CP violation in $K \rightarrow \pi \pi$, Status and Prospects

Nicolas Garron

University of Birmingham, $14^{\text {th }}$ of September 2016

Kaon 2016, Edinburgh $8^{\text {th }}$ of September 2016

Outline

- CP violation in $K \rightarrow \pi \pi$ decays, short introduction
- Overview of the lattice computation
- Results and comparison
- Status and Prospect

RBC-UKQCD collaborations

This talk is based on a work done by the RBC-UKQCD Collaboration

RBC-UKQCD collaborations

The RBC \& UKQCD collaborations

BNL and RBRC	Luchang Jin	Plymouth University
	Bob Mawhinney	
Tomomi Ishikawa	Greg McGlynn	Nicolas Garron
Taku Izubuchi	David Murphy	
Chulwoo Jung	Daiqian Zhang	
Christoph Lehner		University of Southampton
Meifeng Lin	University of Connecticut	
Taichi Kawanai		Jonathan Flynn
Christopher Kelly	Tom Blum	Tadeusz Janowski
Shigemi Ohta (KEK)		Andreas Juettner
Amarjit Soni	Edinburgh University	Andrew Lawson
Sergey Syritsyn		Edwin Lizarazo
	Peter Boyle	Antonin Portelli
CERN	Luigi Del Debbio	Chris Sachrajda
	Julien Frison	Francesco Sanfilippo
Marina Marinkovic	Richard Kenway	Matthew Spraggs
	Ava Khamseh	Tobias Tsang
Columbia University	Brian Pendleton	
	Oliver Witzel	York University (Toronto)
Ziyuan Bai	Azusa Yamaguchi	York University (Toronto)
Norman Christ Xu Feng		Renwick Hudspith

RBC-UKQCD collaborations and Chiral symmetry

An important Feature of our collaboration

We work with Domain-Wall fermions
\Rightarrow At finite lattice spacing, Chiral-Flavour symmetry are preserved

- Numerically more expensive (harder to accumulate statistic)
- But we can compute quantities which are very hard for other (cheaper) formulations
- Computation of $K \rightarrow \pi \pi$ almost hopeless without chiral fermions

RBC-UKQCD collaborations and Chiral symmetry

An important Feature of our collaboration

We work with Domain-Wall fermions
\Rightarrow At finite lattice spacing, Chiral-Flavour symmetry are preserved

- Numerically more expensive (harder to accumulate statistic)
- But we can compute quantities which are very hard for other (cheaper) formulations
- Computation of $K \rightarrow \pi \pi$ almost hopeless without chiral fermions

[^0]The authors use a clever trick to avoid the dangerous mixing with lower dimension operators

Going light

RBC-UKQCD $N_{f}=2+1$ DWF - Landscape (since 2008)

Going light

RBC-UKQCD $N_{f}=2+1$ DWF - Landscape (since 2008)

Going light

RBC-UKQCD $N_{f}=2+1$ DWF - Landscape (since 2008)

Going light

RBC-UKQCD $N_{f}=2+1$ DWF - Landscape (since 2008)

Going light

RBC-UKQCD $N_{f}=2+1$ DWF - Landscape (since 2008)

$K \rightarrow \pi \pi$ and CP violation

Background: Kaon decays and CP violation

- First discovery of CP violation was made in kaon system in 1964 (Christenson, Cronin, Fitch and Turlay)
- Noble prize in 1980 (Cronin and Fitch)
- Direct CP violation discovered in kaon decays [NA31, KTeV, NA48, '90-99]
- Very nice measurements of both direct and indirect CP violation (numbers from [PDG 2011])
$\left\{\begin{array}{cl}\text { Indirect }|\varepsilon| & =(2.228 \pm 0.011) \times 10^{-3} \\ \text { Direct } \operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right) & =(1.65 \pm 0.26) \times 10^{-3}\end{array}\right.$
- Theoretically:

Relate indirect CP violation parameter (ε) to neutral kaon mixing (B_{K})
B_{K} is now computed on the lattice with a few-percent precision
But the first realistic theoretical computstion of ε^{\prime} has only been achieved last year

- Sensitivity to new physics expected

Background: Kaon decays and CP violation

Flavour eigenstates $\binom{K^{0}=\bar{s} \gamma_{5} d}{\bar{K}^{0}=\bar{d} \gamma_{5} s} \neq \mathrm{CP}$ eigenstates $\left|K_{ \pm}^{0}\right\rangle=\frac{1}{\sqrt{2}}\left\{\left|K^{0}\right\rangle \mp\left|\bar{K}^{0}\right\rangle\right\}$

They are mixed in the physical eigenstates $\left\{\begin{array}{rll}\left|K_{L}\right\rangle & \sim\left|K_{-}^{0}\right\rangle+\bar{\varepsilon}\left|K_{+}^{0}\right\rangle \\ \left|K_{S}\right\rangle & \sim & \left|K_{+}^{0}\right\rangle+\bar{\varepsilon}\left|K_{-}^{0}\right\rangle\end{array}\right.$

Direct and indirect CP violation in $K \rightarrow \pi \pi$

$$
\left|K_{L}\right\rangle \propto\left|K_{-}\right\rangle+\varepsilon\left|K_{+}\right\rangle
$$

$$
\varepsilon=\frac{A\left(K_{L} \rightarrow(\pi \pi)_{I=0}\right)}{A\left(K_{S} \rightarrow(\pi \pi)_{I=0}\right)}=|\varepsilon| e^{i \phi_{\varepsilon}} \sim \bar{\varepsilon}
$$

$K \rightarrow \pi \pi$ amplitudes

Two isospin channels: $\Delta I=1 / 2$ and $\Delta I=3 / 2$

$$
K \rightarrow(\pi \pi)_{\mathrm{I}=0,2}
$$

Corresponding amplitudes defined as

$$
A\left[K \rightarrow(\pi \pi)_{\mathrm{I}}\right]=A_{\mathrm{I}} \exp \left(i \delta_{\mathrm{I}}\right) \quad / \mathrm{w} \mathrm{I}=0,2 \quad \delta=\text { strong phases }
$$

$\Delta I=1 / 2$ rule

$$
\omega=\frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{o}} \sim 1 / 22 \quad \text { (experimental number) }
$$

Amplitudes are related to the parameters of CP violation $\varepsilon, \varepsilon^{\prime}$ via (in the isospin limit)

$$
\begin{aligned}
\varepsilon^{\prime} & =\frac{i \omega \exp \left(i \delta_{2}-\delta_{0}\right)}{\sqrt{2}}\left[\frac{\operatorname{Im}\left(A_{2}\right)}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right] \\
\varepsilon & =e^{i \phi_{\varepsilon}}\left[\frac{\operatorname{Im}\left\langle\bar{K}^{0}\right| H_{\mathrm{eff}}^{\Delta S=2}\left|K^{0}\right\rangle}{\Delta m_{K}}+\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]
\end{aligned}
$$

\Rightarrow Related to $K^{0}-\bar{K}^{0}$ mixing

Overview of the computation

Overview of the computation

- Operator Product expansion

- In the $N_{f}=3$ theory, describe $K \rightarrow(\pi \pi)_{\mathrm{I}=0,2}$ with an effective Hamiltonian [Buchalla, Buras, Lautenbacher '96]

$$
H^{\Delta s=1}=\frac{G_{F}}{\sqrt{2}}\left\{\sum_{i=1}^{10}\left(V_{u d} V_{u s}^{*} z_{i}(\mu)-V_{t d} V_{t s}^{*} y_{i}(\mu)\right) Q_{i}(\mu)\right\}
$$

Overview of the computation

- Operator Product expansion

- In the $N_{f}=3$ theory, describe $K \rightarrow(\pi \pi)_{\mathrm{I}=0,2}$ with an effective Hamiltonian [Buchalla, Buras, Lautenbacher '96]

$$
H^{\Delta s=1}=\frac{G_{F}}{\sqrt{2}}\left\{\sum_{i=1}^{10}\left(V_{u d} V_{u s}^{*} z_{i}(\mu)-V_{t d} V_{t s}^{*} y_{i}(\mu)\right) Q_{i}(\mu)\right\}
$$

- Amplitude given by $A \propto\langle\pi \pi| H^{\Delta s=1}|K\rangle$
- Short distance effects factorized in the Wilson coefficients y_{i}, z_{i}, computed at NLO in [BBL '96]
- Long distance effects factorized in the matrix elements

$$
\langle\pi \pi| Q_{i}(\mu)|K\rangle \longrightarrow \text { task for the Lattice }
$$

See reviews by [Buras, Christ @ Kaon'09, Lellouch @ Les Houches'09, Sachrajda @ Lattice '10], ...

4-quark operators

Current diagrams

$$
Q_{1}=(\bar{s} d)_{\mathrm{V}-\mathrm{A}}(\bar{u} u)_{\mathrm{V}-\mathrm{A}} \quad Q_{2}=\text { color mixed }
$$

4-quark operators

Electroweak penguins

$$
\begin{array}{ll}
Q_{7}=\frac{3}{2}(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s} e_{q}(\bar{q} q)_{\mathrm{V}+\mathrm{A}} & Q_{8}=\text { color mixed } \\
Q_{9}=\frac{3}{2}(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s} e_{q}(\bar{q} q)_{\mathrm{V}-\mathrm{A}} & Q_{10}=\text { color mixed }
\end{array}
$$

4-quark operators

$$
\begin{aligned}
Q_{3} & =(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s}(\bar{q} q)_{\mathrm{V}-\mathrm{A}}
\end{aligned} Q_{4}=\text { color mixed } ~ 子 ~(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s}(\bar{q} q)_{\mathrm{V}+\mathrm{A}} \quad Q_{6}=\text { color mixed }
$$

$S U(3)_{L} \otimes S U(3)_{R}$ and isospin decomposition

Irrep of $S U(3)_{L} \otimes S U(3)_{R}$

$$
\begin{aligned}
& \overline{3} \otimes 3=8+1 \\
& \overline{8} \otimes 8=27+\overline{10}+10+8+8+1
\end{aligned}
$$

Relevant operators transform under $(27,1),(8,8)$ and $(8,1)$ of $S U(3)_{L} \otimes S U(3)_{R}$

$S U(3)_{L} \otimes S U(3)_{R}$ and isospin decomposition

Irrep of $S U(3)_{L} \otimes S U(3)_{R}$

$$
\begin{aligned}
& \overline{3} \otimes 3=8+1 \\
& \overline{8} \otimes 8=27+\overline{10}+10+8+8+1
\end{aligned}
$$

Relevant operators transform under $(27,1),(8,8)$ and $(8,1)$ of $S U(3)_{L} \otimes S U(3)_{R}$

Decomposition of the 4-quark operators gives

$$
\begin{array}{ccc}
Q_{1,2}= & Q_{1,2}^{(27,1), \Delta I=3 / 2}+Q_{1,2}^{(27,1), \Delta I=1 / 2}+Q_{1,2}^{(8,8), \Delta I=1 / 2} \\
Q_{3,4}= & Q_{3,4}^{(8,1), \Delta I=1 / 2} \\
Q_{5,6} & = & Q_{5,6}^{(8,1), \Delta I=1 / 2} \\
Q_{7,8} & = & Q_{7,8}^{(8,8), \Delta I=3 / 2}+Q_{7,8}^{(8,8), \Delta I=1 / 2} \\
Q_{9,10} & = & Q_{9,10}^{(27,1), \Delta I=3 / 2}+Q_{9,10}^{(27,1), \Delta I=1 / 2}+Q_{9,10}^{(8,8), \Delta I=1 / 2}
\end{array}
$$

see eg [Claude Bernard @ TASI'89] and [RBC'01]

$S U(3)_{L} \otimes S U(3)_{R}$ and isospin decomposition

In four dimension, using Fierz transformation, one observes that

$$
\begin{aligned}
Q_{1}+Q_{4} & =Q_{2}+Q_{3} \\
3 Q_{1}-Q_{3} & =2 Q_{9} \\
Q_{1}-Q_{3} & =2\left(Q_{10}-Q_{2}\right)
\end{aligned}
$$

$S U(3)_{L} \otimes S U(3)_{R}$ and isospin decomposition

In four dimension, using Fierz transformation, one observes that

$$
\begin{aligned}
Q_{1}+Q_{4} & =Q_{2}+Q_{3} \\
3 Q_{1}-Q_{3} & =2 Q_{9} \\
Q_{1}-Q_{3} & =2\left(Q_{10}-Q_{2}\right)
\end{aligned}
$$

We build a 7-operator basis Q^{\prime}, each operator transforms under a given irrep of $S U(3)_{L} \otimes S U(3)_{R}$

$S U(3)_{L} \otimes S U(3)_{R}$ and isospin decomposition

In four dimension, using Fierz transformation, one observes that

$$
\begin{aligned}
Q_{1}+Q_{4} & =Q_{2}+Q_{3} \\
3 Q_{1}-Q_{3} & =2 Q_{9} \\
Q_{1}-Q_{3} & =2\left(Q_{10}-Q_{2}\right)
\end{aligned}
$$

We build a 7-operator basis Q^{\prime}, each operator transforms under a given irrep of $S U(3)_{L} \otimes S U(3)_{R}$

However in $4+\epsilon$ dimensions, these 10 operators are independent
Choice of evanescent operators \Leftrightarrow defines the $\overline{\mathrm{MS}}$ scheme

$S U(3)_{L} \otimes S U(3)_{R}$ and isospin decomposition

In four dimension, using Fierz transformation, one observes that

$$
\begin{aligned}
Q_{1}+Q_{4} & =Q_{2}+Q_{3} \\
3 Q_{1}-Q_{3} & =2 Q_{9} \\
Q_{1}-Q_{3} & =2\left(Q_{10}-Q_{2}\right)
\end{aligned}
$$

We build a 7-operator basis Q^{\prime}, each operator transforms under a given irrep of $S U(3)_{L} \otimes S U(3)_{R}$

However in $4+\epsilon$ dimensions, these 10 operators are independent
Choice of evanescent operators \Leftrightarrow defines the $\overline{\mathrm{MS}}$ scheme

Our 7-operator basis

$$
\begin{align*}
Q_{1}^{\prime} & =3 Q_{1}+2 Q_{2}-Q_{3} \tag{27,1}\\
Q_{2}^{\prime} & =\frac{1}{5}\left(2 Q_{1}-2 Q_{2}+Q_{3}\right) \tag{8,1}\\
Q_{3}^{\prime} & =\frac{1}{5}\left(-3 Q_{1}+3 Q_{2}+Q_{3}\right) \tag{8,1}\\
Q_{5,6,7,8}^{\prime} i & =Q_{5,6,7,8} \tag{8,8}
\end{align*}
$$

$S U(3)_{L} \otimes S U(3)_{R}$ and isospin decomposition

$$
\begin{array}{rrrr}
(27,1) & Q_{1}^{\prime} & = & Q_{1}^{\prime(27,1), \Delta l=3 / 2}+Q_{1}^{\prime(27,1), \Delta l=1 / 2} \\
(8,1) & Q_{2}^{\prime} & = & Q_{2}^{\prime(8,1), \Delta l=1 / 2} \\
& Q_{3}^{\prime} & = & Q_{3}^{\prime(8,1), \Delta l=1 / 2} \\
Q_{5}^{\prime} & = & Q_{5}^{\prime(8,1), \Delta l=1 / 2} \\
& Q_{6}^{\prime} & = & Q_{6}^{\prime(8,1), \Delta l=1 / 2} \\
(8,8) & Q_{7}^{\prime} & = & Q_{7}^{\prime(8,8), \Delta l=3 / 2}+Q_{7}^{\prime(8,8), \Delta l=1 / 2} \\
& Q_{8}^{\prime} & = & Q_{8}^{\prime(8,8), \Delta l=3 / 2}+Q_{8}^{\prime(8,8), \Delta l=1 / 2}
\end{array}
$$

$S U(3)_{L} \otimes S U(3)_{R}$ and isospin decomposition

$$
\begin{array}{rrrr}
(27,1) & Q_{1}^{\prime} & = & Q_{1}^{\prime(27,1), \Delta l=3 / 2}+Q_{1}^{\prime(27,1), \Delta l=1 / 2} \\
(8,1) & Q_{2}^{\prime} & = & Q_{2}^{\prime(8,1), \Delta l=1 / 2} \\
& Q_{3}^{\prime} & = & Q_{3}^{\prime(8,1), \Delta l=1 / 2} \\
Q_{5}^{\prime} & = & Q_{5}^{\prime(8,1), \Delta l=1 / 2} \\
& Q_{6}^{\prime} & = & Q_{6}^{\prime(8,1), \Delta l=1 / 2} \\
(8,8) & Q_{7}^{\prime} & = & Q_{7}^{\prime(8,8), \Delta l=3 / 2}+Q_{7}^{\prime(8,8), \Delta l=1 / 2} \\
& Q_{8}^{\prime} & = & Q_{8}^{\prime(8,8), \Delta l=3 / 2}+Q_{8}^{\prime(8,8), \Delta l=1 / 2}
\end{array}
$$

Only 3 operators contribute to the $\Delta I=3 / 2$ channel

Lattice computation $\langle\pi \pi| Q_{i}|K\rangle$

Lattice computation $\langle\pi \pi| Q_{i}|K\rangle$

Three main ingredients

- The finite volume bare matrix elements $\langle\pi \pi| Q_{i}|K\rangle_{F V}^{\text {bare }}$
- The renormalization Matrix $Z_{i j}$
- The phase shift (Lellouch-Lüscher factor)

Simulating the physical kinematics

■ We want to extract the physical 2-pion state with momenta $p=\left|\vec{p}_{\pi}\right|$

$$
2 \sqrt{p^{2}+m_{\pi}^{2}}=E_{\pi \pi}=m_{K}
$$

Simulating the physical kinematics

■ We want to extract the physical 2-pion state with momenta $p=\left|\vec{p}_{\pi}\right|$

$$
2 \sqrt{p^{2}+m_{\pi}^{2}}=E_{\pi \pi}=m_{K}
$$

- On the lattice, we extract the matrix elements by fitting a correlator
- In a naive simulation, the ground state is unphysical $|\pi(\overrightarrow{0}) \pi(\overrightarrow{0})\rangle$ $|\pi(\vec{p}) \pi(\vec{p})\rangle$ would be an excited state

Simulating the physical kinematics

- We want to extract the physical 2-pion state with momenta $p=\left|\vec{p}_{\pi}\right|$

$$
2 \sqrt{p^{2}+m_{\pi}^{2}}=E_{\pi \pi}=m_{K}
$$

- On the lattice, we extract the matrix elements by fitting a correlator
- In a naive simulation, the ground state is unphysical $|\pi(\overrightarrow{0}) \pi(\overrightarrow{0})\rangle$ $|\pi(\vec{p}) \pi(\vec{p})\rangle$ would be an excited state
- Since we have to deal with disconnected diagrams, precision is important \Rightarrow We don't want to use multiple-exponential fits.

Simulating the physical kinematics

- We want to extract the physical 2-pion state with momenta $p=\left|\vec{p}_{\pi}\right|$

$$
2 \sqrt{p^{2}+m_{\pi}^{2}}=E_{\pi \pi}=m_{K}
$$

- On the lattice, we extract the matrix elements by fitting a correlator
- In a naive simulation, the ground state is unphysical $|\pi(\overrightarrow{0}) \pi(\overrightarrow{0})\rangle$ $|\pi(\vec{p}) \pi(\vec{p})\rangle$ would be an excited state
- Since we have to deal with disconnected diagrams, precision is important \Rightarrow We don't want to use multiple-exponential fits.
\Rightarrow We use some tricks to eliminate the unphysical state

Simulating the physical kinematics

See talk by Chris Sachrajda

Without going through the details, to simulate the physical kinematics:

- For the $\Delta I=3 / 2$ channel, we can combine the Wigner-Eckart theorem with peculiar boundary conditions (in the valence sectors)
\Rightarrow We can use already exisiting ensembles
- For the $\Delta I=1 / 2$ channel, we have to use something else, we choose G-parity boundary conditions [Wiese '92, Kim, Christ '02 '03 '09] and [C. Kelly @lat'15]
\Rightarrow We have to generate dedicated ensembles

Simulating the physical kinematics

See talk by Chris Sachrajda

Without going through the details, to simulate the physical kinematics:

- For the $\Delta I=3 / 2$ channel, we can combine the Wigner-Eckart theorem with peculiar boundary conditions (in the valence sectors)
\Rightarrow We can use already exisiting ensembles
- For the $\Delta I=1 / 2$ channel, we have to use something else, we choose G-parity boundary conditions [Wiese '92, Kim, Christ '02 '03 '09] and [C. Kelly @lat'15]
\Rightarrow We have to generate dedicated ensembles

Consequences

We have several lattice spacings for $\Delta I=3 / 2$ but only one for $\Delta I=1 / 2$

Extraction of the bare matrix elements

Compute a correlator

$$
\begin{aligned}
C_{K \pi \pi}^{i} & =\langle 0| J_{\pi \pi}\left(t_{\pi \pi}\right) Q_{i}\left(t_{Q}\right) J_{K}^{\dagger}\left(t_{K}\right)|0\rangle \\
& \longrightarrow \mathrm{e}^{-m_{K}\left(t_{Q}-t_{K}\right)} \mathrm{e}^{-E_{\pi \pi}\left(t_{\pi \pi}-t_{Q}\right)}\langle 0| J_{\pi \pi}(0)|\pi \pi\rangle\langle\pi \pi| Q_{i}(0)|K\rangle\langle K| J_{K}^{\dagger}(0)|0\rangle
\end{aligned}
$$

Extraction of the bare matrix elements

Compute a correlator

$$
\begin{aligned}
C_{K \pi \pi}^{i} & =\langle 0| J_{\pi \pi}\left(t_{\pi \pi}\right) Q_{i}\left(t_{Q}\right) J_{K}^{\dagger}\left(t_{K}\right)|0\rangle \\
& \longrightarrow \mathrm{e}^{-m_{K}\left(t_{Q}-t_{K}\right)} \mathrm{e}^{-E_{\pi \pi}\left(t_{\pi \pi}-t_{Q}\right)}\langle 0| J_{\pi \pi}(0)|\pi \pi\rangle\langle\pi \pi| Q_{i}(0)|K\rangle\langle K| J_{K}^{\dagger}(0)|0\rangle
\end{aligned}
$$

Needs also

$$
\begin{aligned}
C_{K}(t) & \left.=\langle 0| J_{K}(t) J_{K}^{\dagger}(0)|0\rangle \longrightarrow\left|\langle K| J_{K}^{\dagger}(0)\right| 0\right\rangle\left.\right|^{2} e^{-m_{K} t} \\
C_{\pi \pi}(t) & \left.=\langle 0| J_{\pi \pi}(t) J_{\pi \pi}^{\dagger}(0)|0\rangle \longrightarrow\left|\langle 0| J_{\pi \pi}(0)\right| \pi \pi\right\rangle\left.\right|^{2} e^{-E_{\pi \pi} t}
\end{aligned}
$$

And compute the ratios

$$
R\left(t_{Q}\right) \equiv \frac{C_{K \pi \pi}\left(t_{K}, t_{Q}, t_{\pi \pi}\right)}{C_{K}\left(t_{Q}-t_{K}\right) C_{\pi \pi}\left(t_{\pi \pi}-t_{Q}\right)} \longrightarrow \frac{\langle\pi \pi| Q_{i}|K\rangle}{\langle 0| J_{\pi \pi}(0)|\pi \pi\rangle\langle K| J_{K}^{\dagger}(0)|0\rangle}
$$

Extraction of the bare matrix elements

$$
R\left(t_{Q}\right) \equiv \frac{C_{K \pi \pi}\left(t_{K}, t_{Q}, t_{\pi \pi}\right)}{C_{K}\left(t_{Q}-t_{K}\right) C_{\pi \pi}\left(t_{\pi \pi}-t_{Q}\right)} \longrightarrow \frac{\langle\pi \pi| Q_{i}|K\rangle}{\langle 0| J_{\pi \pi}(0)|\pi \pi\rangle\langle K| J_{K}^{\dagger}(0)|0\rangle}
$$

Extraction of the bare matrix elements

$$
R\left(t_{Q}\right) \equiv \frac{C_{K \pi \pi}\left(t_{K}, t_{Q}, t_{\pi \pi}\right)}{C_{K}\left(t_{Q}-t_{K}\right) C_{\pi \pi}\left(t_{\pi \pi}-t_{Q}\right)} \longrightarrow \frac{\langle\pi \pi| Q_{i}|K\rangle}{\langle 0| J_{\pi \pi}(0)|\pi \pi\rangle\langle K| J_{K}^{\dagger}(0)|0\rangle}
$$

Extraction of the bare matrix elements

$$
R\left(t_{Q}\right) \equiv \frac{C_{K \pi \pi}\left(t_{K}, t_{Q}, t_{\pi \pi}\right)}{C_{K}\left(t_{Q}-t_{K}\right) C_{\pi \pi}\left(t_{\pi \pi}-t_{Q}\right)} \longrightarrow \frac{\langle\pi \pi| Q_{i}|K\rangle}{\langle 0| J_{\pi \pi}(0)|\pi \pi\rangle\langle K| J_{K}^{\dagger}(0)|0\rangle}
$$

Kinematics and phase shifts

With our boundary conditions we "give" momenta to the pions $|\mathbf{p}|= \pm \pi / L$

Kinematics and phase shifts

With our boundary conditions we "give" momenta to the pions $|\mathbf{p}|= \pm \pi / L$
The infinite volume matrix element is given by

$$
\langle\pi \pi| H_{W}|K\rangle_{\infty}=F\langle\pi \pi| H_{W}|K\rangle_{F V}
$$

where F is the Lellouch-Lüscher factor [Lellouch Lüscher ' 00 , Lin et al '01]

$$
F^{2}=8 \pi q\left(\frac{\partial \phi}{\partial q}+\frac{\partial \delta}{\partial q}\right) \frac{m_{K} E_{\pi \pi}^{2}}{p^{3}}
$$

and p is the magnitude of the momentum of each pion in the center-of-mass frame

$$
\begin{aligned}
2 \sqrt{p^{2}+m_{\pi}^{2}} & =E_{\pi \pi} \\
q & =\frac{p L}{2 \pi}
\end{aligned}
$$

δ is the s-wave phase shift
ϕ is a kinematic function defined in [Lellouch Lüscher '00]

Kinematics

Once $E_{\pi \pi}$ has been measured and q_{π} determined, δ can be calculated using the Lüscher quantization condition [Lüscher 1990]

$$
n \pi=\delta(q)+\phi(q)
$$

\Rightarrow have to compute $\partial \delta / \partial q_{\pi}$

Kinematics

Once $E_{\pi \pi}$ has been measured and q_{π} determined, δ can be calculated using the Lüscher quantization condition [Lüscher 1990]

$$
n \pi=\delta(q)+\phi(q)
$$

\Rightarrow have to compute $\partial \delta / \partial q_{\pi}$

Phase shift for $(\pi \pi)_{l=2}$

Kinematics

Once $E_{\pi \pi}$ has been measured and q_{π} determined, δ can be calculated using the Lüscher quantization condition [Lüscher 1990]

$$
n \pi=\delta(q)+\phi(q)
$$

\Rightarrow have to compute $\partial \delta / \partial q_{\pi}$

The phase shift - results

- For $(\pi \pi)_{I=2}$ we find $\delta_{2}=-11.6(2.5)(1.2)^{\circ}$
- For $(\pi \pi)_{l=0}$ we find $\delta_{0}=23.8(4.9)(1.2)^{\circ}$
δ_{0} differs from phenomenology [Colangelo, Gasser, Leutwyler '01, Colangelo, Passemar, Stoffer '15]

$$
\delta_{2}=-8.3(0.15) \text { and } \delta_{0}=38.0(1.3)
$$

Values from Gilberto Colangelo @ NA62 Physics Handbook MITP Workshop
\Rightarrow Is there a issue there ? Discretisation effect ?

Thanks to Emilie Passemar

The phase shift - results

- For $(\pi \pi)_{I=2}$ we find $\delta_{2}=-11.6(2.5)(1.2)^{\circ}$
- For $(\pi \pi)_{l=0}$ we find $\delta_{0}=23.8(4.9)(1.2)^{\circ}$
δ_{0} differs from phenomenology [Colangelo, Gasser, Leutwyler '01, Colangelo, Passemar, Stoffer '15]

$$
\delta_{2}=-8.3(0.15) \text { and } \delta_{0}=38.0(1.3)
$$

Values from Gilberto Colangelo @ NA62 Physics Handbook MITP Workshop
\Rightarrow Is there a issue there ? Discretisation effect ?

Thanks to Emilie Passemar
Note that this value has very little effect on the amplitudes

Numerical Results

$$
K \rightarrow(\pi \pi)_{I=2} \text { Results }
$$

- First computation (2012): Physical kinematic, Near physical vaule of the pion mass

But only one coarse lattice spacing IDSDR $32^{3} \times 64$, with $a^{-1} \sim 1.37 \mathrm{GeV} \Rightarrow a \sim 0.14 \mathrm{fm}, L \sim 4.6 \mathrm{fm}$

$K \rightarrow(\pi \pi)_{I=2}$ Results

- First computation (2012): Physical kinematic, Near physical vaule of the pion mass

But only one coarse lattice spacing
IDSDR $32^{3} \times 64$, with $a^{-1} \sim 1.37 \mathrm{GeV} \Rightarrow a \sim 0.14 \mathrm{fm}, L \sim 4.6 \mathrm{fm}$

- New computation:
two lattice spacing, $n_{f}=2+1$, large volume at the physical point
New discretisation of the Domain-Wall fermion forumlation: Möbius Brower, Neff, Orginos '12

■ $48^{3} \times 96$, with $a^{-1} \sim 1.729 \mathrm{GeV} \Rightarrow a \sim 0.11 \mathrm{fm}, L \sim 5.5 \mathrm{fm}$
■ $64^{3} \times 128$ with $a^{-1} \sim 2.358 \mathrm{GeV} \Rightarrow a \sim 0.084 \mathrm{fm}, L \sim 5.4 \mathrm{fm}$

- am $_{\text {res }} \sim 10^{-4}$

$K \rightarrow(\pi \pi)_{I=2} 2015$ Results

2012 Blum, Boyle, Christ, N.G.,Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Maw $\operatorname{Re} A_{2}=1.381(46)_{\text {stat }}(258)_{\text {syst }} 10^{-8} \mathrm{GeV} \quad \operatorname{Im} A_{2}=-6.54(46)_{\text {stat }}(12$

2015 Blum, Boyle, Christ, Frison, N.G., Janowski, Jung, Kelly, Lehner, Lytle, Mawhinney, Sachra $\operatorname{Re} A_{2}=1.50(4)_{\text {stat }}(14)_{\text {syst }} 10^{-8} \mathrm{GeV}$
$\operatorname{Im} A_{2}=-6.99(20)_{\text {stat }}(84)_{\text {syst }}$

see also talk by T.Janowski @ lat'13

$$
K \rightarrow(\pi \pi)_{I=0}
$$

Physical kinematics for the $\Delta I=1 / 2$ channel

For the $I=0$ state (ie $\Delta I=1 / 2$), we impose isospin-symetric $B C$ to avoid mixing the $I=0$ and $I=2$ state

Physical kinematics for the $\Delta I=1 / 2$ channel

For the $I=0$ state (ie $\Delta I=1 / 2$), we impose isospin-symetric $B C$ to avoid mixing the $I=0$ and $I=2$ state

We employ G-parity Boundary Conditions $G=C e^{i \pi l_{y}}$ [Wiese '92, Kim, Christ '02 '03] and [C. Kelly @lat'15]

- Product of Charge conjugation C and π-isospin rotation
- Transforms (u, d) into $(\bar{d},-\bar{u})$

Physical kinematics for the $\Delta I=1 / 2$ channel

For the $I=0$ state (ie $\Delta I=1 / 2$), we impose isospin-symetric $B C$ to avoid mixing the $I=0$ and $I=2$ state

We employ G-parity Boundary Conditions $G=C e^{i \pi l y}$ [Wiese '92, Kim, Christ '02 '03] and [C. Kelly @lat'15]

- Product of Charge conjugation C and π-isospin rotation
- Transforms (u, d) into $(\bar{d},-\bar{u})$

■ Ground state: π have momenta $\pm \pi / L$

- Use Lellouch-Lüscher to compute the phase shift

But requires the generation of dedicated ensembles

$A_{0}, 2015$

- First complete computation of $K \rightarrow \pi \pi$ (both isospin channel) with physical kinematics

Bai, Blum, Boyle, Christ, Frison, N.G., Izubuchi, Jung, Kelly, Lehner, Mawhinney, Sachrajda, Soni, Zhang PRL'15

■ Pion mass $m_{\pi}=143.1$ (2.0) MeV , single lattice spacing $a \sim 0.14 \mathrm{fm}$
Kaon mass $m_{K}=490.6(2.4) \mathrm{MeV}$

- Physical kinematics achieved with G-Parity boundary conditions
[Wiese '92, Kim, Christ, '03 and '09
- Requires algorithmic development, dedicated generation of gauge configurations, ...

■ See talk by C.Kelly and proceeding from Lattice'14

$A_{0}, 2015$

■ First complete computation of $K \rightarrow \pi \pi$ (both isospin channel) with physical kinematics

Bai, Blum, Boyle, Christ, Frison, N.G., Izubuchi, Jung, Kelly, Lehner, Mawhinney, Sachrajda, Soni, Zhang PRL'15

■ Pion mass $m_{\pi}=143.1$ (2.0) MeV , single lattice spacing $a \sim 0.14 \mathrm{fm}$
Kaon mass $m_{K}=490.6(2.4) \mathrm{MeV}$

- Physical kinematics achieved with G-Parity boundary conditions
[Wiese '92, Kim, Christ, '03 and '09
- Requires algorithmic development, dedicated generation of gauge configurations, ...

■ See talk by C.Kelly and proceeding from Lattice'14
Another computation, [lshizuka, Ishikawa, Ukawa, Yoshié '15] with Wilson fermions at threshold (unphysical kinematics)

$A_{0}, 2015$ update

After renormalisation at $\mu \sim 1.5 \mathrm{GeV}$, we combine with the Wilson coefficients and find

i	$\operatorname{Re}\left(A_{0}\right)(\mathrm{GeV})$	$\operatorname{lm}\left(A_{0}\right)(\mathrm{GeV})$
		0
1	$1.02(0.20)(0.07) \times 10^{-7}$	0
2	$3.63(0.91)(0.28) \times 10^{-7}$	
3	$-1.19(1.58)(1.12) \times 10^{-10}$	$1.54(2.04)(1.45) \times 10^{-12}$
4	$-1.86(0.63)(0.33) \times 10^{-9}$	$1.82(0.62)(0.32) \times 10^{-11}$
5	$-8.72(2.17)(1.80) \times 10^{-10}$	$1.57(0.39)(0.32) \times 10^{-12}$
6	$3.33(0.85)(0.22) \times 10^{-9}$	$-3.57(0.91)(0.24) \times 10^{-11}$
7	$2.40(0.41)(0.00) \times 10^{-11}$	$8.55(1.45)(0.00) \times 10^{-14}$
8	$-1.33(0.04)(0.00) \times 10^{-10}$	$-1.71(0.05)(0.00) \times 10^{-12}$
9	$-7.12(1.90)(0.46) \times 10^{-12}$	$-2.43(0.65)(0.16) \times 10^{-12}$
10	$7.57(2.72)(0.71) \times 10^{-12}$	$-4.74(1.70)(0.44) \times 10^{-13}$
Tot	$4.66(0.96)(0.27) \times 10^{-7}$	$-1.90(1.19)(0.32) \times 10^{-11}$

$\operatorname{Exp} \quad 3.3201(18) \times 10^{-7}$

Standard model prediction for $\varepsilon^{\prime} / \varepsilon$

$\varepsilon^{\prime} / \varepsilon$ can be computed from

$$
\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=\operatorname{Re}\left\{\frac{i \omega \exp \left(i \delta_{2}-\delta_{0}\right)}{\sqrt{2} \varepsilon}\left[\frac{\operatorname{Im}\left(A_{2}\right)}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]\right\}
$$

Combining our new value of $\operatorname{Im} A_{0}$ and δ_{0} with

- our continuum value for $\operatorname{Im} A_{2}$
- the experimental value for $\operatorname{ReA}_{0}, \operatorname{ReA}_{2}$ and their ratio ω
we find

$$
\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=1.38(5.15)(4.43) \times 10^{-4}
$$

whereas the experimental value is

$$
\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=16.6(2.3) \times 10^{-4} \quad(\sim 2.1 \sigma)
$$

Standard model prediction for $\varepsilon^{\prime} / \varepsilon$

$\varepsilon^{\prime} / \varepsilon$ can be computed from

$$
\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=\operatorname{Re}\left\{\frac{i \omega \exp \left(i \delta_{2}-\delta_{0}\right)}{\sqrt{2} \varepsilon}\left[\frac{\operatorname{Im}\left(A_{2}\right)}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]\right\}
$$

Combining our new value of $\operatorname{Im} A_{0}$ and δ_{0} with

- our continuum value for $\operatorname{Im} A_{2}$
- the experimental value for $\operatorname{ReA}_{0}, \operatorname{ReA}_{2}$ and their ratio ω
we find

$$
\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=1.38(5.15)(4.43) \times 10^{-4}
$$

whereas the experimental value is

$$
\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=16.6(2.3) \times 10^{-4} \quad(\sim 2.1 \sigma)
$$

Our errors are large, but are expected to dectrease rapidly

Status and Prospects

- $A \rightarrow(\pi \pi)_{l=2}$ becoming a "mature" quantity (continuum limit)
- First realistic computation of $A \rightarrow(\pi \pi)_{I=0}$ and $\varepsilon^{\prime} / \varepsilon$ (single lattice spacing)
- Room for improvement

Renormalisation performed at $\sim 1.5 \mathrm{GeV}$: running to higher scale
Use finer lattice spacing and extrapolate to the continuum
Control the mixing with lower dimension operators
\Rightarrow Error on $\varepsilon^{\prime} / \varepsilon$ should decrease rapidly

- Future improvements

Isospin corrections
Inclusion of the charm

BACKUP SLIDES

Enter at your own risks

On the $\Delta I=1 / 2$ rule

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule
Two kinds of contraction for each $\Delta I=3 / 2$ operator

Contraction (1)

Contraction (2)

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule
Two kinds of contraction for each $\Delta I=3 / 2$ operator

Contraction (1)

Contraction (2)

■ $\operatorname{Re} A_{2}$ is dominated by the tree level operator (EWP ~1\%)

$$
\operatorname{Re} A_{2} \sim(1)+(2)
$$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule
Two kinds of contraction for each $\Delta I=3 / 2$ operator

Contraction (1)

Contraction (2)

■ $\operatorname{Re} A_{2}$ is dominated by the tree level operator (EWP ~1\%)

$$
\operatorname{Re} A_{2} \sim(1)+(2)
$$

- Naive factorisation approach:
(2) $\sim 1 / 3$ (1)

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule
Two kinds of contraction for each $\Delta I=3 / 2$ operator

Contraction (1)

Contraction
$\square \operatorname{Re} A_{2}$ is dominated by the tree level operator (EWP ~1\%)

$$
\operatorname{Re} A_{2} \sim(1)+(2)
$$

- Naive factorisation approach:
(2) $\sim 1 / 3^{(1)}$

■ Our computation: (2) ~-0.7 (1)

\Rightarrow large cancellation in $\operatorname{Re} A_{2}$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

$\operatorname{Re} A_{0}$ is also dominated by the tree level operators

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

$\operatorname{Re} A_{0}$ is also dominated by the tree level operators
Dominant contribution to $Q_{2}^{\text {lat }}$ is $\propto(2(2)-(1)) \Rightarrow$ Enhancement in $\operatorname{Re} A_{0}$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule

$\operatorname{Re} A_{0}$ is also dominated by the tree level operators
Dominant contribution to $Q_{2}^{\text {lat }}$ is $\propto(2(2)-(1)) \Rightarrow$ Enhancement in $\operatorname{Re} A_{0}$

$$
\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}} \sim \frac{2(2)-(1)}{(1)+(2)}
$$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule
$\operatorname{Re} A_{0}$ is also dominated by the tree level operators
Dominant contribution to $Q_{2}^{\text {lat }}$ is $\propto(2(2)-(1)) \Rightarrow$ Enhancement in $\operatorname{Re} A_{0}$

$$
\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}} \sim \frac{2(2)-(1)}{(1)+(2)}
$$

With this unphysical computation (kinematics, masses) we find

$$
\begin{aligned}
\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}} & =9.1(2.1) \text { for } m_{K}=878 \mathrm{MeV} m_{\pi}=422 \mathrm{MeV} \\
& =12.0(1.7) \text { for } m_{K}=662 \mathrm{MeV} m_{\pi}=329 \mathrm{MeV}
\end{aligned}
$$

Toward an quantitative understanding of the $\Delta I=1 / 2$ rule
$\operatorname{Re} A_{0}$ is also dominated by the tree level operators
Dominant contribution to $Q_{2}^{\text {lat }}$ is $\propto(2(2)-(1)) \Rightarrow$ Enhancement in $\operatorname{Re} A_{0}$

$$
\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}} \sim \frac{2(2)-(1)}{(1)+(2)}
$$

With this unphysical computation (kinematics, masses) we find

$$
\begin{aligned}
\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}} & =9.1(2.1) \text { for } m_{K}=878 \mathrm{MeV} m_{\pi}=422 \mathrm{MeV} \\
& =12.0(1.7) \text { for } m_{K}=662 \mathrm{MeV} m_{\pi}=329 \mathrm{MeV}
\end{aligned}
$$

New Results, Physical Mass and kinematics

$$
\frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}}=\frac{1.66(0.96)(0.27) \times 10^{-7}}{0.150(4)(14) \times 10^{-7}} \sim 31.0(11.1)
$$

Emerging understanding of the $\Delta I=1 / 2$ rule

- Relative sign between (1) and (2) implies both a cancellation in $\operatorname{Re} A_{2}$ and an enhancement in $\operatorname{Re} A_{0}$
- See also analytic work in that direction, e.g. Pich, de Rafael '96, Bardeen, Buras, Gerard ' 87
- See also discussion in Lellouch @ Les Houches '09

Emerging understanding of the $\Delta I=1 / 2$ rule

- Relative sign between (1) and (2) implies both a cancellation in $\operatorname{Re} A_{2}$ and an enhancement in $\operatorname{Re} A_{0}$
- See also analytic work in that direction, e.g. Pich, de Rafael '96, Bardeen, Buras, Gerard '87
- See also discussion in Lellouch @ Les Houches '09
- Similar observation done by the other lattice computation Ishizuka, Ishikawa, Ukawa, Yoshié '15
$K \rightarrow \pi \pi$ amplitudes with unphysical kinematics (and Wilson fermions)

[^0]: Although there is a computation at threshold done with Wilson fermions Ishizuka, Ishikawa, Ukawa, Yoshié '15

