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Direct CP Violation Exists
A non-zero value of Re(ε’/ε) signals that direct CP Violation exists
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The measured quantity is the double ratio of the decay widths
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ε’/ε Current Situation

[Buras, Gorbahn, Jäger, Jamin ’15] 
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Tension between the theoretical  
prediction and the experimental data

NEW ANOMALY???

 [Blum et. al., Bai et. al. `15]Matrix elements can now be determined on the Lattice

(using input from Lattice results)
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Disentangle the Flavor Puzzle
Is flavor violation completely  

governed by the CKM matrix?

Minimal Flavor Violation 
(MFV)

New sources of Flavor Symmetry  
Breaking at 10 TeV scale 

NOYes

Deeper Understanding of the SM is crucial
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CPV in Kaon Decays
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 [Buras et.al., Ciuchini et. al. `92 `93]
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The CP violation is small 
because of flavor suppression
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Effective Field Theories
Heff = VCKM ∑ Ci(µ) Oi {

short-distance

{

Long-distance
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Weak Effective Theory 
Effective Hamiltonian at µ < mc  

perturbative Wilson coeffs.

He↵ = GFp
2
VudV ⇤

us

P10
i=1(zi(µ) + ⌧yi(µ))Oi

⌧ ⌘ � VtdV
⇤
ts

VudVus

Only the Imaginary part of τ is responsible for CPV 
(everything else is pure-real)

Long Distance:  [Blum et. al., Bai et. al. `15]

Lattice QCD calculation of the Matrix Elements                            

by RBC-UKQCD.

h(⇡⇡)I |Oi|Ki = hOiiI
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Short Distance 

Energy scale Fields Effective  
Theory
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Matching 
at µW

Lattice QCD

NNLO QCD + Current-Current
NNLO EW penguins 
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NNLO QCD + Current-Currentiv) 

NLO All operatorsV) 

[Gorbahn, Haisch]
[Gorbahn, Brod]

[Gambino,Buras, U.H]
[Misiak, Bobeth, Urban]

[Buras, M.Jamin, M.E.L]

NNLO in QCD ADM/RGEiii) 

vi) [Blum et. al., Bai et. al. ‘15]

Matching 
at µb

Matching 
at µc

Lattice  
QCD NLO for all operators except Q8gV) 

NNLO in QCD ADM/RGEiii) 

NNLO in QCD ADM/RGEiii) 

Traditional Basis Modern Basis
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NNLO Operator Basis
The traditional basis requires the calculation of traces with 𝛄5 
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Figure 5: Some of the three-loop 1PI diagrams we had to calculate in order to find the
mixing among the four-quark operators Q1–Q6 at O(α3

s).

The finite parts of Eq. (33) in the limit of ϵ going to zero give the anomalous dimensions.
Inserting the expansions of γ̂(g) and β(g) in powers of g, as given in Eq. (5), one im-
mediately finds [15, 18] for the anomalous dimensions governing the evolution of physical
operators up to third order in the strong coupling parameter:

γ̂(0) = 2Ẑ(1,1) ,

γ̂(1) = 4Ẑ(2,1) − 2Ẑ(1,1)Ẑ(1,0) ,

γ̂(2) = 6Ẑ(3,1) − 4Ẑ(2,1)Ẑ(1,0) − 2Ẑ(1,1)Ẑ(2,0) .

(35)

The matrices Ẑ(1,0), Ẑ(1,1), Ẑ(2,0) and Ẑ(2,1) are found by calculating various one- and
two-loop diagrams with a single insertion of Q1–Q6, E(1)

1 –E(1)
4 and E(2)

1 –E(2)
4 , whereas

the matrix Ẑ(3,1) requires the computation of three-loop diagrams with insertions of Q1–
Q6 as shown in Figure 5. The pole and finite parts of these one-, two- and three-loop
diagrams are evaluated using the method we have described together with Paolo Gambino
in detail in [15]: We perform the calculation off-shell in an arbitrary Rξ gauge which allows
us to explicitly check the gauge-parameter independence of the mixing among physical
operators. To distinguish between IR and UV divergences we follow [17,18] and introduce
a common mass M for all fields, expanding all loop integrals in inverse powers of M . This
makes the calculation of the UV divergences possible even at three loops, as M becomes
the only relevant internal scale and three-loop tadpole integrals with a single non-zero
mass are known [18, 32]. On the other hand, this procedure requires to take into account

insertions of the non-physical operators N (1)
1 and N (2)

1 –N (2)
10 , as well as of appropriate

counterterms of dimension-three and four, some of which explicitly break gauge invariance.
A comprehensive discussion of the technical details of the renormalization of the effective
theory and the actual calculation of the operator mixing is given in [15].

Having summarized the general formalism and our method, we will now present our
results for an arbitrary number of quark flavors denoted by f . For completeness we start
with the regularization- and renormalization-scheme independent matrix γ̂(0), which is

14

s       O5          d

 Issues with the treatment of 
the 𝛄5 in D dimensions 

Higher order calculations can be significantly simplified  
if we use a different  operator basis: Modern basis

s  O5    d s       O5          d

[Misiak et al.]

O5,6 = (s̄idj)V-A

P
u,d,s(q̄kql)V+A

Om
5,6 = (s̄i�µ�⌫�⇢PLdj)V-A

P
u,d,s(q̄k�

µ�⌫�⇢ql) No trace of 𝛄5 
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NNLO Matching
O1 & O2 have the largest Wilson Coefficients yi for µc > mc.

The calculation produces several types of structures,
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Renormalisation O1/O2

Divergencies in 4 flavor theory canceled by 3 flavor theory:

One-loop matching coefficient × one-loop operator mixing

Afull = Aeff  results then in finite threshold corrections for  O3 - O6

Additional Check: 
All results can be projected onto the Physical and EOM vanishing Operator Basis.

The log(µ) dependence cancels analytically.

Note:  
Evanescent Operators only contribute in f=4 theory at NNLO
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Lattice results are presented in the Traditional Basis.

A change of basis in Dimensional Regularization is equivalent to

Physical quantities do not depend on the renormalisation scheme.

a rotation (R) plus a change of scheme (𝝳Z)  

Change of Basis

The scheme dependence of the  

Wilson coefficients and the ME  

cancels out in the product
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QCD penguins  
at µlat=1.3 GeV scale

Threshold corrections

RGE
We compute

We transform the Wilson coefficients to the the traditional basis

Alternatively, we can use the formula

yBi (µlat) = (R�1)T .(1� �ZT ).yCMM
i (µlat)

yCMM
i (µlat) = U(µLat, µc).M(µc).U(µc, µb).M(µb).U(µb, µW ).yi(µW )

yBi (µlat) = U (1/2)
B (µLat).(R�1)T .U (�1/2)(µc).M(µc).U(µc, µb).M(µb).U(µb, µW ).yi(µW )
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y3 & y4

Traditional Basis

LO LO
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y5 & y6
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Phenomenology
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εpsilon’/εpsilon in the SM

Adjusted to keep EW 
in Im(A0)The  CPV is parametrized as,

[Buras, Gorbahn, Jäger, Jamin `15] [Cirigliano,  et.al. `11]
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Normalise to K+ decay (ω+, a) 
and εK 

expand in A2/A0 and CP violation

A0 & A2 : Isospin amplitudes  
for isospin conservation

A0, A2 & A2+ from experiment
 [Cirigliano, et. al. `11]

Lattice QCD gives us:  

AI =
P

j f(VCKM)Ci h(⇡⇡)I |Oj |Ki

h⇡0⇡0|He↵|K0i = A0ei�0 +A2ei�2/
p
2

h⇡+⇡�|He↵|K0i = A0ei�0 �A2ei�2/
p
2

h⇡+⇡0|He↵|K0i = 3A+
2 e

i�+2 /2
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For I=2:

For (V-A)x(V+A) operators:

Small effects of 
ME Q7 I=2.

Free from hadronic uncertainties.

[Buras, Gorbahn, Jäger & Jamin `15]

For (V-A)x(V-A) structure 

O-, O3, O5, O6 are pure I=1/2 
operators

In the isospin limit, ME for I=2   
of these operators vanish  

⇣
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ReA2 = GFp
2
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usz+hO+i0
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Fierz relations for (V-A)x(V-A) give, e.g.: hO4i0 = hO3i0 + 2hO�i0

is only a function of the Wc’s and the ratio 

[Buras, Gorbahn, Jäger & Jamin `15]For I=0:

For (V-A)x(V+A) operators:

⇣
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dominated by short distance 

dominated by long distance 
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ε’/ε &   µc

LO
NLO

NNLO

Residual µc scale dependence originating from the QCD penguins
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Outlook

. Inclusion of the EW penguin and the CC contributions

. Inclusion of QED corrections

. Extending the formalism to four flavor

. Combining perturbation theory with Lattice.
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. Perturbation theory gives consistent results for QCD penguins
at NNLO

NEXT STEPS

[Jäger’s talk]

 Renormalisation scheme 



Thanks!!!
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