New BaBar Results On
 CPT Symmetry Tests

Tomo Miyashita
Caltech
\section*{On Behalf of the BaBar Collaboration}

KAON 2016
University of Birmingham September 14th, 2016

Overview

- "Tests of $C P T$ symmetry in $B^{0}-\bar{B}^{0}$ mixing and in $B^{0} \rightarrow c \bar{c} K^{0}$ decays"

Phys. Rev. D 94, 011101(R) (2016)

Using the eight time dependences $\mathrm{e}^{-\Gamma t}\left(1+C_{i} \cos \Delta m t+S_{i} \sin \Delta m t\right)$ for the decays $\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0} \rightarrow$ $f_{j} f_{k}$, with the decay into a flavor-specific state $f_{j}=\ell^{ \pm} X$ before or after the decay into a $C P$ eigenstate $f_{k}=c \bar{c} K_{S, L}$ as measured by the $B A B A R$ experiment, we determine the three $C P T$ sensitive parameters $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ in $B^{0}-\bar{B}^{0}$ mixing and $|\bar{A} / A|$ in $\left.B^{0} \rightarrow c \bar{c} K^{0}\right)$ decays. We find $\operatorname{Im}(z)=0.010 \pm 0.030 \pm 0.013, \operatorname{Re}(z)=-0.065 \pm 0.028 \pm 0.014$, and $|\bar{A} / A|=0.999 \pm 0.023 \pm 0.017$, in agreement with $C P T$ symmetry.

- Determines the Re and Im parts of the parameter z
- z relates to CPT symmetry in mixing
- Also determines $|\bar{A} / A|$
- $|\bar{A} / A|$ relates to $C P T$ symmetry in decay amplitudes

The BaBar Experiment

- Data collected by BaBar detector at Stanford Linear Accelerator Center
- Asymmetric-energy e^{+}and e^{-}beams
- Designed to be a B factory, operating primarily at $\Upsilon(4 S)$ resonance, producing $470 \times 10^{6} B \bar{B}$ pairs
- This analysis uses the full dataset of $\sim 430 \mathrm{fb}^{-1}$ collected at the $\Upsilon(4 S)$ resonance

BABAR Detector

Theory I

- Transitions in the $B-\bar{B}^{0}$ system are well described by the evolution of the two-state wave function

$$
|\Psi\rangle=\psi_{1}\left|B^{0}\right\rangle+\psi_{2}\left|\bar{B}^{0}\right\rangle
$$

using an effective Hamiltonian composed of two constant Hermitian matrices describing mass and decay-rate components:

$$
i \frac{\partial}{\partial t}\binom{\psi_{1}}{\psi_{2}}=\left[\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{12}^{*} & m_{22}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{cc}
\Gamma_{11} & \Gamma_{12} \\
\Gamma_{12}^{*} & \Gamma_{22}
\end{array}\right)\right]\binom{\psi_{1}}{\psi_{2}}
$$

Theory II

- If we do not assume $C P T$ symmetry then the physical B meson states may be expressed as

$$
\begin{gathered}
\left|B_{L}\right\rangle=p \sqrt{1-z}\left|B^{0}\right\rangle+q \sqrt{1+z}\left|\bar{B}^{0}\right\rangle \\
\left|B_{H}\right\rangle=p \sqrt{1+z}\left|B^{0}\right\rangle-q \sqrt{1-z}\left|\bar{B}^{0}\right\rangle \\
\text { where } \frac{q}{p}=\sqrt{\frac{m_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}{m_{12}-\frac{i}{2} \Gamma_{12}}, \quad \mathbf{z}=\frac{\left(m_{11}-m_{22}\right)-\mathrm{i}\left(\Gamma_{11}-\Gamma_{22}\right) / 2}{\Delta m-\mathrm{i} \Delta \Gamma / 2}} \\
\Delta m=m\left(B_{H}\right)-m\left(B_{L}\right) \\
\Delta \Gamma=\Gamma\left(B_{H}\right)-\Gamma\left(B_{L}\right)
\end{gathered}
$$

- The complex parameter z vanishes under $C P T$ symmetry
- $\quad T$ invariance requires $|\mathrm{q} / \mathrm{p}|=1$
- $\quad C P$ invariance requires $|\mathrm{q} / \mathrm{p}|=1$ and $\mathrm{z}=0$
- When $\Delta \Gamma \ll \Delta m$, the $C P T$ violating parameter z relates to neutral B mass and width differences according to:

$$
\begin{aligned}
\operatorname{Re} z & \equiv\left(\mathrm{~m}_{\mathrm{B}^{0}}-\mathrm{m}_{\overline{\mathrm{B}}^{0}}\right) / \Delta \mathrm{m} \\
\operatorname{Im} z & \equiv\left(\Gamma_{\overline{\mathrm{B}}^{0}}-\Gamma_{\mathrm{B}^{0}}\right) /(2 \Delta \mathrm{~m})
\end{aligned}
$$

Previous BaBar Analysis I

- The present analysis is an extension of a 2012 BaBar analysis:
"Observation of Time-Reversal Violation in the B^{0} meson
system"
Phys. Rev. Lett. 109, 211801 (2012)

Although $C P$ violation in the B meson system has been well established by the B factories, there has been no direct observation of time-reversal violation. The decays of entangled neutral B mesons into definite flavor states $\left(B^{0}\right.$ or $\left.\bar{B}^{0}\right)$, and $J / \psi K_{L}^{0}$ or $c \bar{c} K_{S}^{0}$ inal states (referred to as B_{+}or B_{-}), allow comparisons between the probabilities of four pairs of T-conjugated transitions, for example, $\bar{B}^{0} \rightarrow B_{-}$ and $B_{-} \rightarrow \bar{B}^{0}$, as a function of the time difference between the two B decays. Using $468 \times 10^{6} B \bar{B}$ pairs produced in $Y(4 S)$ decays collected by the BABAR detector at SLAC, we measure T-violating parameters in the time evolution of neutral B mesons, yielding $\Delta S_{T}^{+}=-1.37 \pm 0.14$ (stat) ± 0.06 (syst) and $\Delta S_{T}^{-}=$ 1.17 ± 0.18 (stat) ± 0.11 (syst). These nonzero results represent the first direct observation of T violation through the exchange of initial and final states in transitions that can only be connected by a T-symmetry transformation.

Previous BaBar Analysis II

- Measurement of $T, C P$, and $C P T$ violation
- Takes advantage of the fact that B-mesons are produced as entangled pairs in $\Upsilon(4 S)$ decays
- Can be expressed in terms of either flavor-eigenstates, B^{0} and \bar{B}^{0}, or the states B_{+}and B_{-}
- The states B_{+}and B_{-}are tagged by decays to $J / \psi K_{L}$ (CP-even) and $J / \psi K_{S}$ ($C P$-odd), respectively
- Flavor eigenstates can be tagged by semileptonic B decays to $\ell^{+} X$ and $\ell^{-} X$
- Search for T violation by comparing rates for transitions between flavor and $C P$ states with the rates for the time-reversed processes

Previous BaBar Analysis III

- Example decay sequence:

$\Delta t=t_{C P}-t_{\text {flav }}$

Reference (X, $\boldsymbol{Y})$	T-Transformed $(\boldsymbol{X}, \boldsymbol{Y})$		
$\mathrm{B}^{0} \rightarrow \mathrm{~B}_{+}$	$\left(\mathrm{I}^{-}, \mathrm{J} / \psi \mathrm{K}_{\mathrm{L}}\right)$	$\mathrm{B}_{+} \rightarrow \mathrm{B}^{0}$	$\left(\mathrm{~J} / \psi \mathrm{K}_{\mathrm{S}}, \mathrm{I}^{+}\right)$
$\mathrm{B}^{0} \rightarrow \mathrm{~B}_{-}$	$\left(\mathrm{I}^{-}, \mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\right)$	$\mathrm{B}_{-} \rightarrow \mathrm{B}^{0} \quad\left(\mathrm{~J} / \psi \mathrm{K}_{\mathrm{L}}, \mathrm{I}^{+}\right)$	
$\bar{B}^{0} \rightarrow \mathrm{~B}_{+}$	$\left(\mathrm{I}^{+}, \mathrm{J} / \psi \mathrm{K}_{\mathrm{L}}\right)$	$\mathrm{B}_{+} \rightarrow \bar{B}^{0}$	$\left(\mathrm{~J} / \psi \mathrm{K}_{\mathrm{S}}, \mathrm{I}^{-}\right)$
$\bar{B}^{0} \rightarrow \mathrm{~B}_{-}$	$\left(\mathrm{I}^{+}, \mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}\right)$	$\mathrm{B}_{-} \rightarrow \bar{B}^{0}$	$\left(\mathrm{~J} / \psi \mathrm{K}_{\mathrm{L}}, \mathrm{I}^{-}\right)$

Reference: Physical Process (X,Y): Reconstructed Final States
$\left.\begin{array}{l}B_{+} \\ B_{-}\end{array}\right] \xrightarrow{\text { tagged by }}\left\{\begin{array}{l}J / \psi K_{L} \\ J / \psi K_{S}\end{array}\right.$

Previous BaBar Analysis IV

- Extract 4 pairs of S and C parameters by fitting the expression

$$
R_{i}=N_{i} \mathrm{e}^{-\mathrm{\Gamma} t}\left[1+C_{i} \cos (\Delta m \cdot t) \Delta m t+S_{i} \sin (\Delta m \cdot t)\right]
$$

to the four observed rates with the $\ell^{ \pm} \nu X$ decay first and the $c \bar{c} K_{S, L}$ second, where:

$$
t=\Delta t=t(c \bar{c} K)-t(\ell v X)
$$

- Extract another 4 pairs of S and C parameters by fitting the same expressions to the four rates with the $c \bar{c} K_{S, L}$ decay first and the $\ell^{ \pm} \nu X$ decay second, where the evolution time is now given by:

$$
t=t(\ell v X)-t(c \bar{c} K)=-\Delta t
$$

- Note: Due to entanglement of the B pairs, we must have $C_{i}=C_{i-4}$ and $S_{i}=-S_{i-4}$ for $i=5 \ldots 8$

Previous BaBar Analysis V

- In total, we can build:
- 4 Independent T comparisons (e.g. $R\left(B^{0} \rightarrow B_{+}\right)-R\left(B_{+} \rightarrow B^{0}\right)$)
- 4 Independent $C P$ comparisons (e.g. $R\left(B^{0} \rightarrow B_{+}\right)-R\left(\bar{B}^{0} \rightarrow B_{+}\right)$)
- 4 Independent $C P T$ comparisons (e.g. $R\left(B^{0} \rightarrow B_{+}\right)-R\left(B_{+} \rightarrow \bar{B}^{0}\right)$)
- Analysis performed using the five assumptions:
- $A=A\left(B^{0} \rightarrow c \bar{c} K^{0}\right)$ and $\bar{A}=A\left(\bar{B}^{0} \rightarrow c \bar{c} \bar{K}^{0}\right)$ have a single weak phase
- Assume B^{0} does not decay to $c \bar{c} \bar{K}^{0}$ and \bar{B}^{0} does not decay to $c \bar{c} K^{0}$
- $C P$ violation in $K^{0}-\bar{K}^{0}$ mixing is negligible $\Longrightarrow K_{S}=\frac{K^{0}+\bar{K}^{0}}{\sqrt{2}}, K_{L}=\frac{K^{0}-\bar{K}^{0}}{\sqrt{2}}$
- Assume that $\Delta \Gamma=0$
- In order to use the B_{+}and B_{-}states to test T-symmetry, it is necessary to assume that $\left\langle B_{+} \mid B_{-}\right\rangle=0$, which means that $|\bar{A} / A|=1$

Note: $C P T$ symmetry requires that $|\bar{A} / A|=1$ when A and \bar{A} have a single weak phase

Previous BaBar Analysis VI

Present BaBar Analysis

- For the present analysis, we still make the first four assumptions mentioned above, and use as our starting point the 8 pairs of S and C parameters measured by the previous analysis (along with their correlations)
- Because we do not need to use the concept of the states B_{+}and B_{-}, we no longer need to make the fifth assumption (that $|\bar{A} / A|=1$) and so in this extension of the 2012 BaBar analysis, we extract the parameter $|\bar{A} / A|$, which relates to $C P T$ violation in decay amplitudes
- We also extract the Re and Im parts of z , which relate to $C P T$ violation in mixing
- As in the 2012 analysis, we use $\Delta \Gamma=0$, but we perform a study to demonstrate that the final results are independent of this constraint

Time-Dependent Rates I

- Setting $\lambda_{f}=q \bar{A}_{f} /\left(p A_{f}\right)$ and neglecting higher order terms in z , we obtain

$$
\begin{aligned}
& R\left(B^{0} \rightarrow f\right)=\frac{\left|A_{f}\right|^{2} \mathrm{e}^{-\Gamma t}}{4}\left|\left(1-\mathbf{z}+\lambda_{f}\right) \mathrm{e}^{\mathrm{i} \Delta m t} \mathrm{e}^{\Delta \Gamma t / 4}+\left(1+\mathbf{z}-\lambda_{f}\right) \mathrm{e}^{-\Delta \Gamma t / 4}\right|^{2}, \\
& R\left(\bar{B}^{0} \rightarrow f\right)=\frac{\left|\bar{A}_{f}\right|^{2} \mathrm{e}^{-\Gamma t}}{4}\left|\left(1+\mathbf{z}+1 / \lambda_{f}\right) \mathrm{e}^{\mathrm{i} \Delta m t} \mathrm{e}^{\Delta \Gamma t / 4}+\left(1-\mathbf{z}-1 / \lambda_{f}\right) \mathrm{e}^{-\Delta \Gamma t / 4}\right|^{2}
\end{aligned}
$$

for decays into final states f with amplitudes $A_{f}=A\left(B^{0} \rightarrow f\right)$ and $\bar{A}_{f}=A\left(\bar{B}^{0} \rightarrow f\right)$

- For the $C P$ eigenstates $c \bar{c} K_{L}^{0}$ and $c \bar{c} K_{S}^{0}$, with $A_{S(L)}=A\left[B^{0} \rightarrow c \bar{c} K_{S(L)}^{0}\right]$ and $\bar{A}_{S(L)}=A\left[\bar{B}^{0} \rightarrow c \bar{c} K_{S(L)}^{0}\right]$, our assumptions yield:

$$
\begin{gathered}
A_{S}=A_{L}=A / \sqrt{2} \\
\bar{A}_{S}=-\bar{A}_{L}=\bar{A} / \sqrt{2}
\end{gathered}
$$

so we can use $\lambda=\lambda_{S}=-\lambda_{L}$

Time-Dependent Rates II

- Setting $\Delta \Gamma=0$ and keeping only first-order terms in the small quantities $\mathrm{z},|\lambda|-1$, and $r=|q / p|-1$, we obtain:

$$
R_{i}(t)=N_{i} \mathrm{e}^{-\Gamma t}\left(1+C_{i} \cos \Delta m t+S_{i} \sin \Delta m t\right)
$$

where

$$
\begin{aligned}
S_{1}=S\left(\ell^{-} X, c \bar{c} K_{L}\right) & =\frac{2 \operatorname{Im}(\lambda)}{1+|\lambda|^{2}}-\operatorname{Re}(\mathrm{z}) \operatorname{Re}(\lambda) \operatorname{Im}(\lambda)+\operatorname{Im}(\mathrm{z})[\operatorname{Re}(\lambda)]^{2}, & & \mathrm{~S}_{5}=-\mathrm{S}_{1} \\
C_{1} & =+\frac{1-|\lambda|^{2}}{2}-\operatorname{Re}(\lambda) \operatorname{Re}(\mathrm{z})-\operatorname{Im}(\lambda) \operatorname{Im}(\mathrm{z}), & \mathrm{C}_{5} & =\mathrm{C}_{1} \\
S_{2}=S\left(\ell^{+} X, c \bar{c} K_{L}\right) & =-\frac{2 \operatorname{Im}(\lambda)}{1+|\lambda|^{2}}-\operatorname{Re}(\mathrm{z}) \operatorname{Re}(\lambda) \operatorname{Im}(\lambda)-\operatorname{Im}(\mathrm{z})[\operatorname{Re}(\lambda)]^{2}, & \mathrm{~S}_{6} & =-\mathrm{S}_{2} \\
C_{2} & =-\frac{1-|\lambda|^{2}}{2}+\operatorname{Re}(\lambda) \operatorname{Re}(\mathrm{z})-\operatorname{Im}(\lambda) \operatorname{Im}(\mathrm{z}), & \mathrm{C}_{6} & =\mathrm{C}_{2} \\
S_{3}=S\left(\ell^{-} X, c \bar{c} K_{S}\right) & =-\frac{2 \operatorname{Im}(\lambda)}{1+|\lambda|^{2}}-\operatorname{Re}(\mathrm{z}) \operatorname{Re}(\lambda) \operatorname{Im}(\lambda)+\operatorname{Im}(\mathrm{z})[\operatorname{Re}(\lambda)]^{2}, & \mathrm{~S}_{7} & =-\mathrm{S}_{3} \\
C_{3} & =+\frac{1-|\lambda|^{2}}{2}+\operatorname{Re}(\lambda) \operatorname{Re}(\mathrm{z})+\operatorname{Im}(\lambda) \operatorname{Im}(\mathrm{z}), & \mathrm{C}_{7} & =\mathrm{C}_{3} \\
S_{4}=S\left(\ell^{+} X, c \bar{c} K_{S}\right) & =\frac{2 \operatorname{Im}(\lambda)}{1+|\lambda|^{2}}-\operatorname{Re}(\mathrm{z}) \operatorname{Re}(\lambda) \operatorname{Im}(\lambda)-\operatorname{Im}(\mathrm{z})[\operatorname{Re}(\lambda)]^{2}, & \mathrm{~S}_{8} & =-\mathrm{S}_{4} \\
C_{4} & =-\frac{1-|\lambda|^{2}}{2}-\operatorname{Re}(\lambda) \operatorname{Re}(\mathrm{z})+\operatorname{Im}(\lambda) \operatorname{Im}(\mathrm{z}) & \mathrm{C}_{8} & =\mathrm{C}_{4}
\end{aligned}
$$

Fitting

- The relationship between the 16 S and C observables and the 4 parameters

$$
p_{1}=\frac{1-|\lambda|^{2}}{2}=1-|\lambda|, \quad p_{2}=\frac{2 \operatorname{Im}(\lambda)}{1+|\lambda|^{2}}=\operatorname{Im}\left(\frac{\lambda}{|\lambda|}\right), \quad p_{3}=\operatorname{Im}(z), \quad p_{4}=\operatorname{Re}(z)
$$

is approximately linear

- Therefore, we extract the 4 parameters in a two-step linear χ^{2} fit using matrix algebra
- The fit step determines p_{1} and p_{2} by fixing $\operatorname{Re}(\lambda)$ and $\operatorname{Im}(\lambda)$ in the products:

$$
\operatorname{Re}(z) \operatorname{Re}(\lambda), \quad \operatorname{Im}(z) \operatorname{Im}(\lambda), \quad \operatorname{Im}(z)[\operatorname{Re}(\lambda)]^{2}, \quad \operatorname{Re}(z) \operatorname{Re}(\lambda) \operatorname{Im}(\lambda)
$$

- After fixing these terms, the relationship between the vectors $y=\left(S_{1}, \ldots, C_{8}\right)^{T}$ and $p=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)^{T}$ is linear:

$$
y=M_{1} p
$$

where M_{1} uses $\operatorname{Im}(\lambda)=0.67$ and $\operatorname{Re}(\lambda)=-0.74$, based on the results of analyses assuming $C P T$ symmetry

- For the second step of the iterative fit, we fix $\operatorname{Re}(\lambda)$ and $\operatorname{Im}(\lambda)$ to the results of the first step and follow the same procedure as before, but replacing M_{1} with M_{2}

Fit Results

- Results:

$$
\begin{aligned}
& |\lambda|=1-p_{1}=0.999 \pm 0.023 \pm 0.017, \\
& \operatorname{Im}(\lambda)=\left(1-p_{1}\right) p_{2}=0.689 \pm 0.034 \pm 0.019, \\
& \operatorname{Re}(\lambda)=-\left(1-p_{1}\right) \sqrt{1-p_{2}^{2}} \\
& =-0.723 \pm 0.043 \pm 0.028 \text {, } \\
& p_{3}=\operatorname{Im}(\mathbf{z})=0.010 \pm 0.030 \pm 0.013 \\
& p_{4}=\operatorname{Re}(\mathbf{z})=-0.065 \pm 0.028 \pm 0.014
\end{aligned}
$$

- The $\operatorname{Re}(z)$ result deviates from 0 by 2.1σ
- The result for λ can be converted into $|\bar{A} / A|$ by using the world average of measurements for $|q / p|:|q / p|=1.0008 \pm 0.0008$. This yields:

$$
|\bar{A} / A|=0.999 \pm 0.023 \pm 0.017
$$

- Correlation coefficients are calculated to be:

	$\|\bar{A} / A\|$	$\operatorname{Im}(z)$	$\operatorname{Re}(z)$
$\|\bar{A} / A\|$	1.00	0.03	0.44
$\operatorname{Im}(z)$	0.03	1.00	0.03
$\operatorname{Re}(z)$	0.44	0.03	1.00

	$\|\bar{A} / A\|$	$\operatorname{Im}(z)$	$\operatorname{Re}(z)$
$\|\bar{A} / A\|$	1.00	0.03	0.48
$\operatorname{Im}(z)$	0.03	1.00	-0.15
$\operatorname{Re}(z)$	0.48	-0.15	1.00

Estimating The Influence of $\Delta \Gamma$

- As mentioned earlier, we assume $\Delta \Gamma=0$
- We test the validity of our approximation by generating two toy MC samples: one with $\Delta \Gamma=0$, and one with $\Delta \Gamma$ set to approximately one standard deviation from the world average
- Fitting each sample with a model which assumes $\Delta \Gamma=0$, we find that the fit results for the two simulations agree to within 0.002 for C and 0.008 for S
- Therefore, we conclude that the omission of the $\Delta \Gamma$ term has a negligible impact on the result

Conclusions

- Using 470M $B^{0} \bar{B}^{0}$ events from the BaBar experiment, we have determined:

$$
\begin{aligned}
\operatorname{Im}(\mathrm{z}) & =0.010 \pm 0.030 \pm 0.013 \\
\operatorname{Re}(\mathrm{z}) & =-0.065 \pm 0.028 \pm 0.014 \\
|\bar{A} / A| & =0.999 \pm 0.023 \pm 0.017
\end{aligned}
$$

- All three results are compatible with $C P T$ symmetry in $B^{0}-\bar{B}^{0}$ mixing and in $B^{0} \rightarrow c \bar{c} K$ decays
- The uncertainties on $\operatorname{Re}(z)$ are comparable to those obtained by Belle in 2012 with $535 \mathrm{M} B^{0} \bar{B}^{0}$ events: $\operatorname{Re}(z)=-0.019 \pm 0.037 \pm 0.033$

Phys. Rev. D 85, 071105 (2012)

- As expected, the uncertainties on $\operatorname{Im}(z)$ are much larger than those obtained by BaBar in 2006 using di-lepton decays from $232 \mathrm{M} B^{0} \bar{B}^{0}$ events: $\operatorname{Im}(z)=-0.014 \pm 0.007 \pm 0.003$

Phys. Rev.Lett. 96, 251802 (2006)

- Our new result supersedes the BaBar result of 2004

Phys. Rev.D 70, 012007 (2004)

Backup Slides

Selected Results

- Present BaBar Analysis Phys. Rev. D94,011101(R)(2016)

$$
\begin{aligned}
\operatorname{Im}(\mathbf{z}) & =0.010 \pm 0.030 \pm 0.013 \\
\operatorname{Re}(\mathbf{z}) & =-0.065 \pm 0.028 \pm 0.014 \\
|\bar{A} / A| & =0.999 \pm 0.023 \pm 0.017
\end{aligned}
$$

- 2012 Belle Analysis Phys.Rev.D 85,071105(2012)

$$
\begin{aligned}
& \operatorname{Re}(z)=0.019 \pm 0.037 \pm 0.033 \\
& \operatorname{Im}(z)=-0.0057 \pm 0.0033 \pm 0.0033
\end{aligned}
$$

- 2006 BaBar Analysis Phys. Rev.Lett.96,251802(2006)

$$
\begin{aligned}
|q / p|-1 & =-0.0008 \pm 0.0027 \pm 0.0019 \\
\operatorname{Im}(z) & =-0.0139 \pm 0.0073 \pm 0.0032 \\
\Delta \Gamma \times \operatorname{Re}(z) & =-0.0071 \pm 0.0039 \pm 0.0020 \mathrm{ps}^{-1}
\end{aligned}
$$

- 2004 BaBar Analysis Phys. Rev. D 70, 012007 (2004)

$$
\begin{aligned}
|q / p| & =1.029 \pm 0.013 \pm 0.011 \\
\operatorname{Im}(z) & =0.038 \pm 0.029 \pm 0.025
\end{aligned}
$$

Previous BaBar Analysis I

Previous BaBar Analysis II

Previous BaBar Analysis III

$$
\begin{aligned}
& g_{\alpha, \beta}^{ \pm}(\Delta \tau) \propto e^{-\Gamma \Delta \tau}\left\{1+S_{\alpha, \beta}^{ \pm} \sin \left(\Delta m_{d} \Delta \tau\right)+C_{\alpha, \beta}^{ \pm} \cos \left(\Delta m_{d} \Delta \tau\right)\right\} \\
& \alpha \in\left\{\ell^{\dagger}, \ell^{-}\right\} \quad, \quad \beta \in\left\{K_{S}, K_{L}\right\}
\end{aligned}
$$

- Note: The $+/-$ superscript indicates whether the decay to the flavor final state occurs before or after the decay to the $C P$ final state

Parameter	Result
$\Delta S_{T}^{+}=S_{\ell^{-}, K_{L}^{0}}^{-}-S_{\ell^{+}, K_{s}^{0}}^{+}$	$-1.37 \pm 0.14 \pm 0.06$
$\Delta S_{T}^{-}=S_{\ell^{-}, K_{L}^{0}}^{+}-S_{L}^{-} S_{\ell^{+}, K_{S}^{0}}^{-K_{S}}$	$1.17 \pm 0.18 \pm 0.11$
$\Delta C_{T}^{+}=C_{\ell^{-}, K_{L}^{0}}^{-}-L_{L} C_{\ell^{+}, K_{s}^{0}}^{+}$	$0.10 \pm 0.14 \pm 0.08$
$\Delta C_{T}^{-}=C_{\ell^{-}}^{+}, K_{L}^{0}-C_{\ell^{+}}^{-}, K_{s}^{0}$	$0.04 \pm 0.14 \pm 0.08$
$\Delta S_{C P}^{+}=S_{\chi^{-}, K_{S}^{0}}^{+}-S^{-} S_{\chi^{+}, K_{S}^{0}}^{+}$	$-1.30 \pm 0.11 \pm 0.07$
$\Delta S_{C P}^{-}=S_{\chi^{-}, K_{s}^{0}}^{-}-S_{\ell^{+}, K_{s}^{0}}^{-}$	$1.33 \pm 0.12 \pm 0.06$
$\Delta C_{C P}^{+}=C_{\ell^{-}, K_{s}^{0}}^{+}-C_{\ell^{+}, K_{s}^{0}}^{+}$	$0.07 \pm 0.09 \pm 0.03$
$\Delta C_{C P}^{-}=C_{\ell^{-}, K_{s}^{0}}^{-}-C_{\ell^{+}, K_{s}^{0}}^{-}$	$0.08 \pm 0.10 \pm 0.04$
$\Delta S_{C P T}^{+}=S_{\ell^{+}, K_{L}^{0}}^{+}-S_{\ell^{+}, K_{S}^{0}}^{+}$	$0.16 \pm 0.21 \pm 0.09$
$\Delta S_{C P T}^{-}=S_{\ell^{+}, K_{L}^{0}}^{+}-S_{\ell^{+}, K_{S}^{0}}^{-}$	$-0.03 \pm 0.13 \pm 0.06$
$\Delta C_{C P T}^{+}=C_{\ell^{+}, K_{L}^{0}}^{-}-C_{\ell^{+}, K_{s}^{0}}^{+}$	$0.14 \pm 0.15 \pm 0.07$
$\Delta C_{C P T}^{-}=C_{\ell^{+}, K_{L}^{0}}^{+}-C_{\ell^{+}, K_{S}^{0}}^{-}$	$0.03 \pm 0.12 \pm 0.08$
$S_{\ell^{+}, K_{S}^{0}}^{+}$	$0.55 \pm 0.09 \pm 0.06$
$S_{\ell^{+}, K_{s}^{0}}^{-}$	$-0.66 \pm 0.06 \pm 0.04$
$C^{\ell^{+}, K_{s}^{0}}$	$0.01 \pm 0.07 \pm 0.05$
$C_{\ell^{+}, K_{s}^{0}}^{-}$	$-0.05 \pm 0.06 \pm 0.03$

Fitting

- After fixing the parameters, the χ^{2} is given by

$$
\chi^{2}=\left(M_{1} p-\hat{y}\right)^{T} G\left(M_{1} p-\hat{y}\right)
$$

$$
\operatorname{dim}\left[M_{1}\right]=16 \times 4
$$

where \hat{y} is the vector of measured observables and the weight matrix G is:

$$
G=\left[C_{\mathrm{stat}}(y)+C_{\mathrm{sys}}(y)\right]^{-1}
$$

$$
\operatorname{dim}[G]=16 \times 16
$$

- The χ^{2} is minimized when:

$$
\hat{p}=\mathcal{M}_{1} \hat{y} \text { with } \mathcal{M}_{1}=\left(M_{1}^{T} G M_{1}\right)^{-1} M_{1}^{T} G
$$

and the uncertainties on \hat{p} are given by the covariance matrices:

$$
\begin{aligned}
C_{\mathrm{stat}}(p) & =\mathcal{M}_{1} C_{\mathrm{stat}}(y) \mathcal{M}_{1}^{T} \\
C_{\mathrm{sys}}(p) & =\mathcal{M}_{1} C_{\mathrm{sys}}(y) \mathcal{M}_{1}^{T}
\end{aligned}
$$

with the property

$$
C_{\mathrm{stat}}(p)+C_{\mathrm{sys}}(p)=\left(M_{1}^{T} G M_{1}\right)^{-1}
$$

