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Precisely known experimentally for a decade

Even more precise measurement possible in principle at 
NA62/CERN

defines  Re(!’/!) experimentally
left-hand side is measured



 master formula

from experiment

QCD isospin amplitudes
factorise into Wilson coefficients (perturbative)
and matrix elements (nonperturbative)

Cirigliano et al 2003
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Electroweak Penguins:

Q7 =
3

2
(s̄d)V−A

�

q=u,d,s,c,b

eq (q̄q)V+A Q8 =
3

2
(s̄αdβ)V−A

�

q=u,d,s,c,b

eq (q̄βqα)V+A (13)

Q9 =
3

2
(s̄d)V−A

�

q=u,d,s,c,b

eq (q̄q)V−A Q10 =
3

2
(s̄αdβ)V−A

�

q=u,d,s,c,b

eq (q̄βqα)V−A (14)

Here, α, β denote colour indices and eq denotes the electric quark charges reflecting the
electroweak origin of Q7, . . . , Q10. Finally, (s̄d)V−A ≡ s̄αγµ(1− γ5)dα.

The Wilson coefficients zi and yi have been calculated at the NLO level more than
twenty years ago [10,11], and some pieces of NNLO corrections are also available [12–14].
In Table 1, we collect values for z1,2 and yi at µ = mc, used in our approach, for three
values of αs(MZ) and mt = 163GeV, in the NDR-MS scheme.

αs(MZ) = 0.1179 αs(MZ) = 0.1185 αs(MZ) = 0.1191
z1 –0.4036 –0.4092 –0.4150
z2 1.2084 1.2120 1.2157
y3 0.0275 0.0280 0.0285
y4 –0.0555 –0.0563 –0.0571
y5 0.0054 0.0052 0.0050
y6 –0.0849 –0.0867 –0.0887

y7/α –0.0404 –0.0403 –0.0402
y8/α 0.1207 0.1234 0.1261
y9/α –1.3936 –1.3981 –1.4027
y10/α 0.4997 0.5071 0.5146

Table 1: ∆S = 1 Wilson coefficients at µ = mc = 1.3GeV for three values of αs(MZ) and
mt = 163GeV in the NDR-MS scheme.

2.2 Basic formula for ε�/ε

Our starting expression is formula (8.16) of [29] which we recall here in our notation1

ε�

ε
= − ω+√

2 |εK |

�
ImA0

ReA0
(1− Ωeff)−

ImA2

ReA2

�
, (15)

where [29]

ω+ = a
ReA2

ReA0
= (4.53± 0.02)× 10−2, a = 1.017, Ωeff = (6.0± 7.7)× 10−2 . (16)

Here a and Ωeff summarise isospin breaking corrections and include strong isospin violation
(mu �= md), the correction to the isospin limit coming from ∆I = 5/2 transitions and

1In order to simplify the notation we denote Re(ε�/ε) simply by ε�/ε, which is real to an excellent
approximation. The latter is a model-independent consequence of the experimentally known values of
the (strong) phases of ε� and ε.

from experiment

Buras, Buchalla, Lautenbacher 1990; Buras, Jamin 1993;1996; Bosch et al 1999;
Buras, Gorbahn, SJ, Jamin  arXiv:1507.06345

leading isospin breaking
Cirigliano et al 2003
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2.4 Convenient formula for ε�/ε

Before turning to quantitative phenomenology, in order to make easier connection

with the phenomenological literature and aid discussion of our results, we summarise

the discussion so far in a concise formula (derived first in [10]) for ε�/ε that exhibits

the sensitivity to the two most important hadronic matrix elements B(1/2)
6 and B(3/2)

8

transparently.

Using the effective Hamiltonian (9) and the experimental data for ω, ReA0 and εK ,
we find

ε�

ε
= Imλt ·

�
a
�
1− Ω̂eff

�
P (1/2) − P (3/2)

�
, (50)

where

P (1/2)
=

�
P (1/2)
i = r

�
yi�Qi�0 , (51)

P (3/2)
=

�
P (3/2)
i =

r

ω

�
yi�Qi�2 , (52)

with

r =
GF ω

2 |εK |ReA0
. (53)

In (51) and (52) the sums run over all contributing operators. Therefore in P (1/2)
in the

case of EWP contributions we have to take into account the correction b �= 1 defined in

(18).

Writing then

P (1/2)
= a(1/2)0 + a(1/2)6 B(1/2)

6 , (54)

P (3/2)
= a(3/2)0 + a(3/2)8 B(3/2)

8 , (55)

with the parameters B(1/2)
6 and B(3/2)

8 taken at µ = mc and using the expressions (36)-(42)

we find:

a(1/2)0 = r1

�
[4y4 − b(3y9 − y10)]

2(1 + q)z−
+ b

3q(y9 + y10)

2(1 + q)z+

�
+ r2 b y8

�Q8�0
ReA0

, (56)

a(1/2)6 = r2 y6
�Q6�0

B(1/2)
6 ReA0

, (57)

a(3/2)0 = r1
3(y9 + y10)

2z+
, (58)

a(3/2)8 = r2 y
eff
8

�Q8�2
B(3/2)

8 ReA2

, (59)

where

r1 =
ω√
2|εK |

1

VudV ∗
us

, r2 =
ω

2|εK |
GF , (60)

neglect small
imaginary part
(for simplicity;
could easily be
restored)

AI = 〈(ππ)I |Heff |K〉 =
10∑

i=1

Ci〈(ππ)I |Qi|K〉

NEW: first-ever calculation 
with controlled errors by RBC-
UKQCD (2015)

known to NLO
NEW: partial NNLO

Buras et al 1992,1993; Ciuchini et al 1993

Cerda Sevilla, Gorbahn, SJ, Kokulu 2016
(NNLO ADMs: Gorbahn, Haisch; Gorbahn, Brod
 NNLO weak scale: Misiak et al; Gambino et al)



State of phenomenology (NLO)

(still) completely dominated by 

next are NNLO and isospin breaking

all in units of 10^-4

parameterise hadronic
matrix elements
values from RBC-UKQCD 
2015
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the precision on mt increased by much in the last two decades. a(3/2)0 contributes

positively to ε�/ε.

iv) The contribution of the (V −A)⊗(V +A) electroweak penguin operators Q7 and Q8

to P (3/2) is represented by the second term in (55). This contribution is dominated

by Q8 and depends sensitively on mt and αs. It contributes negatively to ε�/ε.

The competition between these four contributions is the reason why it is difficult to

predict ε�/ε precisely. In this context, one should appreciate the virtue of our approach:

the contributions i) and iii) can be determined rather precisely by CP-conserving data so

that the dominant uncertainty in our approach in predicting ε�/ε resides in the values of

B(1/2)
6 and B(3/2)

8 .

3 Prediction for ε�/ε in the SM

3.1 Prediction for ε�/ε and discussion

We begin our analysis by employing the lattice values in (2) and (3). Varying all parame-

ters within their input ranges and combining the resulting variations in ε�/ε in quadrature,

we obtain:

(ε�/ε)SM = (1.9± 4.5)× 10
−4. (61)

Comparing to the experimental result (ε�/ε)exp = (16.6±2.3)×10−4 (average of NA48 [26]

and KTeV [27,28]), we observe a discrepancy of 2.9 σ significance.

quantity error on ε�/ε quantity error on ε�/ε

B(1/2)
6 4.1 md(mc) 0.2

NNLO 1.6 q 0.2

Ω̂eff 0.7 B(1/2)
8 0.1

p3 0.6 Imλt 0.1

B(3/2)
8 0.5 p72 0.1
p5 0.4 p70 0.1

ms(mc) 0.3 αs(MZ) 0.1
mt(mt) 0.3

Table 4: Error budget, ordered from most important to least important. Each line shows

the variation from the central value of our ε�/ε prediction, in units of 10−4, as the cor-

responding parameter is varied within its input range, all others held at central values.

A detailed error budget is given in Table 4. It is evident that the error is dominated

by the hadronic parameter B(1/2)
6 . Uncertainties from higher-order corrections are still

significant yet small if compared to the deviation from the experimental value. All other

individual errors are below 10−4, with the third most important uncertainty coming from

the isospin breaking parameter Ω̂eff , at a level of 0.7 × 10−4 and about six times smaller

than the error due to B(1/2)
6 . If matrix elements are taken from a lattice calculation, the
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2.9" discrepancy

Buras, Gorbahn, SJ, Jamin arXiv:1507.06345

(see also Kitahara, Nierste, Tremper 1607.06727)
(see also Kitahara, Nierste, Tremper 1607.06727)



What to make of the discrepancy
Possible explanations

    new physics

    missing SM electroweak corrections
    missing QED corrections
    missing perturbative QCD corrections
    hadronic matrix elements off

      
Likelihood of the SM explanations decreases from bottom 
to top (as per our error budget)



By energy scale

perturbative
matching

mc

TeV 

relevant 
dynamics (EFT)

perturbative
matching

perturbative 
matching

Heff + QCD (t,b,c,s,d,u) 
+ QED* + weak int.

Note - all this applies to any CP-violating or rare Kaon process !
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MSSM: sensitive to stops and their couplings
Stringent constraints on 1st-2nd generation mixing

In more general cases can have tree-level
contributions (Z’)

In strongly coupled models may lose loop 
suppression, flavour most stringent generic
constraint absent flavour protection (RS)

1977  ! lepton and bottom quark discovered 

1983  W and Z bosons produced

1987  ARGUS measures Bd - Bd mass difference
        First indication of a heavy top

        The diagram depends quadratically on mt

1995 top quark discovered at CDF & D0

2012  Higgs discovered, SM complete

2015-                     LHC run II: SUSY, new strong
                              interactions,  extra dimensions, ...
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Standard Model
All matter is composed of twelve “flavors” of spin-1/2 fermion,
including three neutrinos, each with different mass.

(
uL

dL

)
uR

dR

(
cL

sL

)
cR

sR

(
tL
bL

)
tR
bR

Q = +2/3
Q = −1/3(

νeL

eL

) −
eR

(
νµL

µL

) −
µR

(
ντ L

τL

) −
τR

Q = 0
Q = −1

Almost all interaction is due to gauge forces. Colored fermions feel
the strong interactions due to the gluon field Gµ. They and the
charged leptons also interact with the electromagnetic field Aµ.

Weak interactions, due to W+ and Z0 boson exchange, are chiral:

W+

dL uL

but not
dR uR

W+

What B-mesons tell us about the Standard Model and “New Physics” – p.3

?

Tuesday, 19 May 15

e.g. B-Bbar oscillations first
indication of a heavy
top (Argus 1987)

SM: Loop + CKM suppression of FCNC  (GIM)

yt main source of GIM breaking: enhanced sensitivity to top

BSM: Can compete even in weakly coupled case  (MSSM)

Charm contribution sometimes sizable/uncertain
due to large logarithms and/or nonperturbative 
QCD effects. Often leading source of uncertainty

u, c,

Heff + QCD (b,c,s,d,u) 
+ QEDmb

perturbative (?)
matching

Heff + QCD (s,d,u) 
+ QED

nonperturbative matrix elements 
(lattice or model; some #PT)

Heff + QCD (c,s,d,u) 
+ QED

$QCD

* + Higgs force. Dynamics negligible in flavour physics, vacuum value of course fixes quark masses and mixings
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SM: Loop + CKM suppression of FCNC  (GIM)

yt main source of GIM breaking: enhanced sensitivity to top

BSM: Can compete even in weakly coupled case  (MSSM)

Charm contribution sometimes sizable/uncertain
due to large logarithms and/or nonperturbative 
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〈ππ|Qi|K〉



New physics ?
Numerous analyses so far.

Plausible. New physics enters most easily enters through 
Z-penguin, modifying C7..C10 , but other possibilities, even 
modified Re A0 or Re A2 could be possible in principle. 

Clarifying the tension is one motivation for more precise 
(SM) theory.

eg talks by 
Buras,Kitahara,Yamamoto



Standard Model
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perturbative 
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Note - all this applies to any CP-violating or rare Kaon process !
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Large coefficients, but CP-conserving (y=0). Account for K->pi pi 
decay rates.

           but CP-violating (y=1). However, isospin-0 final state only

             but can create isospin-2 state 

Operators



Minimizing nonperturbative input
Why does a single matrix element dominate the error?

- Re A0, Re A2 dominate BR("") ⇒  known from CPC data

- EWP suppressed in I=0 (#/#s)  ⇒  C3..6 Q3..6 dominate ImA0

- QCDP cannot create I=2  ⇒ Im A2 due to C7..10 Q7..10    
       [broken by QED, mu!md in matrix elements, estimated  
        separately through $eff]
- Operator identities (only 7 independent ones)

- Colour hierarchies between matrix elements, coefficients

- Better control over I=2 matrix element on lattice 



Operator relations
Operator (Fierz) identities and isospin imply for the purely left-
handed operators (in the 3-flavour effective theory):

                                                 where 

Hence  (splitting                                               ) one has

perturbatively calculable
without nonperturbative input
do not use data (would spoil
cancellation of matrix element!)

2 Basic formulae 8

for scales µ ≤ mc, although in [10] also extensive discussion of scales above mc can be

found.

For µ ≤ mc, when the charm quark has been integrated out, only seven of the operators

listed above are independent of each other. Eliminating then Q4, Q9 and Q10 in terms of

the remaining seven operators results in the following important relations in the isospin

limit [10]:

�Q4�0 = �Q3�0 + �Q2�0 − �Q1�0 , (22)

�Q9�0 =
3

2
�Q1�0 −

1

2
�Q3�0 , (23)

�Q10�0 = �Q2�0 +
1

2
�Q1�0 −

1

2
�Q3�0 , (24)

�Q9�2 = �Q10�2 =
3

2
�Q1�2 , (25)

where we have employed

�Q1�2 = �Q2�2 . (26)

As stressed in [10], in the NDR-MS scheme the relation (22) receives an O(αs) cor-

rection due to the presence of evanescent operators which have to be taken into account

when using Fierz identities in its derivation. The other relations above do not receive

such corrections. The complete expression for �Q4�0 in the NDR-MS scheme reads [10]

�Q4�0 = �Q3�0 + �Q2�0 − �Q1�0 −
αs

4π

�
�Q6�0 + �Q4�0 −

1

3
�Q3�0 −

1

3
�Q5�0

�
, (27)

which of course then has to be solved for �Q4�0. However, due to the partial cancellation

between the matrix elements �Q4�0 and �Q6�0, and the smallness of the matrix elements

of Q3 and Q5, this correction affects the determination of �Q4�0 by at most few percent

and can be neglected. This procedure is supported both by the results on hadronic matrix

elements RBC-UKQCD collaboration [25] and the large-N approach [24].

Setting the contribution of Q3 to zero
2
and using the operators

Q± =
1

2

�
Q2 ±Q1

�
, (28)

the formulae (22)-(25) read

�Q4�0 = 2 �Q−�0 , (29)

�Q9�0 =
3

2

�
�Q+�0 − �Q−�0

�
, (30)

�Q10�0 =
3

2
�Q+�0 +

1

2
�Q−�0 , (31)

�Q9�2 = �Q10�2 =
3

2
�Q+�2 , (32)

2In our numerical analysis below, all operators will be taken into account.
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for scales µ ≤ mc, although in [10] also extensive discussion of scales above mc can be

found.

For µ ≤ mc, when the charm quark has been integrated out, only seven of the operators
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1

2
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�Q1�2 , (25)
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rection due to the presence of evanescent operators which have to be taken into account

when using Fierz identities in its derivation. The other relations above do not receive

such corrections. The complete expression for �Q4�0 in the NDR-MS scheme reads [10]

�Q4�0 = �Q3�0 + �Q2�0 − �Q1�0 −
αs

4π

�
�Q6�0 + �Q4�0 −

1

3
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1

3
�Q5�0

�
, (27)
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of Q3 and Q5, this correction affects the determination of �Q4�0 by at most few percent

and can be neglected. This procedure is supported both by the results on hadronic matrix

elements RBC-UKQCD collaboration [25] and the large-N approach [24].

Setting the contribution of Q3 to zero
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1
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Q2 ±Q1

�
, (28)

the formulae (22)-(25) read
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Ci = zi − yi

VtdV
∗

ts

VudV ∗

us

≡ zi + yi τ

(

ImA2

ReA2

)

= Imτ
y7〈Q7〉2 + y8〈Q8〉2 + y9〈Q9〉2 + y10〈Q10〉2

z+〈Q+〉2

= Imτ
y9 + y10

z+

−
GF√

2
Imλt y8

〈Q8〉2
ReA2

(

1 +
y7

y8

〈Q7〉2
〈Q8〉2

)

small small
(colour)
p72 in
error budget

from CPC
(BR) data

remaining
hadronic input



Operator relations (I=0)
Analogously,

where                             is the only hadronic input (numerically,
 
<~ 0.1 (RBC-UKQCD), ~0.1 (Buras-Bardeen-Gerard approach) - 
negligible impact on error budget. No input from data here.

The remainder

                                               

is again dominated by one matrix element.

small (EWP)from CPC
(BR) data
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which reduces the number of independent (V − A) ⊗ (V − A) matrix elements entering
ReA0,2 and ImA0,2 to three. On the other hand, to an excellent approximation the am-
plitudes ReA0 and ReA2 at µ = mc are fully described by the operators Q− and Q+, so
that we can write

ReA0 =
GF√
2
VudV

∗
us

�
z+�Q+�0 + z−�Q−�0

�
, (33)

ReA2 =
GF√
2
VudV

∗
us z+�Q+�2 . (34)

Introducing the ratio

q ≡ z+(µ)�Q+(µ)�0
z−(µ)�Q−(µ)�0

, z± = z2 ± z1 , (35)

allows us to express the ratios involving only (V −A)⊗ (V −A) operators that will enter
our basic formula for ε�/ε as follows:

�
ImA0

ReA0

�

V−A

= Imτ
[4y4 − b(3y9 − y10)]

2(1 + q)z−
+ Imτ b

3q(y9 + y10)

2(1 + q)z+
, (36)

�
ImA2

ReA2

�

V−A

= Imτ
3(y9 + y10)

2z+
. (37)

Besides the CKM ratio τ , the first ratio depends only on Wilson coefficients and the single
hadronic ratio q to which we will return below. On the other hand the second ratio is free
from hadronic uncertainties, being fully determined by the Wilson coefficients z+, y9, y10
and by τ .

The remaining contributions to ImA0 and ImA2 are due to (V −A)⊗(V +A) operators
and are dominated by the operators Q6 and Q8, respectively. We find this time

�
ImA0

ReA0

�

6

= − GF√
2
Imλt y6

�Q6�0
ReA0

, (38)

�
ImA2

ReA2

�

8

= − GF√
2
Imλt y

eff
8

�Q8�2
ReA2

. (39)

Contributions from Q3 and Q5 are very suppressed but can and have been included in
our numerical error estimate. (See Appendix A.) We have also taken into account the
small effect of �Q7�2, for which a relatively precise lattice prediction exists [23], through
the substitution

y8 → yeff8 ≡ y8 + p72 y7 (40)

which is included in writing (39). Here p72 ≡ �Q7�2/�Q8�2 = 0.222 for central values
of [23]. (In our numerics, we have added the corresponding errors linearly and attribute
a 15% uncertainty to this contribution.)

The matrix elements of the Q6 and Q8 operators are conveniently parametrised by

�Q6(µ)�0 = − 4h

�
m2

K

ms(µ) +md(µ)

�2
(FK − Fπ)B

(1/2)
6 , (41)

�Q8(µ)�2 =
√
2h

�
m2

K

ms(µ) +md(µ)

�2
Fπ B

(3/2)
8 , (42)
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Besides the CKM ratio τ , the first ratio depends only on Wilson coefficients and the single
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from hadronic uncertainties, being fully determined by the Wilson coefficients z+, y9, y10
and by τ .

The remaining contributions to ImA0 and ImA2 are due to (V −A)⊗(V +A) operators
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Contributions from Q3 and Q5 are very suppressed but can and have been included in
our numerical error estimate. (See Appendix A.) We have also taken into account the
small effect of �Q7�2, for which a relatively precise lattice prediction exists [23], through
the substitution

y8 → yeff8 ≡ y8 + p72 y7 (40)

which is included in writing (39). Here p72 ≡ �Q7�2/�Q8�2 = 0.222 for central values
of [23]. (In our numerics, we have added the corresponding errors linearly and attribute
a 15% uncertainty to this contribution.)

The matrix elements of the Q6 and Q8 operators are conveniently parametrised by

�Q6(µ)�0 = − 4h

�
m2

K

ms(µ) +md(µ)

�2
(FK − Fπ)B

(1/2)
6 , (41)

�Q8(µ)�2 =
√
2h

�
m2

K

ms(µ) +md(µ)

�2
Fπ B

(3/2)
8 , (42)

(

ImA0

ReA0

)

V +A

= −
GF√

2
Imλt

{

y6

〈Q6〉0
ReA0

(

1 +
y5

y6

〈Q5〉0
〈Q6〉0

)

+ y8

〈Q8〉0
ReA0

(

1 +
y7

y8

〈Q7〉0
〈Q8〉0

)}

small (colour)
p5 in error budget

dominant
hadronic input



Matrix element summary
From a phenomenological perspective, in the isospin limit
by the most important goal is reducing the error on 

None of the other matrix elements contributes above 1/4 or 
below of the current experimental error, if phenomenology is 
done appropriately.

Apart from this, calculation of isospin breaking on the lattice, 
and interfacing with perturbation theory, will be important.

Will now discuss two aspects
  1) Combining perturbative and nonperturbative input
  2) Formula with dynamical charm (nf=4)
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Factorisation
The perturbative corrections have the factorised structure

NNLO for the isospin-0 amplitudes now complete. (Maria’s talk)
NNLO shift tiny and has very small dependence on µc :
no indication of large higher-order corrections.
Still µ-dependent and scheme-dependent - not observables!
Both will (only) cancel in the sum 

This means               are needed in the same scheme and for 
the same scale (or ideally as a function of µ)

NNLO (QCD) RGE
Gorbahn, Haisch 
Gorbahn, Brod

Gorbahn, Haisch 2005

Misiak et al
Buras, Gambino, Haisch

Ci(µ, nf = 3) = U
(3)
ij (µ, µc)M

(34)
jk (µc)U

(45)
kl (µc, µb)M

(45)
lm (µb)U

(5)
mn(µb, µW ))Cn(µW )

NNLO threshold matching (QCD penguins)
Cerda Sevilla, Gorbahn, SJ, Kokulu 2016

〈Qi(µ)〉

∑

i

Ci〈Qi(µ)〉



Schemes
Perturbation theory is easiest and most transparent in 
dimensional regularisation with minimal subtraction. Not 
defined beyond perturbation theory.

One possibility (employed by RBC-UKQCD)
1) renormalise lattice operators in a momentum-space 
subtraction scheme (RBC-UKQCD: RI/SMOM)
2) perform perturbative conversion to MSbar
Step 2) involves unknown master Feynman integrals starting at 
two loops. The conversion is more complicated than the 
perturbative Wilson coefficients themselves.
Extension to three loops doubtful.

Separate calculation needed for different lattice schemes.



RG-invariant factorisation

This relies on the fact that
which can be shown to all orders in perturbation theory.

All hatted objects are scale- and scheme-independent.
They satisfy “naive” (d=4) Fierz relations.
M(34), M(45), C(5) contain physics from precisely one scale each. 
Can estimate uncertainties individually from residual scale dep. 

×(u(4))−1
lm

(µb)M
(45)
mn (µb)u

(5)
nr (µb)(u

(5))−1
rs (µW ))Cs(µW )

(              )  

Instead of factoring traditionally as ...

〈Qi(µ)〉Ci(µ, nf = 3) = 〈Qi(µ)〉u(3)
ij (µ)(u(3))−1

jk (µc)M
(34)
kl (µc)u

(4)
kl (µc)(             

(                 )                  )  

U(µ1, µ2) = u(µ1)u(µ2)
−1

(compare        ) B̂K
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RG-invariant matrix elements

encapsulate the nonperturbative part in the RGI formalism.
Can, for example, be computed from RI/SMOM: One needs 
the u-factor for this scheme (difficult computation).

However, a direct computation on the lattice would be 
preferable (with step scaling?). Because

we have

where we have used asymptotic freedom and where

is the leading-order evolution. Similar to RGI mass or 

〈Q̂i〉 = u−T (µ)〈Qi(µ)〉

u(µ) = H(µ)u(0)(µ) =
(

I + H(1) αs

4π
+ . . .

)

u(0)(µ)

〈Q̂i〉 = lim
µ→∞

u−T (µ)〈Qi(µ)〉 = lim
µ→∞

u(0)(µ)−T 〈Qi(µ)〉

u
(0)(µ) =

(

αs

4π

)

−γT

0
/(2β0)

B̂K

Cerda Sevilla, Gorbahn, SJ, Kokulu, wip



The phenomenological formula is unchanged, apart form 
putting a hats over all symbols, such as

obtaining an expression entirely in terms of scheme-and scale-
independent quantities.

(

ImA2

ReA2

)

= Imτ
ŷ9 + ŷ10

ẑ+

−
GF√

2
Imλt ŷ8

〈Q̂8〉2
ReA2

(

1 +
ŷ7

ŷ8

〈Q̂7〉2
〈Q̂8〉2

)



No evidence for a failure of perturbation theory at the charm 
scale (the contrary is true)
Still one may ask about nonperturbative virtual-charm effects.
Lattice simulations with dynamical charm are becoming 
feasible.

Translation between the theories:

The phenomenological formula needs modification, as it is
specialised to nf=3 operator matrix elements and operator 
relations

Dynamical charm

= 〈Q̂i〉 M̂
(4)
ij Ĉ

(4)
j = 〈Q̂(4)

j 〉 Ĉ
(4)
j

〈Q̂(3)
i

〉 Ĉ
(3)
i

nf=4 matrix elements
available at NNLO (CC,QCDP)
NLO (EWP)



There are two new operators Q1c and Q2c, and the penguin 
operators contain charm quark.

The I=2 amplitude ratio is unchanged in form.
The I=0 ratio depends explicitly on the new operators:

nf =4 phenomenological formula
Cerda Sevilla, Gorbahn, SJ, Kokulu, wip

+(y3 + y4 −
1

2
[y9 + y10])�Q3�0 + (3[y9 + y10]− z+)�Qc

+�0
+(4 y4 − [3y9 − y10]− z−)�Qc

−�0
+y5�Q5�0 + y6�Q6�0 + y7�Q7�0 + y8�Q8�0 + y7γ�Q7γ�0 + y8g�Q8g�0]

= Im τ �Q− −Qc
−�0 ×

�
(2 y4 −

1

2
[3y9 − y10])(1 + 2 qc−)− z−q

c
−

+[
3

2
(y9 + y10)

z−
z+

(1 + qc+)− z−q
c
+]q̃ + (y3 + y4 −

1

2
[y9 + y10])p̃3

�

+ Im τ [�Q6�0(y6 + p̃5y5 + y8gp̃8g) + �Q8�0(y8 + p̃70y7 + p̃70γy7γ)] . (26)

Here we have defined

q̃ =
z+�Q+ −Qc

+�0
z−�Q− −Qc

−�0
, qc− =

�Qc
−�0

�Q− −Qc
−�0

, qc+ =
�Qc

+�0
�Q+ −Qc

+�0
, (27)

p̃3 =
�Q3�0

�Q− −Qc
−�0

, p5 =
�Q5�0
�Q6�0

, p8g =
�Q8g�0
�Q6�0

, p70 =
�Q7�0
�Q8�0

, p70γ =
�Q7γ�0
�Q8�0

.

(28)
q̃ generalises q of the 3-flavour theory. It should numerically be very similar,
and fully scale and scheme independent. p̃3 generalises p3 in the 3-flavour
theory, while the symbols p5 and p70 are unchanged (apart from being evalu-
ated in the nf = 4 theory). qc−, q

c
+, p70γ and p8g parameterise operator matrix

elements not present in the nf = 3 theory, or so far ignored .
The resultant generalisation of the I = 0 amplitude ratio is

ImA0

ReA0
= Imτ

�
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Numerically, we expect q̃ around 0.1 (perhaps less), and the Wilson coef-
ficient combination multiplying it on the second line is small. p̃3 is not so well
constrained from the lattice, ranging somewhere between −1/3 and 0. Over-
all the second line is a small correction, but the QCD penguin piece could
be noticeable. The charm piece on the other hand is doubly suppressed. We
also expect the EWP term on last line to be negligible, and past estimates
suggest that the chromomagnet is also negligible. But that seems less certain.
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q̃ generalises q of the 3-flavour theory. It should numerically be very similar,
and fully scale and scheme independent. p̃3 generalises p3 in the 3-flavour
theory, while the symbols p5 and p70 are unchanged (apart from being evalu-
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constrained from the lattice, ranging somewhere between −1/3 and 0. Over-
all the second line is a small correction, but the QCD penguin piece could
be noticeable. The charm piece on the other hand is doubly suppressed. We
also expect the EWP term on last line to be negligible, and past estimates
suggest that the chromomagnet is also negligible. But that seems less certain.
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Numerically, we expect q̃ around 0.1 (perhaps less), and the Wilson coef-
ficient combination multiplying it on the second line is small. p̃3 is not so well
constrained from the lattice, ranging somewhere between −1/3 and 0. Over-
all the second line is a small correction, but the QCD penguin piece could
be noticeable. The charm piece on the other hand is doubly suppressed. We
also expect the EWP term on last line to be negligible, and past estimates
suggest that the chromomagnet is also negligible. But that seems less certain.
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new parameters
would be O(&s) for
perturbative charm

redefinition of nf=3 
parameters



Isospin breaking
complicated, particularly QED effects (IR subtractions, 
real emission, lattice matching, …)
   - don’t respect the two-amplitude structure
   - violate Watson’s theorem on strong phases

Now in principle understood on the lattice in QED 
perturbation theory.

 In practice need to
- carefully define&express observable at O(&)
- obtain appropriate perturbative ingredients
- match as appropriate with lattice calculations of O(&) 
terms

talk by G Martinelli



Summary
%’/% at NLO perturbation theory with RBC-UKQCD matrix 
elements shows a tension with the data. 

New NNLO calculation of the non-EW-penguin part of the weak 
Hamiltonian does not move the central value (while shrinking the 
perturbative error).

%’/% (and other observables) can be expressed in terms of RGI 
objects, to achiever a fuller factorization between perturbative 
and non-perturbative pieces.
%’/% phenomenology benefits from systematic use of operator 
identities as long as matrix elements dominate the error budget
Formalism can be extended to nf=4 dynamical quarks
EW NNLO including systematic treatment of O(#) (as well as md-
mu) about the isospin limit are next steps on perturbative side



BACKUP



Isospin limit
It is useful to formulate the problem in terms of isospin (as 
opposed to charge) final states.

Defining  
and 

One has

A small imaginary part on the l.h.s. has been neglected.
In the isospin limit,      is pure electroweak penguin.

Moreover, the strong (rescattering) phases for a given isospin all 
coincide with the pi pi scattering phase shift (Watson’s theorem).
Broken by QED and                     : parameters 



Inputs
                                                  

                                                            parameterisation
o                                                         of hadronic matrix
                                                                elements

                                                             CKM input

                                                             isospin breaking


