}^{\mu} & =\int d^{4} x e^{-i q \cdot x}\langle\pi(p)| \mathrm{T}\left\{J_{\mathrm{em}}^{\mu}(x) Q_{i}(0)\right\}|K(k)\rangle \\
& =\frac{\omega_{i}\left(q^{2}\right)}{(4 \pi)^{2}}\left\{q^{2}(p+k)^{\mu}-\left(m_{K}^{2}-m_{\pi}^{2}\right) q^{\mu}\right\}
\end{aligned}
$$

- The CP-conserving decays $K^{+} \rightarrow \pi^{+} \ell^{+} \ell^{-}$and $K_{S} \rightarrow \pi^{0} \ell^{+} \ell^{-}$are dominated by long-distance hadronic effects induced by single photon exchange.
- Lattice QCD results can be compared with experimental data and with ChPT-based phenomenological results.
- Results for K_{S} decays \Rightarrow evaluation of the significant interference between direct and indirect CP-violation in $K_{L} \rightarrow \pi^{-} \ell^{+} \ell^{-}$decays.
- The theoretical framework for computing $K^{+} \rightarrow \pi^{+} \ell^{+} \ell^{-}$and $K_{S} \rightarrow \pi^{0} \ell^{+} \ell^{-}$decay amplitudes was presented in N.H.Christ, X.Feng, A.Portelli and CTS, arXiv:1507.03094
- If the conserved electromagnetic current is used for J_{em} and we work in the four-flavour theory then GIM \Rightarrow that there are no additional divergences as J_{em} and Q_{i} approach each other.
G.Isidori, G.Martinelli and P.Turchetti, hep-lat/0506026

This is not possible for $K \rightarrow \pi \nu \bar{\nu}$ decays.
Talk by X.Feng

- This framework was very recently used to perform the first exploratory numerical calculations for $K^{+} \rightarrow \pi^{+} \ell^{+} \ell^{-}$decays.
N.H.Christ et al., arXiv:1608.07585

Many diagrams to evaluate!

- For example for K^{+}decays we need to evaluate the diagrams obtained by inserting the current at all possible locations in the three point function (and adding the disconnected diagrams):

W

C

- $W=$ Wing, $C=$ Connected, $S=$ Saucer, $E=E y e$.
- For K_{S} decays there is an additional topology with a gluonic intermediate state.

Exploratory numerical study

N.Christ, X.Feng, A.Jüttner, A.Lawson, A.Portelli and CTS, arXiv:1608.07585

- The numerical study is performed on the $24^{3} \times 64$ DWF+lwasaki RBC-UKQCD ensembles with $m_{\pi} \simeq 430 \mathrm{MeV}, m_{K} \simeq 625 \mathrm{MeV}, m_{c}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV}) \simeq 530 \mathrm{MeV}$, $a^{-1} \simeq 1.73 \mathrm{fm}$.
- 128 configurations were used with $\vec{k}=\overrightarrow{0}$ and $\vec{p}=(1,0,0),(1,1,0)$ and ($1,1,1$) in units of $2 \pi / L$. (The $(1,1,1)$ case is still being completed.)
- With this kinematics we are in the unphysical region, $q^{2}<0$.
- The charm quark is also lighter than physical .
- The calculation is performed using the conserved vector current (5-dimensional).

Method 2 for $\vec{p}=(\mathbf{1}, \mathbf{0}, \mathbf{0})$

N.Christ, X.Feng, A.Jüttner, A.Lawson, A.Portelli and CTS, arXiv:1608.07585

$$
A_{0}\left(q^{2}\right)=-0.0027(6)
$$

- I don't need to mention at this meeting that these FCNC processes provide ideal probes for the observation of new physics effects.
- The dominant contributions from the top quark \Rightarrow they are also very sensitive to $V_{t s}$ and $V_{t d}$.
- Experimental results and bounds:

$$
\begin{aligned}
\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)_{\exp }= & 1.73_{-1.05}^{+1.15} \times 10^{-10} \\
\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right) \leq & \text { A.Artamonov et al. (E949), arXiv:0808.2459 } \\
& \text { J.Ahn et al. (E291a), arXiv:0911.4789 }
\end{aligned}
$$

- Sample recent theoretical predictions:

$$
\begin{aligned}
\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)_{\mathrm{SM}} & =(9.11 \pm 0.72) \times 10^{-11} \\
\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)_{\mathrm{SM}} & =(3.00 \pm 0.30) \times 10^{-11}
\end{aligned}
$$

A.Buras, D.Buttazzo, J.Girrbach-Noe, R.Knejgens, arXiv:1503.02693

- To what extent can lattice calculations reduce the theoretical uncertainty?
- $K \rightarrow \pi \nu \bar{\nu}$ decays are SD dominated and the hadronic effects can be determined from CC semileptonic decays such as $K^{+} \rightarrow \pi^{0} e^{+} \nu$.
- LD contributions, i.e. contributions from distances greater than $1 / m_{c}$ are negligible for K_{L} decays and are expected to be $\leq 5 \%$ for for K^{+}decays.
- K_{L} decays are therefore one of the cleanest places to search for the effects of new physics.
- The aim of our study is to compute the LD effects in K^{+}decays.

These provide a significant, if probably still subdominant, contribution to the theoretical uncertainty (which is dominated by the uncertainties in CKM matrix elements).

- A phenomenological estimate of the long distance effects, estimated these to enhance the branching fraction by 6% with an uncertainty of 3%.
G.Isidori, F.Mescia and C.Smith, hep-ph/0503107
- Lattice QCD can provide a first-principles determination of the LD contribution with controlled errors.
- Given the NA62 experiment, it is timely to perform a lattice QCD calculation of these effects.
- For this doubly weak decay there are a number of novel diagrams to evaluate:

WW-diagrams

$$
\begin{gathered}
\mathcal{H}_{\mathrm{eff}}^{\mathrm{LO}}=\frac{G_{F}}{\sqrt{2}} \sum_{q, \ell}\left(V_{q S}^{*} O_{q \ell}^{\Delta S=1}+V_{q d} O_{q \ell}^{\Delta S=0}\right)+\frac{G_{F}}{\sqrt{2}} \sum_{q} \lambda_{q} O_{q}^{W}+\frac{G_{F}}{\sqrt{2}} \sum_{\ell} O_{\ell}^{Z} \\
O_{q \ell}^{\Delta S=1}=C_{\Delta S=1}^{\overline{\mathrm{MS}}}(\mu)\left[(\bar{s} q)_{V-A}\left(\bar{\nu}_{\ell} \ell\right)_{V-A}\right]^{\overline{\mathrm{MS}}}(\mu) \\
O_{q \ell}^{\Delta S=0}=C_{\Delta S=0}^{\overline{\mathrm{MS}}}(\mu)\left[\left(\bar{\ell} \nu_{\ell}\right)_{V-A}(\bar{q} d)_{V-A}\right]^{\overline{\mathrm{MS}}}(\mu)
\end{gathered}
$$

Z-exchange diagrams

$$
\begin{gathered}
\mathcal{H}_{\mathrm{eff}}^{\mathrm{LO}}=\frac{G_{F}}{\sqrt{2}} \sum_{q, \ell}\left(V_{q S}^{*} \Delta_{q \ell}^{\Delta S=1}+V_{q d} O_{q \ell}^{\Delta S=0}\right)+\frac{G_{F}}{\sqrt{2}} \sum_{q} \lambda_{q} O_{q}^{W}+\frac{G_{F}}{\sqrt{2}} \sum_{\ell} O_{\ell}^{Z}, \\
O_{q}^{W} \\
=C_{1}^{\overline{\mathrm{MS}}}(\mu) Q_{1, q}^{\overline{\mathrm{MS}}}(\mu)+C_{2}^{\overline{\mathrm{MS}}}(\mu) Q_{2, q}^{\overline{\mathrm{MS}}}(\mu), \\
O_{\ell}^{Z}
\end{gathered}=C_{Z}^{\overline{\mathrm{MS}}}(\mu)\left[J_{\mu}^{z} \bar{\nu}_{\ell} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{\ell}\right]^{\overline{\mathrm{MS}}}(\mu), ~ \$
$$

- The general issues encountered in computing long-distance effects (additional ultra-violet divergences, subtraction or suppression of growing unphysical exponential terms and FV effects which fall as powers of the volume) must also be dealt with here.
- An important element of this paper is a detailed explanation of how to handle the additional ultra-violet divergences, eliminating the need to perform perturbation theory at scales of $O\left(m_{c}\right)$.
- An exploratory study of $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$ decays is also underway and the parameters and preliminary results will be presented by Xu Feng in his talk.
- In 2015 RBC-UKQCD published our first result for $\epsilon^{\prime} / \epsilon$ computed at physical quark masses and kinematics, albeit still with large errors:

$$
\left.\frac{\epsilon^{\prime}}{\epsilon}\right|_{\mathrm{RBC}-\mathrm{UKQCD}}=(1.38 \pm 5.15 \pm 4.59) \times 10^{-4}
$$

to be compared with

$$
\left.\frac{\epsilon^{\prime}}{\epsilon}\right|_{\operatorname{Exp}}=(16.6 \pm 2.3) \times 10^{-4}
$$

RBC-UKQCD, arXiv:1505.07863

- This is by far the most complicated project that I have ever been involved with.
- This single result hides much important (and much more precise) information which we have determined along the way.
- In this section I will review the main obstacles to computing $K \rightarrow \pi \pi$ decay amplitudes, the techniques used to overcome them and our main results.

The Maiani－Testa Theorem

－$K \rightarrow \pi \pi$ correlation function is dominated by lightest state，e．g．for $I=2$ with $\vec{p}_{K}=0$ this is the state with two－pions at rest．Maiani and Testa，PL B245（1990） 585

$$
C\left(t_{\pi}\right)=A_{1} e^{-2 m_{\pi} t_{\pi}}+A_{2} e^{-2 E_{\pi} t_{\pi}}+\cdots
$$

（For $I=0$ there is also a constant term A_{0} on the right－hand side．）
－Solution 1：Study an excited state．
Lellouch and Lüscher，hep－lat／0003023
－Solution 2：Introduce suitable boundary conditions such that the $\pi \pi$ ground state is $|\pi(\vec{q}) \pi(-\vec{q})\rangle$ ．

RBC－UKQCD，C．h．Kim hep－lat／0311003
（For B－decays，with so many intermediate states below threshold，this is the main obstacle to producing reliable calculations．）

- Requiring that the $E_{\pi \pi}^{0}=m_{K} \Rightarrow$ the volume must be tuned accordingly. non-trivial
- Moreover - since the two-pion potential is attractive in the $I=0$ channel and repulsive in the $I=2$ channel, on a given volume

$$
E_{\pi \pi}^{0, I=0}<E_{\pi \pi}^{0, I=2}
$$

and the tuning has to be done separately in each channel.

- For the evaluation of A_{2}, it is sufficient to impose antiperiodic boundary conditions for the d-quark.
- Isospin breaking by the boundary conditions is harmless here.

CTS \& G.Villadoro, hep-lat/0411033

- For A_{0} this is not possible and we have had to develop the implementation of G-parity boundary conditions in which $(u, d) \rightarrow(\bar{d},-\bar{u})$ at the boundary .
U. Wiese, Nucl.Phys. B375 (1992) 45 , RBC-UKQCD, C.h.Kim hep-lat/0311003
- This has been the key development making the calculation of A_{0} possible.

Results for A_{2}

－Our first results for A_{2} at physical kinematics were obtained at a single，rather coarse，value of the lattice spacing（ $a \simeq 0.14 \mathrm{fm}$ ）．Estimated discretization errors at 15\％．
－Our recent results were obtained on two new ensembles， 48^{3} with $a \simeq 0.11 \mathrm{fm}$ and 64^{3} with $a \simeq 0.084 \mathrm{fm}$ so that we can make a continuum extrapolation：

$$
\begin{aligned}
& \operatorname{Re}\left(A_{2}\right)=1.50(4)_{\text {stat }}(14)_{\text {syst }} \times 10^{-8} \mathrm{GeV} \\
& \operatorname{Im}\left(A_{2}\right)=-6.99(20)_{\text {stat }}(84)_{\text {syst }} \times 10^{-13} \mathrm{GeV}
\end{aligned}
$$

arXiv：1502．00263
－（The experimental result is $\operatorname{Re}\left(A_{2}\right)=1.4787(31) \times 10^{-8} . \operatorname{Im}\left(A_{2}\right)$ is unknown．）
－Although the precision can still be significantly improved（partly by perturbative calculations），the calculation of A_{2} at physical kinematics can now be considered as standard．

Calculation of A_{0}

- The calculation is much more difficult for the $K \rightarrow(\pi \pi)_{I=0}$ amplitude A_{0} :
- G-parity boundary conditions, disconnected diagrams, vacuum subtraction, ultra-violet power divergences, \cdots

$=\left|\pi^{+}(\pi / L) \pi^{-}(-\pi / L)\right\rangle$ has a different energy from $\left|\pi^{0}(\overrightarrow{0}) \pi^{0}(\overrightarrow{0})\right\rangle$.
- We have developed the implementation of G-parity boundary conditions in which $(u, d) \rightarrow(\bar{d},-\bar{u})$ at the boundary .
U. Wiese, Nucl.Phys. B375 (1992) 45 , RBC-UKQCD, C.h.Kim hep-lat/0311003
- Computations were performed on a $32^{3} \times 64$ lattice with the Iwasaki and DSDR gauge action and $N_{f}=2+1$ flavours of Möbius Domain Wall Fermions

$$
a^{-1}=1.379(7) \mathrm{GeV}, m_{\pi}=143.2(2.0) \mathrm{MeV},\left(E_{\pi}=274.8(1.4) \mathrm{MeV}\right)
$$

- The $\pi \pi$ energies are

$$
E_{\pi \pi}^{I=0}=(498 \pm 11) \mathrm{MeV} \quad E_{\pi \pi}^{I=2}=(565.7 \pm 1.0) \mathrm{MeV}
$$

to be compared with $m_{K}=(490.6 \pm 2.4) \mathrm{MeV}$.

- Results:

$$
\begin{aligned}
\operatorname{Re}\left(A_{0}\right) & =4.66(1.00)(1.26) \times 10^{-7} \mathrm{GeV} \\
\operatorname{Im}\left(A_{0}\right) & =-1.90(1.23)(1.08) \times 10^{-11} \mathrm{GeV} \\
\operatorname{Re} \frac{\epsilon^{\prime}}{\epsilon} & =1.38(5.15)(4.59) \times 10^{-4}
\end{aligned}
$$

to be compared to the experimental results $\operatorname{Re}\left(A_{0}\right)=3.3201(18) \times 10^{-7} \mathrm{GeV}$ and $\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)=16.6(2.3) \times 10^{-4}$.

Two features from the calculations

- Lüscher's quantisation condition $\Rightarrow E_{\pi \pi}^{I=0}$ corresponds to $\delta_{0}\left(m_{K}\right)=(23.8 \pm 4.9 \pm 1.2)^{\circ}$, which is somewhat smaller than phenomenological expectations.
- For $I=2$ are results are in line with expectations.
- $\operatorname{Re} A_{2}$ is dominated by a simple operator:

$$
O_{(27,1)}^{3 / 2}=\left(\bar{s}^{i} d^{i}\right)_{L}\left\{\left(\bar{u}^{j} u^{j}\right)_{L}-\left(\bar{d}^{j} d^{j}\right)_{L}\right\}+\left(\bar{s}^{i} u^{i}\right)_{L}\left(\bar{u}^{j} d^{j}\right)_{L}
$$

and two diagrams:

- $\operatorname{Re} A_{2}$ is proportional to $C_{1}+C_{2}$.
- The two dominant contributions to A_{2} have opposite signs \Rightarrow significant cancellation \Rightarrow major contribution to the $\Delta I=1 / 2$ rule.
This is confirmed on our latest computation of A_{2}

- For "standard" quantities such as $f_{K} / f_{\pi}, B_{K}$ or $f^{+}(0)$, the precision of lattice calculations is now $O(1 \%)$ or better.

FLAG collaboration, arXiv:1607.00299

- To push precision flavour physics still further, therefore requires control of:
- IB effects, including electromagnetic corrections;
- long-distance contributions.
- $\ln K \rightarrow \pi \pi$ decays

Talk by Guido Martinelli
Talk by Xu Feng
Talk by Nicolas Garron
as a result of our work, the computation of A_{2} is now fully controlled (and becoming "standard");

- the $\Delta I=1 / 2$ rule has a number of components, of which the significant cancelation between the two dominant contributions to $\operatorname{Re} A_{2}$ is a major one.
- We have completed the first calculation of $\epsilon^{\prime} / \epsilon$ with controlled errors \Rightarrow motivation for further refinement (systematic improvement by collecting more statistics, working on larger volumes, ≥ 2 lattice spacings etc.)
$\square \epsilon^{\prime} / \epsilon$ is now a quantity which is amenable to lattice computations.

