Higher order effects in Epsilon'/Epsilon

In collaboration with:

Martin Gorbahn, Sebastian Jäger & Ahmet Kokulu

KAON 2016, Sep-16 University of Birmingham

Maria Cerdà-Sevilla (University of Liverpool)

Contents

- Motivation
- Effective Field Theories
- Perturbative Calculations
- ϵ'/ϵ in the SM
- Future Improvements
- Conclusions

Direct CP Violation Exists

A non-zero value of $Re(\epsilon'/\epsilon)$ signals that direct CP Violation exists

$$Re\left(\frac{\varepsilon'}{\varepsilon}\right) = \frac{1}{6}\left(1 - \left|\frac{\eta_{00}}{\eta_{+-}}\right|^2\right)$$

The measured quantity is the double ratio of the decay widths

$$R = \left| \frac{\eta_{00}}{\eta_{+-}} \right|^2 = \frac{\Gamma(K_L \to \pi^0 \pi^0) \Gamma(K_S \to \pi^+ \pi^-)}{\Gamma(K_L \to \pi^+ \pi^-) \Gamma(K_S \to \pi^0 \pi^0)}$$

(a long series of precision counting experiments)

From NA48 and KTeV collaborations,

$$\left(\frac{\varepsilon'}{\varepsilon}\right)_{\rm exp} = (16.6 \pm 2.3) \times 10^{-4}$$

E'/E Current Situation

Matrix elements can now be determined on the Lattice [Blum et. al., Bai et. al. `15]

$$\begin{pmatrix} \frac{\varepsilon'}{\varepsilon} \end{pmatrix}_{\text{SM}} = (1.9 \pm 4.5) \times 10^{-4} \\ \left(\frac{\varepsilon'}{\varepsilon} \right)_{\text{exp}} = (16.6 \pm 2.3) \times 10^{-4}$$
 (2.90)

[Buras, Gorbahn, Jäger, Jamin '15] (using input from Lattice results)

Tension between the theoretical prediction and the experimental data

NEW ANOMALY???

Disentangle the Flavor Puzzle

Deeper Understanding of the SM is crucial

CPV in Kaon Decays

[Buras et.al., Ciuchini et. al. `92 `93]

 $\mathbf{s} \rightarrow \mathbf{d} \quad \lambda^5 \sim 10^{-4}$

The CP violation is small because of flavor suppression

Effective Field Theories

Long-distance

Weak Effective Theory

Effective Hamiltonian at $\mu < m_c$

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \sum_{i=1}^{10} (z_i(\mu) + \tau y_i(\mu)) \mathcal{O}_i \\ \tau &= -\frac{V_{td} V_{ts}^*}{V_{ud} V_{us}} \end{aligned} \qquad \text{perturbative Wilson coeffs.} \end{aligned}$$

Only the Imaginary part of **t** is responsible for CPV (everything else is pure-real)

Long Distance:

[Blum et. al., Bai et. al. `15]

Lattice QCD calculation of the Matrix Elements

 $\langle (\pi\pi)_I | \mathcal{O}_i | K \rangle = \langle \mathcal{O}_i \rangle_I$

by RBC-UKQCD.

NNLO Operator Basis

The traditional basis requires the calculation of traces with $\gamma 5$

$$\mathcal{O}_{5,6} = (\bar{s}_i d_j)_{V-A} \sum_{u,d,s} (\bar{q}_k q_l)_{V+A}$$

Issues with the treatment of the γ5 in D dimensions

No trace of $\gamma 5$

Higher order calculations can be significantly simplified if we use a different operator basis: Modern basis

[Misiak et al.]

$$\mathcal{O}_{5,6}^{m} = (\bar{s}_{i}\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}P_{L}d_{j})_{\text{V-A}}\sum_{u,d,s}(\bar{q}_{k}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}q_{l})$$

NNLO Matching

 $O_1 \& O_2$ have the largest Wilson Coefficients y_i for $\mu_c > m_c$.

The calculation produces several types of structures,

 $(\bar{s}_i \gamma^{\mu} P_L T^a_{ij} d_j) G^a_{\mu} k_1^2 \ (\bar{s}_i \gamma_{\nu} T^a_{ij} P_L d_j) G^a_{\mu} k_1^{\mu} k_2^{\nu} \ \dots$

- more than operators.

Renormalisation O₁/O₂

Divergencies in 4 flavor theory canceled by 3 flavor theory:

One-loop matching coefficient × **one-loop operator mixing**

 $A_{full} = A_{eff}$ results then in finite threshold corrections for $O_3 - O_6$

Additional Check:

All results can be projected onto the Physical and EOM vanishing Operator Basis.

The log(µ) dependence cancels analytically.

Note:

Evanescent Operators only contribute in f=4 theory at NNLO

Change of Basis

Lattice results are presented in the Traditional Basis.

A change of basis in Dimensional Regularization is equivalent to a rotation (R) plus a change of scheme (δZ) [Gorbahn, Haisch]

Physical quantities do not depend on the renormalisation scheme.

The scheme dependence of the Wilson coefficients and the ME cancels out in the product

QCD penguins at µlat=1.3 GeV scale

We compute $y_i^{\text{CMM}}(\mu_{\text{lat}}) = U(\mu_{\text{Lat}}, \mu_c) . M(\mu_c) . U(\mu_c, \mu_b) . M(\mu_b) . U(\mu_b, \mu_W) . y_i(\mu_W)$ Threshold corrections

We transform the Wilson coefficients to the the traditional basis

$$y_i^{\text{tra}}(\mu_{\text{lat}}) = (R^{-1})^T . (1 - \delta Z^T) . y_i^{\text{CMM}}(\mu_{\text{lat}})$$

Alternatively, we can use the formula

 $y_i^{\text{tra}}(\mu_{\text{lat}}) = U_{\text{tra}}^{(1/2)}(\mu_{\text{Lat}}).(R^{-1})^T.U^{(-1/2)}(\mu_c).M(\mu_c).U(\mu_c,\mu_b).M(\mu_b).U(\mu_b,\mu_W).y_i(\mu_W)$ [Jäger's talk]

mc at 2 Loops

mc at 2 Loops

Phenomenology

Epsilon'/Epsilon in the SM

$$\langle \pi^0 \pi^0 | \mathcal{H}_{\text{eff}} | K^0 \rangle = A_0 e^{i\delta_0} + A_2 e^{i\delta_2} / \sqrt{2}$$
$$\langle \pi^+ \pi^- | \mathcal{H}_{\text{eff}} | K^0 \rangle = A_0 e^{i\delta_0} - A_2 e^{i\delta_2} / \sqrt{2}$$
$$\langle \pi^+ \pi^0 | \mathcal{H}_{\text{eff}} | K^0 \rangle = 3A_2^+ e^{i\delta_2^+} / 2$$

Normalise to K^+ decay (ω_+ , a) and ϵ_K expand in A_2/A_0 and CP violation A₀ & A₂ : Isospin amplitudes for isospin conservation

Lattice QCD gives us:

$$A_I = \sum_j f(V_{\rm CKM}) \mathcal{C}_i \left(\langle (\pi \pi)_I | \mathcal{O}_j \rangle \right)$$

The CPV is parametrized as, $\begin{aligned} & \begin{array}{c} \text{Adjusted to keep EW} \\ & \text{in Im(A0)} \end{aligned} \\ \mathcal{R}e\left(\frac{\varepsilon'}{\varepsilon}\right) \simeq \frac{\varepsilon'}{\varepsilon} = -\frac{\omega_+}{\sqrt{2}|\varepsilon_K|} \left[\frac{\mathcal{I}m(A_0)}{\mathcal{R}e(A_0)}\left(1 - \widehat{\Omega_{\text{eff}}}\right) - \frac{1}{a}\frac{\mathcal{I}m(A_2)}{\mathcal{R}e(A_2)}\right] \end{aligned}$

[Buras, Gorbahn, Jäger, Jamin `15]

[Cirigliano, et.al. `11]

[Buras, Gorbahn, Jäger & Jamin `15]

$$\operatorname{Re}A_2 = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* z_+ \langle \mathcal{O}_+ \rangle_0$$

For (V-A)x(V-A) structure

$$\left(\frac{\mathrm{Im}A_2}{\mathrm{Re}A_2}\right)_{\mathrm{V-A}} = \mathrm{Im}\tau \frac{3(y_9 + y_{10})}{2z_+}$$

Free from hadronic uncertainties.

For (V-A)x(V+A) operators:

$$\left(\frac{\mathrm{Im}A_2}{\mathrm{Re}A_2}\right)_{\mathrm{V+A}} = -\frac{G_F}{\sqrt{2}}\mathrm{Im}\lambda_t y_8^{\mathrm{eff}} \frac{\langle \mathcal{O}_8 \rangle_2}{\mathrm{Re}A_2}$$

Small effects of ME Q7 I=2.

O-, O3, O5, O6 are pure I=1/2 operators

In the isospin limit, ME for I=2 of these operators vanish

[Buras, Gorbahn, Jäger & Jamin `15]

$$\operatorname{Re}A_0 = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* (z_+ \langle \mathcal{O}_+ \rangle_0 + z_{\langle} \mathcal{O}_- \rangle_0)$$

Fierz relations for (V-A)x(V-A) give, e.g.: $\langle \mathcal{O}_4 \rangle_0 = \langle \mathcal{O}_3 \rangle_0 + 2 \langle \mathcal{O}_- \rangle_0$

$$\left(\frac{\mathrm{Im}A_0}{\mathrm{Re}A_0}\right)_{\mathrm{V-A}} = \mathrm{Im}\tau \frac{(2y_4 - b[3y_9 - y_{10}])}{(1+q)z_-} + \mathrm{Im}\tau \ b\frac{3[y_9 + y_{10}]q}{2(1+q)z_+}$$

is only a function of the Wc's and the ratio

$$q \equiv \frac{z_+(\mu) \langle \mathcal{O}_+(\mu) \rangle_0}{z_-(\mu) \langle \mathcal{O}_-(\mu) \rangle_0}$$

dominated by short distance

For (V-A)x(V+A) operators:

$$\left(\frac{\mathrm{Im}A_0}{\mathrm{Re}A_0}\right)_{\mathrm{V+A}} = -\frac{G_F}{\sqrt{2}}\mathrm{Im}\lambda_t \ y_6 \frac{\langle \mathcal{O}_6 \rangle_0}{\mathrm{Re}A_0}$$

34°3′′3

Residual μ_c scale dependence originating from the QCD penguins

Outlook

• Perturbation theory gives consistent results for QCD penguins at NNLO

NEXT STEPS

- Inclusion of the EW penguin and the CC contributions
- Inclusion of QED corrections
- Extending the formalism to four flavor [Jäger's talk]
- Combining perturbation theory with Lattice. Renormalisation scheme

Thanks!!!