Search for $K_{S}^{0} \rightarrow \mu^{+}\mu^{-}$ at LHCb

Miguel Ramos Pernas
on behalf of the LHCb collaboration

University of Santiago de Compostela
miguel.ramos.pernas@cern.ch

KAON 2016
September 14, 2016
Introduction

The $K_S^0 \rightarrow \mu^+\mu^-$ decay is:

- Flavour-changing neutral current (FCNC) transition.
- Dominated by long distance contributions through $K_{S/L}^0 \rightarrow \gamma\gamma$.
- In absence of CP violation the K_L^0 (K_S^0) mode could proceed only through S(P) wave.
- Notably new light scalars can affect K_S^0 exclusively.

Figure: (a): Long distance contribution. (b) Short distance contributions. [JHEP 01 (2004) 009]
Overall picture

While the branching fraction for the K^0_L decay is within the SM prediction\(^1\): $B(K^0_L \rightarrow \mu^+\mu^-) = (6.84 \pm 0.11) \times 10^{-9}$, for the K^0_S it can be enhanced by New Physics.

The LHCb opened the kaon physics program already in 2011 (1fb\(^{-1}\) of data).

Results so far (90\%CL)

- $B(K^0_S \rightarrow \mu^+\mu^-) < 3.1 \times 10^{-7}$ CERN PS\(^*\)
- $B(K^0_S \rightarrow \mu^+\mu^-) < 9 \times 10^{-9}$ LHCb Coll.\(^†\)

All distant from the SM prediction\(^‡\):

- $B(K^0_S \rightarrow \mu^+\mu^-) = (5.0 \pm 0.2) \times 10^{-12}$

\(^*\) CERN PS [PLB44 (1973) 217]

\(^†\) LHCb Coll. [JHEP 01 (2013) 090]

\(^1\) PDG [Chin. Phys. C, 38, 090001 (2014) and 2015 update]
The LHCb

Great Secondary Vertex (SV) and Impact Parameter (IP) resolution.

Very good p, p_T and mass resolution.

Particle ID mostly done by two RICH detectors, complemented by other subdetectors.

Three different trigger levels
- Low level (L0)
- High level 1 (Hlt1)
- High level 2 (Hlt2)

Software (flexible)

Hardware

Search for $K_S^0 \rightarrow \mu^+ \mu^-$ at LHCb
Great Secondary Vertex (SV) and Impact Parameter (IP) resolution.

- Very good p, p_T and mass resolution.
- Particle ID mostly done by two RICH detectors, complemented by other subdetectors.

Three different trigger levels:
- Low level (L0)
- High level 1 (Hlt1)
- High level 2 (Hlt2)

Software (flexible)

Hardware

Search for $K_{S}^{0} \rightarrow \mu^{+} \mu^{-}$ at LHCb
Great Secondary Vertex (SV) and Impact Parameter (IP) resolution.

Very good p, p_T and mass resolution.

Particle ID mostly done by two RICH detectors, complemented by other subdetectors.

Three different trigger levels
- Low level (L0)
- High level 1 (Hlt1)
- High level 2 (Hlt2)

Software (flexible)

Hardware
Great Secondary Vertex (SV) and Impact Parameter (IP) resolution.

Particle ID mostly done by two RICH detectors, complemented by other subdetectors.

Very good p, p_T and mass resolution.

[JINST3 (2008) S08005]
The LHCb

Great Secondary Vertex (SV) and Impact Parameter (IP) resolution.

Particle ID mostly done by two RICH detectors, complemented by other subdetectors.

Very good p, p_T and mass resolution.

Three different trigger levels

- Low level (L0) Hardware
- High level 1 (Hlt1) Software
- High level 2 (Hlt2) (flexible)

[JINST3 (2008) S08005]
Kaons at LHCb

- Lifetimes are much larger than for B mesons:
 - $\tau_{B^0} \sim 1.5 \times 10^{-12} \text{s}$
 - $\tau_{K^0_S} \sim 10^{-10} \text{s}$
 - $\tau_{K^0_L} \sim 5 \times 10^{-8} \text{s}$

- K^0_S study is possible using long tracks.

- K^0_L study is HARDLY possible.

Kaons at LHCb

For kaons...

- Largest limitation comes from the detector geometry.
- Second limitation comes from the trigger: $\varepsilon \sim 2.5 (1)\%$ for $K^0_S \rightarrow \mu^+\mu^-$ in 2012 (2011).
- Low $p_T \Rightarrow$ harder to distinguish from comb. bkg.

Studies on K^0_S, K^\pm and Σ^\pm are currently being performed at LHCb. Results obtained until now came from not dedicated triggers.

Large K^0_S production cross-section inside the LHCb acceptance $10^{13}/\text{fb}^{-1}$. Efforts are being focused on adding new trigger lines and developing new low p_T particle identification algorithms.

The use of downstream tracks for the analyses could increase the statistics. However, the resolution is much worse (VELO information not available).
For kaons...

- Largest limitation comes from the detector geometry.
- Second limitation comes from the trigger: \(\varepsilon \sim 2.5 \ (1) \% \) for \(K^0_S \rightarrow \mu^+ \mu^- \) in 2012 (2011).
- Low \(p_T \Rightarrow \) harder to distinguish from comb. bkg.

Studies on \(K^0_S, K^\pm \) and \(\Sigma^\pm \) are currently being performed at LHCb. Results obtained until now came from not dedicated triggers.

Large \(K^0_S \) production cross-section inside the LHCb acceptance \(10^{13}/\text{fb}^{-1} \). Efforts are being focused on adding new trigger lines and developing new low \(p_T \) particle identification algorithms.

The use of downstream tracks for the analyses could increase the statistics. However, the resolution is much worse (VELO information not available).
Kaons at LHCb

For kaons...

- Largest limitation comes from the detector geometry.
- Second limitation comes from the trigger: $\varepsilon \sim 2.5 (1)\%$ for $K^0_S \rightarrow \mu^+\mu^-$ in 2012 (2011).
- Low $p_T \Rightarrow$ harder to distinguish from comb. bkg.

Studies on K^0_S, K^\pm and Σ^\pm are currently being performed at LHCb. Results obtained until now came from not dedicated triggers.

Large K^0_S production cross-section inside the LHCb acceptance $10^{13}/fb^{-1}$. Efforts are being focused on adding new trigger lines and developing new low p_T particle identification algorithms.

The use of downstream tracks for the analyses could increase the statistics. However, the resolution is much worse (VELO information not available).
$K_S^0 \rightarrow \mu^+\mu^-$ at LHCb

Main features

- Very good mass resolution: $\sim 4\text{MeV}/c^2$.
- Great performance identifying muons.
- Luminosity recorded leads to $B_{exp}^{2012}(K_S^0 \rightarrow \mu^+\mu^-) \sim 10^{-9}$.
- Very clean decay \Rightarrow few types of background contribute.

The main contamination sources are:

- $K_L^0 \rightarrow \mu^+\mu^-$ negligible: $B_{\text{eff.}} \sim 10^{-11}$.
- $K^{0}_{S/L} \rightarrow \pi^+\mu^-\bar{\nu}$ negligible.
- $\Lambda^0 \rightarrow p\pi^-$ removed by a cut in the Armenteros-Podolanski plot.
- $K^{*0} \rightarrow K^+\pi^-$ suppressed using the information from the RICH detectors.
- $\omega \rightarrow \pi^0\mu^+\mu^-$, $\eta \rightarrow \mu^+\mu^-\gamma$ are not expected to generate peaking structures.
- Combinatorial background is almost flat in the region $[400, 600] \text{MeV}/c^2$.
- Main source of background is $K^{0}_{S} \rightarrow \pi^+\pi^-$ double misID.
Analysis strategy

Main features

- Using 2012 data with 2fb$^{-1}$.
- Since it is a “search for” analysis, a blind strategy is done, avoiding the use of events in $m_{\mu\mu} \in [492, 504]$ MeV/c2.
- Three different trigger selections have been used to exploit all the trigger capability.
- The $K_S^0 \rightarrow \pi^+\pi^-$ mode is used as a normalization channel.

Differences with respect to 2011 analysis

- Twice the luminosity.
- Trigger lines improved.
- New muon identification algorithm.
- Included function to describe the signal shape.
- Limit calculated directly from the $-\log L$ distribution.
- Taking into account the previous limit.
The new triggers and muonID algorithms in Run-I

Triggers
- Removed cuts on the di-muon mass.
- The p_T cuts have been reduced.
- Trigger efficiency improved by a factor 2.5.

Muon identification
- Dedicated algorithm for low p_T processes.
- $B^+ \rightarrow J/\psi K^+$ used for the muon calibration sample.
- Reduced dependence with the number of tracks.
- π misID = 0.49% at 95% of signal efficiency.
Combinatorial background removal

To remove the combinatorial background events a MVA selection has been done:

- Different MVA algorithms have been studied: BDT, Neural Networks, ...
- Optimization has been done using the ROC curves.
- The proxies correspond to real data $K^0_S \rightarrow \pi^+\pi^-$ events (signal) and $K^0_S \rightarrow \mu^+\mu^-$ events from the far right sideband (background).

- One different MVA for each trigger category.
- Optimization lead to the same MVA algorithm (BDT) and the same set of variables.
- Analysis performed in bins of the BDT distribution.
- Bins selected after a loose cut and so the signal efficiency is the same in each of them.

[Graph showing distributions for signal and background]
Fit procedure

- A simultaneous Maximum Likelihood Fit to all the BDT bins and categories was performed.
- Fit performed in the region $m_{\mu^+\mu^-} \in [470, 600] \text{MeV/c}^2$.
- The previous result has been taken into account introducing a constraint on the branching fraction.

Contributions

- Right side of the $K^0_S \rightarrow \pi^+\pi^-$ double misID \Rightarrow Power law
- Combinatorial background \Rightarrow Exponential
- Signal peak \Rightarrow Hypatia function*

* [NIM A, 764, 150 (2014)]
The results

The normalization is computed as:

\[B(K^0_S \rightarrow \mu^+ \mu^-) = B(K^0_S \rightarrow \pi^+ \pi^-) \cdot \frac{\epsilon_{\pi\pi}}{\epsilon_{\mu\mu}} \cdot \frac{N_{\mu\mu}}{N_{\pi\pi}} \equiv \alpha N_{\mu\mu} \]

\[\frac{\epsilon_{\pi\pi}}{\epsilon_{\mu\mu}} = \frac{\epsilon_{\pi\pi}^{sel}}{\epsilon_{\mu\mu}^{sel}} \times \frac{\epsilon_{\mu\mu}^{trig}}{\epsilon_{\mu\mu}^{BDT}} \times \frac{1}{\epsilon_{\mu\mu}^{ID}}. \]

Limit extracted integrating the posterior probability of the branching fraction.

\[B(K^0_S \rightarrow \mu^+ \mu^-) < 6.9(5.8) \times 10^{-9} \text{ at } 95(90)\% \text{ CL} \]

This result improves the previous LHCb limit by a factor 1.6, becoming the new world best result.
Prospects for the Run-II (2015-2019) and the upgrade (2021-2023)

LHCb 2015 Trigger Diagram

- 40 MHz bunch crossing rate
- L0 Hardware Trigger: 1 MHz readout, high E_T/P_T signatures
- Software High Level Trigger
 - Partial event reconstruction, select displaced tracks/vertices and dimuons
 - Buffer events to disk, perform online detector calibration and alignment
 - Full offline-like event selection, mixture of inclusive and exclusive triggers
- 12.5 kHz (0.6 GB/s) to storage

LHCb Upgrade Trigger Diagram

- 30 MHz inelastic event rate (full rate event building)
- Software High Level Trigger
 - Full event reconstruction, inclusive and exclusive kinematic/geometric selections
 - Buffer events to disk, perform online detector calibration and alignment
 - Add offline precision particle identification and track quality information to selections
 - Output full event information for inclusive triggers, trigger candidates and related primary vertices for exclusive triggers
- 2-5 GB/s to storage

Main limitation is still there.
• Improved both Hlt triggers
 - no p_T cuts
• Real-time reconstruction and calibration.
• Similar online - offline reconstruction.
• Eff. on $K^0_S \rightarrow \mu^+ \mu^-$ $\sim 65\%$.
• L0 trigger removed.
• More similar online - offline reconstruction.
• Efficiencies up to $\sim 100\%$.

LHCb Upgrade TDR [CERN-LHCC-2014-016]
Prospects for the Run-II (2015-2019) and the upgrade (2021-2023)

LHCb 2015 Trigger Diagram

- **40 MHz bunch crossing rate**
- **L0 Hardware Trigger**: 1 MHz readout, high E_T/P_T signatures
 - 450 kHz h^\pm
 - 400 kHz $\mu/\mu\mu$
 - 150 kHz e/γ

Software High Level Trigger

- Partial event reconstruction, select displaced tracks/vertices and dimuons
- Buffer events to disk, perform online detector calibration and alignment

12.5 kHz (0.6 GB/s) to storage

LHCb Upgrade TDR [CERN-LHCC-2014-016]

LHCb Upgrade Trigger Diagram

- **Main limitation is still there.**

Software High Level Trigger

- Full event reconstruction, inclusive and exclusive kinematic/geometric selections
- Add offline precision particle identification and track quality information to selections
- Output full event information for inclusive triggers, trigger candidates and related primary vertices for exclusive triggers

2-5 GB/s to storage

Main limitation is still there.

- L0 trigger removed.
- More similar online - offline reconstruction.
- Efficiencies up to $\sim 100\%$.

Search for $K_S^0 \rightarrow \mu^+\mu^-$ at LHCb

September 14, 2016 13 / 14
Prospects for the Run-II (2015-2019) and the upgrade (2021-2023)

LHCb 2015 Trigger Diagram

- **40 MHz bunch crossing rate**
- **L0 Hardware Trigger**: 1 MHz readout, high E_T/P_T signatures
 - 450 kHz h^\pm
 - 400 kHz $\mu/\mu\mu$
 - 150 kHz e/γ

Software High Level Trigger

- Partial event reconstruction, select displaced tracks/vertices and dimuons
- Buffer events to disk, perform online detector calibration and alignment
- Full offline-like event selection, mixture of inclusive and exclusive triggers

12.5 kHz (0.6 GB/s) to storage

LHCb Upgrade Trigger Diagram

Main limitation is still there.

- Improved both Hlt triggers (no p_T cuts)
- Real-time reconstruction and calibration.
- Similar online - offline reconstruction.
- Eff. on $K^0_S \rightarrow \mu^+\mu^-$ $\sim 65\%$

LHCb Upgrade TDR [CERN-LHCC-2014-016]
Prospects for the Run-II (2015-2019) and the upgrade (2021-2023)

LHCb 2015 Trigger Diagram

- 40 MHz bunch crossing rate
- L0 Hardware Trigger: 1 MHz readout, high E_T/P_T signatures
 - 450 kHz h^\pm
 - 400 kHz $\mu/\mu\mu$
 - 150 kHz e/γ
- Software High Level Trigger
- Partial event reconstruction, select displaced tracks/vertices and dimuons
- Buffer events to disk, perform online detector calibration and alignment
- Full offline-like event selection, mixture of inclusive and exclusive triggers
- 12.5 kHz (0.6 GB/s) to storage

LHCb Upgrade Trigger Diagram

- 30 MHz inelastic event rate (full rate event building)
- Software High Level Trigger
- Full event reconstruction, inclusive and exclusive kinematic/geometric selections
- Buffer events to disk, perform online detector calibration and alignment
- Add offline precision particle identification and track quality information to selections
- Output full event information for inclusive triggers, trigger candidates and related primary vertices for exclusive triggers
- 2-5 GB/s to storage

LHCb Upgrade TDR [CERN-LHCC-2014-016]
Prospects for the Run-II (2015-2019) and the upgrade (2021-2023)

LHCb 2015 Trigger Diagram

- L0 trigger removed.
- More similar online - offline reconstruction.
- Efficiencies up to ~ 100%.

LHCb Upgrade Trigger Diagram

30 MHz inelastic event rate (full rate event building)

Software High Level Trigger

- Full event reconstruction, inclusive and exclusive kinematic/geometric selections
- Buffer events to disk, perform online detector calibration and alignment
- Add offline precision particle identification and track quality information to selections
- Output full event information for inclusive triggers, trigger candidates and related primary vertices for exclusive triggers
- 2-5 GB/s to storage

LHCb Upgrade TDR [CERN-LHCC-2014-016]
Conclusions

• A preliminary result for $K_S^0 \rightarrow \mu^+ \mu^-$ analysis using the whole Run-I data has been shown.

• The limit has been measured to be

$$B(K_S^0 \rightarrow \mu^+ \mu^-) < 6.9(5.8) \times 10^{-9}$$

at 95(90)% CL

• Many efforts are being made to optimize the LHCb detector to study strange physics.

• Most interesting results are expected to appear in Run-II data and after the upgrade.
Conclusions

- A preliminary result for $K^0_S \rightarrow \mu^+ \mu^-$ analysis using the whole Run-I data has been shown.

- The limit has been measured to be
 $$B(K^0_S \rightarrow \mu^+ \mu^-) < 6.9(5.8) \times 10^{-9}$$
 at 95(90)% CL

- Many efforts are being made to optimize the LHCb detector to study strange physics.

- Most interesting results are expected to appear in Run-II data and after the upgrade.

Stay tuned for the Run-II results!
BACKUP
Muon spectra

LHCb Simulation

μ Momentum (GeV/c)

μ Transverse Momentum (GeV/c)

[LHCb-CONF-2016-012]
From the PDG\(^2\):

\[
\mathcal{B} \left(K_L^0 \rightarrow \mu^+ \mu^- \right) = (6.84 \pm 0.11) \times 10^{-9}
\]

The effective branching fraction is computed as:

\[
\mathcal{B} \left(K_L^0 \rightarrow \mu^+ \mu^- \right)^{\text{eff.}} = \frac{\epsilon_{K_L^0}^L}{\epsilon_{K_S^0}^S} \mathcal{B} \left(K_L^0 \rightarrow \mu^+ \mu^- \right) \equiv s_{K_L^0 \rightarrow \mu^+ \mu^-} \mathcal{B} \left(K_L^0 \rightarrow \mu^+ \mu^- \right)
\]

The suppression \(s_{K_L^0 \rightarrow \mu^+ \mu^-} \) factor is obtained considering the time acceptance:

\[
A(t; a, n, t_0, \delta t) = \frac{[a(t - t_0)]^n}{1 + [a(t - t_0)]^n} e^{-\delta t}
\]

\(\delta t \) is calculated from a fit to \(K_S^0 \rightarrow \mu^+ \mu^- \) events. The suppression factor is the ratio between acceptance-corrected and theoretical proper time distributions, thus:

\[
\mathcal{B}_{\text{eff.}} \in [1.2, 1.7] \times 10^{-11}
\]

\(^2\)PDG [Chin. Phys. C, 38, 090001 (2014) and 2015 update]
MVA proxies
The Hypatia function is defined as follows:\(^3\):

\[
I(m, \mu, \sigma, \lambda, \zeta, \beta, a, n) \propto \begin{cases}
((m - \mu)^2 + A^2 \lambda (\zeta) \sigma^2)^{\frac{1}{2} \lambda - \frac{1}{4}} e^{\beta(m-\mu)} K_{\lambda}^{-\frac{1}{2}} \left(\zeta \sqrt{1 + \left(\frac{m-\mu}{A \lambda (\zeta) \sigma} \right)^2} \right)
& \text{, if } \frac{m-\mu}{\sigma} > -a \\
G(\mu - a \sigma, \mu, \sigma, \lambda, \zeta, \beta)
& \text{, otherwise}
\end{cases}
\]

\(^3\)Diego Martínez Santos, Frederic Dupuis [NIM A, 764, 150 (2014)]
Systematics

<table>
<thead>
<tr>
<th>Source</th>
<th>TOS_µ-TOS_µ-TOS_µµ</th>
<th>TOS_µ-TOS_µµ-TOS_µµ</th>
<th>TIS-TIS-TOS_µµ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncertainties on normalisation factor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tracking</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Selection</td>
<td>3.3%</td>
<td>3.9%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Trigger</td>
<td>8%</td>
<td>11%</td>
<td>-</td>
</tr>
<tr>
<td>K spectrum</td>
<td>3.3%</td>
<td>3.3%</td>
<td>3.3%</td>
</tr>
<tr>
<td>Muon ID</td>
<td>0.2%</td>
<td>0.3%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Uncertainties on signal yield</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal mass shape</td>
<td>0.8%</td>
<td>0.8%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Uncertainties on branching fraction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Background shape</td>
<td></td>
<td></td>
<td>4×10^{-11}</td>
</tr>
</tbody>
</table>
Amoroso distribution to put a constraint on the $\mathcal{B}(K_S^0 \to \mu^+\mu^-)$ using the result from 2011.