Higher order effects in epsilon'/\&psilon

In collaboration with:
Martin Gorbahn, Sebastian Jäger \& Ahmet Kokulu

KAON 2016, Sep-16
 University of Birmingham

Maria Cerdà-Sevilla
(University of Liverpool)

Contents

- Motivation
- Effective Field Theories
- Perturbative Calculations
- $\varepsilon^{\prime} / \varepsilon$ in the SM
- Future Improvements
- Conclusions

Direct CP Violation Exists

A non-zero value of $\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)$ signals that direct $\mathbf{C P}$ Violation exists

$$
\operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)=\frac{1}{6}\left(1-\left|\frac{\eta_{00}}{\eta_{+-}}\right|^{2}\right)
$$

The measured quantity is the double ratio of the decay widths

$$
R=\left|\frac{\eta_{00}}{\eta_{+-}}\right|^{2}=\frac{\Gamma\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right) \Gamma\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right) \Gamma\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)}
$$

(a long series of precision counting experiments)
From NA48 and KTeV collaborations,

$$
\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)_{\exp }=(16.6 \pm 2.3) \times 10^{-4}
$$

$\varepsilon^{\prime} / \&$ Current Situation

Matrix elements can now be determined on the Lattice [Blum et. al., Bai et. al. `15]

$$
\begin{aligned}
& \left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)_{\mathrm{SM}}=(1.9 \pm 4.5) \times 10^{-4} \\
& \left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)_{\exp }=(16.6 \pm 2.3) \times 10^{-4}
\end{aligned}
$$

[Buras, Gorbahn, Jäger, Jamin '15] (using input from Lattice results)
Tension between the theoretical prediction and the experimental data

NEW ANOMALY???

Disentangle the Flavor Puzzle

> Is flavor violation completely governed by the CKM matrix?

New sources of Flavor Symmetry Breaking at 10 TeV scale

Deeper Understanding of the SM is crucial

CPV in Kaon Decays

[Buras et.al., Ciuchini et. al. `92 `93]

QCD-Penguins EW-Penguins
$V_{i j}^{\mathrm{CKM}}=\left(\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right) \sim \mathcal{O}\left(\begin{array}{ccc}1 & \lambda & \lambda^{3} \\ \lambda & 1 & \lambda^{2} \\ \lambda^{3} & \lambda^{2} & 1\end{array}\right)$
$\lambda=\mathcal{O}(0.2)$

$$
\mathbf{s} \rightarrow \mathbf{d} \quad \lambda^{5} \sim 10^{-4}
$$

The CP violation is small because of flavor suppression

Effective Field Theories

$$
\mathbf{H}_{\text {eff }}=\mathbf{V}_{\mathbf{C K M}} \sum \mathbf{C}_{\text {short-distance }}^{\mathrm{C}_{\mathbf{i}}^{(\mu)}} \underbrace{\mathbf{O}_{\mathbf{i}}}_{\text {Long-distance }}
$$

Weak Effective Theory

Effective Hamiltonian at $\mu<\mathrm{m}_{\mathrm{c}}$

$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}} & =\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*} \sum_{i=1}^{10}\left(z_{i}(\mu)+\tau y_{i}(\mu)\right) \mathcal{O}_{i} \\
\tau & \equiv-\frac{V_{t d} V_{t s}^{*}}{V_{u d} V_{u s}} \quad \text { perturbative Wilson coeffs. }
\end{aligned}
$$

Only the Imaginary part of $\boldsymbol{\tau}$ is responsible for CPV (everything else is pure-real)
Long Distance:
[Blum et. al., Bai et. al. `15]
Lattice QCD calculation of the Matrix Elements

$$
\begin{gathered}
\left\langle(\pi \pi)_{I}\right| \mathcal{O}_{i}|K\rangle=\left\langle\mathcal{O}_{i}\right\rangle_{I} \\
\text { by RBC-UKQCD. }
\end{gathered}
$$

Short Distance

Traditional Basis

Modern Basis
i) [Misiak, Bobeth, Urban]
ii) [Gambino,Buras, U.H]
iii) [Gorbahn, Haisch]
iv) [Gorbahn, Brod]
v) [Buras, M.Jamin, M.E.L]
vi) [Blum et. al., Bai et. al. '15]

	Energy scale	Fields	Effective Theory	v)[Blum et. al., Bai et.al. 15]
Matching at $\mu \mathrm{W}$ Matching	Mw	$\begin{gathered} \gamma, \mathbf{g}, \mathbf{H} \\ \tau, \mu, \mathbf{e}, \mathbf{v i} \\ \mathbf{b}, \mathbf{c}, \mathbf{s}, \mathbf{d}, \mathbf{u} \end{gathered}$	A5	i) NNLO QCD + Current-Current ii) NNLO EW penguins iii) NNLO in QCD ADM/RGE
at $\mu \mathrm{b}$ Matching	mb	$\begin{gathered} \gamma, \mathrm{g} \\ \tau, \mu, \mathrm{e}, \mathrm{vi} \\ \mathrm{c}, \mathrm{~s}, \mathrm{~d}, \mathbf{u} \end{gathered}$	A4	iv)NNLO QCD + Current-Current iii) NNLO in QCD ADM/RGE
	mc	$\begin{gathered} \gamma, \mathbf{g} \\ \mu, \mathbf{e}, \mathbf{v i} \\ \mathbf{s}, \mathbf{d}, \mathbf{u} \end{gathered}$	A3	V) NLO All operators iii) NNLO in QCD ADM/RGE
Lattice QCD	MLattice	$\mathrm{u}, \mathrm{s}, \mathrm{d}$	attice QCD	V) NLO for all operators except Q8g

NNLO Operator Basis

The traditional basis requires the calculation of traces with $\gamma 5$
$\mathcal{O}_{5,6}=\left(\bar{s}_{i} d_{j}\right)_{\mathrm{V}-\mathrm{A}} \sum_{u, d, s}\left(\bar{q}_{k} q_{l}\right)_{\mathrm{V}+\mathrm{A}}$

Issues with the treatment of the $\gamma 5$ in D dimensions

Higher order calculations can be significantly simplified if we use a different operator basis: Modern basis
[Misiak et al.]

$$
\mathcal{O}_{5,6}^{m}=\left(\bar{s}_{i} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} P_{L} d_{j}\right)_{\mathrm{V}-\mathrm{A}} \sum_{u, d, s}\left(\bar{q}_{k} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} q_{l}\right) \Longrightarrow \text { No trace of } \gamma^{5}
$$

NNLO Matching

$\mathrm{O}_{1} \& \mathrm{O}_{2}$ have the largest Wilson Coefficients y_{i} for $\mu_{\mathrm{c}}>\mathrm{m}_{\mathrm{c}}$.

The calculation produces several types of structures,

$$
\left(\bar{s}_{i} \gamma^{\mu} P_{L} T_{i j}^{a} d_{j}\right) G_{\mu}^{a} k_{1}^{2} \quad\left(\bar{s}_{i} \gamma_{\nu} T_{i j}^{a} P_{L} d_{j}\right) G_{\mu}^{a} k_{1}^{\mu} k_{2}^{\nu} \quad \ldots
$$

- more than operators.

Renormalisation $\mathbf{O}_{\mathbf{1}} / \mathbf{O}_{\mathbf{2}}$

Divergencies in 4 flavor theory canceled by 3 flavor theory:
One-loop matching coefficient \times one-loop operator mixing
$A_{\text {full }}=A_{\text {eff }}$ results then in finite threshold corrections for $\mathrm{O}_{\mathbf{3}}-\mathrm{O}_{\mathbf{6}}$

Additional Check:

All results can be projected onto the Physical and EOM vanishing Operator Basis.
The $\log (\mu)$ dependence cancels analytically.
Note:
Evanescent Operators only contribute in $f=4$ theory at NNLO

Change of Basis

Lattice results are presented in the Traditional Basis.
A change of basis in Dimensional Regularization is equivalent to a rotation (\mathbf{R}) plus a change of scheme ($\delta \mathbf{Z}$) [Gorbahn, Haisch]

Physical quantities do not depend on the renormalisation scheme.

The scheme dependence of the Wilson coefficients and the ME cancels out in the product

QCD penguins at $\|_{\mathrm{lat}}=1.3 \mathrm{GeV}$ scale

We compute

$$
y_{i}^{\mathrm{CMM}}\left(\mu_{\mathrm{lat}}\right)=U\left(\mu_{\mathrm{Lat}}, \mu_{c}\right) \cdot M\left(\mu_{c}\right) \cdot U\left(\mu_{c}, \mu_{b}\right) \cdot M\left(\mu_{b}\right) \cdot U\left(\mu_{b}, \mu_{W}\right) \cdot y_{i}\left(\mu_{W}\right)
$$

Threshold corrections
We transform the Wilson coefficients to the the traditional basis

$$
\stackrel{\text { tra }}{y_{i}}\left(\mu_{\text {lat }}\right)=\left(R^{-1}\right)^{T} \cdot\left(1-\delta Z^{T}\right) \cdot y_{i}^{\mathrm{CMM}}\left(\mu_{\text {lat }}\right)
$$

Alternatively, we can use the formula

$$
y_{i}^{\operatorname{tra}}\left(\mu_{\mathrm{lat}}\right)=U_{\mathrm{tra}}^{(1 / 2)}\left(\mu_{\mathrm{Lat}}\right) \cdot\left(R^{-1}\right)^{T} \cdot U^{(-1 / 2)}\left(\mu_{c}\right) \cdot M\left(\mu_{c}\right) \cdot U\left(\mu_{c}, \mu_{b}\right) \cdot M\left(\mu_{b}\right) \cdot U\left(\mu_{b}, \mu_{W}\right) \cdot y_{i}\left(\mu_{W}\right)
$$

$\mathbf{y}_{3} \boldsymbol{\&} \mathbf{y}_{4}$

$\mu_{\text {lat }}=1.3 \mathrm{GeV}$

Traditional Basis

α_{s} at 3 Loops

m_{c} at 2 Loops

$y_{5} \boldsymbol{\&} \mathbf{y}_{6}$

$\mu_{\text {lat }}=1.3 \mathrm{GeV}$

m_{c} at 2 Loops

Phenomenology

epsilon'/\&psilon in the SM

$$
\begin{aligned}
\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}_{\mathrm{eff}}\left|K^{0}\right\rangle & =A_{0} e^{i \delta_{0}}+A_{2} e^{i \delta_{2}} / \sqrt{2} \\
\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}_{\mathrm{eff}}\left|K^{0}\right\rangle & =A_{0} e^{i \delta_{0}}-A_{2} e^{i \delta_{2}} / \sqrt{2} \\
\left\langle\pi^{+} \pi^{0}\right| \mathcal{H}_{\mathrm{eff}}\left|K^{0}\right\rangle & =3 A_{2}^{+} e^{i \delta_{2}^{+}} / 2
\end{aligned}
$$

$\mathbf{A}_{0} \& \mathbf{A}_{2}$: Isospin amplitudes for isospin conservation
$\mathbf{A}_{\mathbf{0}}, \mathbf{A}_{\mathbf{2}} \boldsymbol{\&} \mathbf{A}_{\mathbf{2}}{ }^{+}$from experiment
[Cirigliano, et. al. `11]

Lattice QCD gives us:

$$
A_{I}=\sum_{j} f\left(V_{\mathrm{CKM}}\right) \mathcal{C}_{i}\left\langle(\pi \pi)_{I}\right| \mathcal{O}_{j}|K\rangle
$$

The CPV is parametrized as,
Adjusted to keep EW
in $\operatorname{Im}(A 0)$
$\mathcal{R} e\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right) \simeq \frac{\varepsilon^{\prime}}{\varepsilon}=-\frac{\omega_{+}}{\sqrt{2}\left|\varepsilon_{K}\right|}\left[\frac{\mathcal{I} m\left(A_{0}\right)}{\mathcal{R} e\left(A_{0}\right)}\left(1-\Omega_{\mathrm{ef}}\right)-\frac{1}{a} \frac{\mathcal{I} m\left(A_{2}\right)}{\mathcal{R} e\left(A_{2}\right)}\right]$
[Buras, Gorbahn, Jäger, Jamin `15]

$$
\operatorname{Re} A_{2}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*} z_{+}\left\langle\mathcal{O}_{+}\right\rangle_{0}
$$

For (V-A)x(V-A) structure

$$
\left(\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}\right)_{\mathrm{V}-\mathrm{A}}=\operatorname{Im} \tau \frac{3\left(y_{9}+y_{10}\right)}{2 z_{+}}
$$

Free from hadronic uncertainties.
For (V-A)x(V+A) operators:

$$
\left(\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}\right)_{\mathrm{V}+\mathrm{A}}=-\frac{G_{F}}{\sqrt{2}} \operatorname{Im} \lambda_{t} y_{8}^{\mathrm{eff}} \frac{\left\langle\mathcal{O}_{8}\right\rangle_{2}}{\operatorname{Re} A_{2}}
$$

$\mathrm{O}-, \mathrm{O} 3,05, \mathrm{O} 6$ are pure $\mathrm{I}=1 / 2$ operators

In the isospin limit, ME for $\mathrm{I}=2$ of these operators vanish

$$
\left.\operatorname{Re} A_{0}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*}\left(z_{+}\left\langle\mathcal{O}_{+}\right\rangle_{0}+z_{\langle } \mathcal{O}_{-}\right\rangle_{0}\right)
$$

Fierz relations for (V-A)x(V-A) give, e.g.: $\quad\left\langle\mathcal{O}_{4}\right\rangle_{0}=\left\langle\mathcal{O}_{3}\right\rangle_{0}+2\left\langle\mathcal{O}_{-}\right\rangle_{0}$

$$
\begin{aligned}
& \left(\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right)_{\mathrm{V}-\mathrm{A}}=\operatorname{Im} \tau \frac{\left(2 y_{4}-b\left[3 y_{9}-y_{10}\right]\right)}{(1+q) z_{-}}+\operatorname{Im} \tau \quad b \frac{3\left[y_{9}+y_{10}\right] q}{2(1+q) z_{+}} \\
& \text {is only a function of the Wc's and the ratio }
\end{aligned}
$$

dominated by short distance

$$
q \equiv \frac{z_{+}(\mu)\left\langle\mathcal{O}_{+}(\mu)\right\rangle_{0}}{z_{-}(\mu)\left\langle\mathcal{O}_{-}(\mu)\right\rangle_{0}}
$$

For $(\mathrm{V}-\mathrm{A}) \mathrm{x}(\mathrm{V}+\mathrm{A})$ operators:

$$
\left(\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right)_{\mathrm{V}+\mathrm{A}}=-\frac{G_{F}}{\sqrt{2}} \operatorname{Im} \lambda_{t} y_{6} \frac{\left\langle\mathcal{O}_{6}\right\rangle_{0}}{\operatorname{Re} A_{0}}
$$

$\mathcal{E}^{\prime} / \mathcal{E} \boldsymbol{\&} \mu_{c}$

Residual μ_{c} scale dependence originating from the QCD penguins

Outlook

- Perturbation theory gives consistent results for QCD penguins at NNLO

NEXT STEPS

- Inclusion of the EW penguin and the CC contributions
- Inclusion of QED corrections
- Extending the formalism to four flavor
- Combining perturbation theory with Lattice. Renormalisation scheme

Thanks!!!

