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RBC-UKQCD collaborations

This talk is based on a work done by the RBC-UKQCD Collaboration
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RBC-UKQCD collaborations and Chiral symmetry

An important Feature of our collaboration

We work with Domain-Wall fermions

⇒ At finite lattice spacing, Chiral-Flavour symmetry are preserved

Numerically more expensive (harder to accumulate statistic)

But we can compute quantities which are very hard for other (cheaper)
formulations

Computation of K → ππ almost hopeless without chiral fermions
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RBC-UKQCD collaborations and Chiral symmetry

An important Feature of our collaboration

We work with Domain-Wall fermions

⇒ At finite lattice spacing, Chiral-Flavour symmetry are preserved “almost exactly”

Numerically more expensive (harder to accumulate statistic)

But we can compute quantities which are very hard for other (cheaper)
formulations

Computation of K → ππ almost hopeless without chiral fermions

Although there is a computation at threshold done with Wilson fermions Ishizuka, Ishikawa, Ukawa, Yoshié ’15

The authors use a clever trick to avoid the dangerous mixing with lower dimension operators
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Going light

RBC-UKQCD Nf = 2 + 1 DWF - Landscape (since 2008)
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K → ππ and CP violation
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Background: Kaon decays and CP violation

First discovery of CP violation was made in kaon system in 1964 (Christenson, Cronin, Fitch and Turlay)

Noble prize in 1980 (Cronin and Fitch)

Direct CP violation discovered in kaon decays [NA31, KTeV, NA48, ’90-99]

Very nice measurements of both direct and indirect CP violation (numbers from [PDG 2011])
Indirect |ε| = (2.228± 0.011)× 10−3

Direct Re
(
ε′
ε

)
= (1.65± 0.26)× 10−3

Theoretically:

Relate indirect CP violation parameter (ε) to neutral kaon mixing (BK )

BK is now computed on the lattice with a few-percent precision

But the first realistic theoretical computstion of ε′ has only been achieved last year

Sensitivity to new physics expected
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Background: Kaon decays and CP violation

Flavour eigenstates

(
K 0 = s̄γ5d

K
0

= d̄γ5s

)
6= CP eigenstates |K 0

±〉 = 1√
2
{|K 0〉 ∓ |K 0〉}

They are mixed in the physical eigenstates

 |KL〉 ∼ |K 0
−〉 + ε|K 0

+〉

|KS〉 ∼ |K 0
+〉 + ε|K 0

−〉

Direct and indirect CP violation in K → ππ

direct : 

indirect : 

ε’

ε |ππ〉

|ππ〉

|KL〉 ∝ |K−〉 + ε|K+〉

ε =
A(KL → (ππ)I=0)

A(KS → (ππ)I=0)
= |ε|e iφε ∼ ε̄
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K → ππ amplitudes

Two isospin channels: ∆I = 1/2 and ∆I = 3/2

K → (ππ)I=0,2

Corresponding amplitudes defined as

A[K → (ππ)I] = AI exp(iδI) /w I = 0, 2 δ = strong phases

∆I = 1/2 rule

ω =
ReA2

ReAo
∼ 1/22 (experimental number)

Amplitudes are related to the parameters of CP violation ε, ε′ via ( in the isospin limit)

ε
′ =

iω exp(iδ2 − δ0)
√

2

[
Im(A2)

ReA2
−

ImA0

ReA0

]

ε = e iφε

[
Im〈K̄ 0|H∆S=2

eff |K
0〉

∆mK

+
ImA0

ReA0

]

⇒ Related to K 0 − K̄ 0 mixing
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Overview of the computation
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Overview of the computation

Operator Product expansion

d̄

s̄

d

ū

u
W −→

s̄

d

ū

u

d̄

In the Nf = 3 theory, describe K → (ππ)I=0,2 with an effective Hamiltonian [Buchalla, Buras,
Lautenbacher ’96]

H∆s=1 =
GF√

2

{ 10∑
i=1

(
VudV

∗
uszi (µ)− VtdV

∗
ts yi (µ)

)
Qi (µ)

}

Amplitude given by A ∝ 〈ππ|H∆s=1|K〉

Short distance effects factorized in the Wilson coefficients yi , zi , computed at NLO in [BBL ’96]

Long distance effects factorized in the matrix elements

〈ππ|Qi (µ)|K〉 −→ task for the Lattice

See reviews by [Buras, Christ @ Kaon’09, Lellouch @ Les Houches’09, Sachrajda @ Lattice ’10], . . .
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4-quark operators

Current diagrams

s

W

u u

d

Q1 = (s̄d)V−A(ūu)V−A Q2 = color mixed
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4-quark operators

Electroweak penguins

s
W

u, c, t u, c, t

u u

d

γ

Q7 =
3

2
(s̄d)V−A

∑
q=u,d,s

eq(q̄q)V+A Q8 = color mixed

Q9 =
3

2
(s̄d)V−A

∑
q=u,d,s

eq(q̄q)V−A Q10 = color mixed
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4-quark operators

QCD penguins

s
W

u, c, t u, c, t

u u

d

g

Q3 = (s̄d)V−A

∑
q=u,d,s

(q̄q)V−A Q4 = color mixed

Q5 = (s̄d)V−A

∑
q=u,d,s

(q̄q)V+A Q6 = color mixed
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SU(3)L ⊗ SU(3)R and isospin decomposition

Irrep of SU(3)L ⊗ SU(3)R

3⊗ 3 = 8 + 1

8⊗ 8 = 27 + 10 + 10 + 8 + 8 + 1

Relevant operators transform under (27, 1), (8, 8) and (8, 1) of SU(3)L ⊗ SU(3)R

Decomposition of the 4-quark operators gives

Q1,2 = Q
(27,1),∆I=3/2
1,2 + Q

(27,1),∆I=1/2
1,2 + Q

(8,8),∆I=1/2
1,2

Q3,4 = Q
(8,1),∆I=1/2
3,4

Q5,6 = Q
(8,1),∆I=1/2
5,6

Q7,8 = Q
(8,8),∆I=3/2
7,8 + Q

(8,8),∆I=1/2
7,8

Q9,10 = Q
(27,1),∆I=3/2
9,10 + Q

(27,1),∆I=1/2
9,10 + Q

(8,8),∆I=1/2
9,10

see eg [Claude Bernard @ TASI’89] and [RBC’01]
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SU(3)L ⊗ SU(3)R and isospin decomposition

In four dimension, using Fierz transformation, one observes that

Q1 + Q4 = Q2 + Q3

3Q1 − Q3 = 2Q9

Q1 − Q3 = 2(Q10 − Q2)

We build a 7-operator basis Q′, each operator transforms under a given irrep of SU(3)L ⊗ SU(3)R

However in 4 + ε dimensions, these 10 operators are independent

Choice of evanescent operators ⇔ defines the MS scheme

Our 7-operator basis

Q′1 = 3Q1 + 2Q2 − Q3 (27, 1)

Q′2 =
1

5
(2Q1 − 2Q2 + Q3) (8, 1)

Q′3 =
1

5
(−3Q1 + 3Q2 + Q3) (8, 1)

Q′5,6,7,8i = Q5,6,7,8 (8, 8)
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SU(3)L ⊗ SU(3)R and isospin decomposition

(27, 1) Q′1 = Q′1
(27,1),∆I=3/2

+ Q′1
(27,1),∆I=1/2

(8, 1) Q′2 = Q′2
(8,1),∆I=1/2

Q′3 = Q′3
(8,1),∆I=1/2

Q′5 = Q′5
(8,1),∆I=1/2

Q′6 = Q′6
(8,1),∆I=1/2

(8, 8) Q′7 = Q′7
(8,8),∆I=3/2

+ Q′7
(8,8),∆I=1/2

Q′8 = Q′8
(8,8),∆I=3/2

+ Q′8
(8,8),∆I=1/2
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SU(3)L ⊗ SU(3)R and isospin decomposition

(27, 1) Q′1 = Q′1
(27,1),∆I=3/2

+ Q′1
(27,1),∆I=1/2

(8, 1) Q′2 = Q′2
(8,1),∆I=1/2

Q′3 = Q′3
(8,1),∆I=1/2

Q′5 = Q′5
(8,1),∆I=1/2

Q′6 = Q′6
(8,1),∆I=1/2

(8, 8) Q′7 = Q′7
(8,8),∆I=3/2

+ Q′7
(8,8),∆I=1/2

Q′8 = Q′8
(8,8),∆I=3/2

+ Q′8
(8,8),∆I=1/2

Only 3 operators contribute to the ∆I = 3/2 channel
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Lattice computation 〈ππ|Qi |K 〉
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Lattice computation 〈ππ|Qi |K 〉

Three main ingredients

The finite volume bare matrix elements 〈ππ|Qi |K 〉bareFV

The renormalization Matrix Zij

The phase shift (Lellouch-Lüscher factor)
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Simulating the physical kinematics

We want to extract the physical 2-pion state with momenta p = |~pπ|

2
√
p2 + m2

π = Eππ = mK

On the lattice, we extract the matrix elements by fitting a correlator

In a naive simulation, the ground state is unphysical |π(~0)π(~0)〉
|π(~p)π(~p)〉 would be an excited state

Since we have to deal with disconnected diagrams, precision is important

⇒ We don’t want to use multiple-exponential fits.

⇒ We use some tricks to eliminate the unphysical state
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Simulating the physical kinematics

See talk by Chris Sachrajda

Without going through the details, to simulate the physical kinematics:

For the ∆I = 3/2 channel, we can combine the Wigner-Eckart theorem with
peculiar boundary conditions (in the valence sectors)

⇒ We can use already exisiting ensembles

For the ∆I = 1/2 channel, we have to use something else, we choose G-parity
boundary conditions [Wiese ’92, Kim, Christ ’02 ’03 ’09] and [C. Kelly @lat’15]

⇒ We have to generate dedicated ensembles

Consequences

We have several lattice spacings for ∆I = 3/2 but only one for ∆I = 1/2
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Extraction of the bare matrix elements

Compute a correlator

C i
Kππ = 〈0|Jππ(tππ)Qi (tQ )J†K (tK )|0〉

−→ e
−mK (tQ−tK )

e
−Eππ (tππ−tQ ) 〈0|Jππ(0)|ππ〉 〈ππ|Qi (0)|K〉 〈K |J†K (0)|0〉

s̄

d

ū

u

d̄

Needs also

CK (t) = 〈 0 | JK (t) J†K (0) | 0 〉 −→ |〈K | J†K (0) | 0 〉|2e−mK t

Cππ(t) = 〈 0 | Jππ(t) J†ππ(0) | 0 〉 −→ |〈 0| Jππ(0) |ππ 〉|2e−Eππ t

And compute the ratios

R(tQ ) ≡
CKππ(tK , tQ , tππ)

CK (tQ − tK ) Cππ(tππ − tQ )
−→

〈ππ|Qi |K〉
〈 0| Jππ(0) |ππ 〉 〈K | J†K (0) | 0 〉
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Extraction of the bare matrix elements

R(tQ ) ≡
CKππ(tK , tQ , tππ)

CK (tQ − tK ) Cππ(tππ − tQ )
−→

〈ππ|Qi |K〉
〈 0| Jππ(0) |ππ 〉 〈K | J†K (0) | 0 〉
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R(tQ ) ≡
CKππ(tK , tQ , tππ)

CK (tQ − tK ) Cππ(tππ − tQ )
−→

〈ππ|Qi |K〉
〈 0| Jππ(0) |ππ 〉 〈K | J†K (0) | 0 〉
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Kinematics and phase shifts

With our boundary conditions we “give” momenta to the pions |p| = ±π/L

The infinite volume matrix element is given by

〈ππ|HW |K 〉∞ = F 〈ππ|HW |K 〉FV

where F is the Lellouch-Lüscher factor [Lellouch Lüscher ’00, Lin et al ’01]

F 2 = 8πq

(
∂φ

∂q
+
∂δ

∂q

)
mKE

2
ππ

p3

and p is the magnitude of the momentum of each pion in the center-of-mass frame

2
√

p2 + m2
π = Eππ

q =
pL

2π

δ is the s-wave phase shift

φ is a kinematic function defined in [Lellouch Lüscher ’00]
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Kinematics

Once Eππ has been measured and qπ determined, δ can be calculated using the
Lüscher quantization condition [Lüscher 1990]

nπ = δ(q) + φ(q)

⇒ have to compute ∂δ/∂qπ
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The phase shift - results

For (ππ)I=2 we find δ2 = −11.6(2.5)(1.2)o

For (ππ)I=0 we find δ0 = 23.8(4.9)(1.2)o

δ0 differs from phenomenology [Colangelo, Gasser, Leutwyler ’01, Colangelo, Passemar,

Stoffer ’15]

δ2 = −8.3(0.15) and δ0 = 38.0(1.3)

Values from Gilberto Colangelo @ NA62 Physics Handbook MITP Workshop

⇒ Is there a issue there ? Discretisation effect ?

Thanks to Emilie Passemar

Note that this value has very little effect on the amplitudes
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Numerical Results
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K → (ππ)I=2 Results

First computation (2012): Physical kinematic, Near physical vaule of the pion
mass

But only one coarse lattice spacing

IDSDR 323 × 64, with a−1 ∼ 1.37 GeV ⇒ a ∼ 0.14 fm, L ∼ 4.6 fm

New computation:

two lattice spacing, nf = 2 + 1, large volume at the physical point

New discretisation of the Domain-Wall fermion forumlation: Möbius Brower,

Neff, Orginos ’12

483 × 96, with a−1 ∼ 1.729 GeV ⇒ a ∼ 0.11 fm, L ∼ 5.5 fm

643 × 128 with a−1 ∼ 2.358 GeV ⇒ a ∼ 0.084 fm, L ∼ 5.4 fm

amres ∼ 10−4
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Neff, Orginos ’12

483 × 96, with a−1 ∼ 1.729 GeV ⇒ a ∼ 0.11 fm, L ∼ 5.5 fm

643 × 128 with a−1 ∼ 2.358 GeV ⇒ a ∼ 0.084 fm, L ∼ 5.4 fm

amres ∼ 10−4

Nicolas Garron (University of Liverpool) CP violation in K → ππ, Status and Prospects 25 / 32



K → (ππ)I=2 2015 Results

2012 Blum, Boyle, Christ, N.G.,Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL’12, PRD’12
ReA2 = 1.381(46)stat(258)syst 10−8 GeV ImA2 = −6.54(46)stat(120) syst10−13 GeV

2015 Blum, Boyle, Christ, Frison, N.G., Janowski, Jung, Kelly, Lehner, Lytle, Mawhinney, Sachrajda, Soni, Hin, Zhang, PRD’15
ReA2 = 1.50(4)stat(14)syst 10−8 GeV ImA2 = −6.99(20)stat(84) syst10−13 GeV
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see also talk by T.Janowski @ lat’13
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K → (ππ)I=0
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Physical kinematics for the ∆I = 1/2 channel

For the I = 0 state (ie ∆I = 1/2 ), we impose isospin-symetric BC to avoid mixing the
I = 0 and I = 2 state

We employ G-parity Boundary Conditions G = Ce iπIy [Wiese ’92, Kim, Christ ’02 ’03] and
[C. Kelly @lat’15]

Product of Charge conjugation C and π-isospin rotation

Transforms (u, d) into (d̄ ,−ū)

Ground state: π have momenta ±π/L

Use Lellouch-Lüscher to compute the phase shift

But requires the generation of dedicated ensembles
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A0, 2015

First complete computation of K → ππ (both isospin channel) with physical
kinematics

Bai, Blum, Boyle, Christ, Frison, N.G., Izubuchi, Jung, Kelly, Lehner, Mawhinney,

Sachrajda, Soni, Zhang PRL’15

Pion mass mπ = 143.1(2.0) MeV, single lattice spacing a ∼ 0.14 fm

Kaon mass mK = 490.6(2.4) MeV

Physical kinematics achieved with G-Parity boundary conditions

[Wiese ’92, Kim, Christ, ’03 and ’09

Requires algorithmic development, dedicated generation of gauge configurations, . . .

See talk by C.Kelly and proceeding from Lattice’14

Another computation, [Ishizuka, Ishikawa, Ukawa, Yoshié ’15] with Wilson fermions at
threshold (unphysical kinematics)
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A0, 2015 update

After renormalisation at µ ∼ 1.5 GeV, we combine with the Wilson coefficients and find

i Re(A0)(GeV) Im(A0)(GeV)

1 1.02(0.20)(0.07)× 10−7 0
2 3.63(0.91)(0.28)× 10−7 0

3 −1.19(1.58)(1.12)× 10−10 1.54(2.04)(1.45)× 10−12

4 −1.86(0.63)(0.33)× 10−9 1.82(0.62)(0.32)× 10−11

5 −8.72(2.17)(1.80)× 10−10 1.57(0.39)(0.32)× 10−12

6 3.33(0.85)(0.22)× 10−9 −3.57(0.91)(0.24)× 10−11

7 2.40(0.41)(0.00)× 10−11 8.55(1.45)(0.00)× 10−14

8 −1.33(0.04)(0.00)× 10−10 −1.71(0.05)(0.00)× 10−12

9 −7.12(1.90)(0.46)× 10−12 −2.43(0.65)(0.16)× 10−12

10 7.57(2.72)(0.71)× 10−12 −4.74(1.70)(0.44)× 10−13

Tot 4.66(0.96)(0.27)× 10−7 −1.90(1.19)(0.32)× 10−11

Exp 3.3201(18)× 10−7 -
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Standard model prediction for ε′/ε

ε′/ε can be computed from

Re(ε′/ε) = Re

{
iω exp(iδ2 − δ0)√

2ε

[
Im(A2)

ReA2
− ImA0

ReA0

]}

Combining our new value of ImA0 and δ0 with

our continuum value for ImA2

the experimental value for ReA0, ReA2 and their ratio ω

we find
Re(ε′/ε) = 1.38(5.15)(4.43)× 10−4

whereas the experimental value is

Re(ε′/ε) = 16.6(2.3)× 10−4 (∼ 2.1σ)

Our errors are large, but are expected to dectrease rapidly
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Status and Prospects

A→ (ππ)I=2 becoming a “mature” quantity (continuum limit)

First realistic computation of A→ (ππ)I=0 and ε′/ε (single lattice spacing)

Room for improvement

Renormalisation performed at ∼ 1.5 GeV: running to higher scale

Use finer lattice spacing and extrapolate to the continuum

Control the mixing with lower dimension operators

⇒ Error on ε′/ε should decrease rapidly

Future improvements

Isospin corrections

Inclusion of the charm
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BACKUP SLIDES

Enter at your own risks
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On the ∆I = 1/2 rule
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Toward an quantitative understanding of the ∆I = 1/2 rule

Two kinds of contraction for each ∆I = 3/2 operator

L
i

i

s j j

L

π

πK

L
i

j

s j i
L

π

πK

Contraction 1© Contraction 2©

Re A2 is dominated by the tree level
operator (EWP ∼ 1%)

ReA2 ∼ 1©+ 2©

Naive factorisation approach:
2© ∼ 1/3 1©

Our computation: 2© ∼ −0.7 1©

⇒ large cancellation in ReA2
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Toward an quantitative understanding of the ∆I = 1/2 rule

ReA0 is also dominated by the tree level operators

Dominant contribution to Q lat
2 is ∝ ( 2 2©− 1© ) ⇒ Enhancement in ReA0

ReA0

ReA2
∼ 2 2©− 1©

1©+ 2©

With this unphysical computation (kinematics, masses) we find

ReA0

ReA2
= 9.1(2.1) for mK = 878 MeV mπ = 422 MeV

= 12.0(1.7) for mK = 662 MeV mπ = 329 MeV

New Results, Physical Mass and kinematics

ReA0

ReA2
=

1.66(0.96)(0.27)× 10−7

0.150(4)(14)× 10−7
∼ 31.0(11.1)
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Emerging understanding of the ∆I = 1/2 rule

Relative sign between 1© and 2© implies both a cancellation in ReA2 and an
enhancement in ReA0

See also analytic work in that direction, e.g. Pich, de Rafael ’96, Bardeen, Buras,

Gerard ’87

See also discussion in Lellouch @ Les Houches ’09

Similar observation done by the other lattice computation Ishizuka, Ishikawa, Ukawa,

Yoshié ’15

K → ππ amplitudes with unphysical kinematics (and Wilson fermions)
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