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My talk in one slide

CP violation in Kaon mixing (εK )

= observable sensitive to the highest flavour and CP violating scales

∆εK |exp ∼ 0.5% ∆εK |SM ∼ 15% ⇒ SM determination needs improvement!

I’ll show how to “get rid” of ηcc , source of the largest non-parametric error

→ ∆εK |SM slightly reduced

→ Future: Long-Distance contribution to M12
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εK beyond the SM
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What are the most sensitive observables?

LNP =
∑

i

1

Λ2
i

Oi O1 = (d̄LγµsL)2, O2 = (d̄R sL)2, O3 = (d̄αR sβL )(d̄βR s
α
L )

O4 = (d̄R sL)(d̄LsR), O5 = (d̄αR sβL )(d̄βL s
α
R )

UTfit 2016

[
Disclaimer: focus on ∆F = 2 processes

]
General Message:

Intensity (flavour) frontier
probes scales � TeV

Highest energies probed by εK
(= CP violation in Kaon mixing)

Interplay with energy frontier (LHC)? Needs specification of new physics models
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Two (most popular) flavour pictures

Assume New Physics at scale Λ ∼ 1− 10 TeV: [e.g. for a natural Fermi scale]

LNP =
∑

i ξi
ci
Λ2
Oi ci ∼ O(1) ξi small due to some “feature”

CKM-like symmetries

Flavour symmetry (U(3)3 or U(2)3)
controls NP effects

SM understanding only parametrical
(U(3)3) or partly addressed (U(2)3)

Only those Oi present in the SM
[ e.g. NO O4 = (s̄LdR)(s̄RdL)]

Same SM suppression, i.e. ξ ∼ V 2−4
CKM

Λ & 3 TeV (εK ∼ B − B̄)

D’Ambrosio et al. 2002, Barbieri et al. 2011

Barbieri Buttazzo Sala Straub 2012, 2014

Partial compositeness

SM quarks mix with composite operators
+ anarchic flavour in composite sector

VCKM elements related to quark masses:

yi ∼ εLi εRi , (VCKM)ij ∼ εLi /εLj

All Oi allowed: SM ones have ξ ∼ V 2−4
CKM

(some) others have ξ ∼ yiyj

Λ & 15 TeV (εK ), 3 TeV (B − B̄)

Kaplan 1991, Contino et al 2006, ...

Barbieri Buttazzo Sala Straub Tesi 2012
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Flavour scale and new resonances at the LHC

Partial compositeness Λ ' mρ,T Λ & 15 or 3 TeV → No NP at the LHC.

CKM-like symmetries

� implement in composite models (flavour violation at tree level)

→ if U(2)3 then mT ∼ 1 TeV , if U(3)3 then mT � 1 TeV

� implement in supersymmetry (flavour violation at loop level)

→ both U(2)3 and U(3)3: stops and gluinos within LHC8-13 reach

Flavour and CP violation best protected in SUSY-U(2)3: sparticles at the LHC?
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U(2)3 and supersymmetry Barbieri Buttazzo Sala Straub 1402.6677

All points allowed by LHC8 sparticle searches
Dark: conservative exclusions

Light: compressed spectra, ...

[Dashed: ∆F = 2 fit]

What if no sparticles at LHC14?

φs LHCb aims at ±0.01÷ 0.03 [now ±0.07]

∆Md,s expected lattice improvements

εK how will it progress?
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Impact of flavour on future of particle physics?

Some expected progresses in flavour:
CKMfitter + Ligeti, Papucci 1309.2293

Stage I = 7 fb−1 LHCb + 5 fb−1 Belle-II, Stage II = 50 fb−1 LHCb + Belle-II

Example: φs = φ∆
s − 2|βs | of SUSY slide

εK : till now played a leading role, both in general and in specific models!

What about its future?
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εK within the SM
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εK = CP violation in Kaon mixing

εK =
A
(
KL → (ππ)I=0

)
A
(
KS → (ππ)I=0

)(1 + O(10−4)
)

with respect to measurement

|εK |exp = (2.228 ± 0.011)× 10−3 |εK |SM = (2.16(∗) ± 0.22)× 10−3

(∗) inputs from CKM fit without εK

Progress is needed in the SM determination of εK !

Usual evaluation of εK

|εK |SM = κεCεB̂K |Vcb|2λ2η̄
(
|Vcb|2(1− ρ̄)ηttS0(xt) + ηctS0(xt , xc)− ηccxc

)

κε summarises long distance and absorptive contribution
Buras Guadagnoli Isidori 1002.3612
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Error budget of εK in the Standard Model

|εK |SM = κεCεB̂K |Vcb|2λ2η̄
[
|Vcb|2(1− ρ̄)ηttS0(xt) + ηctS0(xt , xc)− ηccxc

]

ηcc = 1.87± 0.76 NNLO in Brod Gorbhan 1008.2036 series converges badly!

Future?

∆Vcb

∣∣
tree-level only

−→ 0.3× 10−3 ⇒ ∆εK/εK ∼ 2.5% (similarly for η̄, ρ̄)

then ηcc even more important!
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To further appreciate importance of ηcc

ηcc = 1 (LO) + 0.38 (NLO) + 0.49 (NNLO)

Treated differently by different groups (see width of εK bands):

CKMfitter: ηcc@NNLO UTfit: ηcc@NLO, · · ·
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A step back: (usual) evaluation of εK

εK =
A
(
KL → (ππ)I=0

)
A
(
KS → (ππ)I=0

) |KS,L〉 = p|K0〉±q|K̄0〉, i d
dt

(
K0

K̄0

)
=

(
M − i

Γ

2

)(
K0

K̄0

)

|εK | =
sinφε

2
arg

(
− M12

Γ12

)
∆m ' 2|M12| ∆Γ ' −2|Γ12|

|εK | expression independent of phases of Kaon fields

but 2mKM12 = 〈K̄0|H|K0〉∗ = short- plus long- distance contributions,

Γ12 =
∑

f A
(
K0 → f

)∗A(K̄0 → f
)

dominated by f = (ππ)I=0, on the lattice

the computationally useful formula depends on Kaon phases!

|εK | = sinφε

(
ImMSD

12

∆m
+

ImMLD
12

∆m
− ImΓ12

2ReΓ12

)
each of the 3 addenda computed in a different way
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The devil is in the details

|εK | =
sinφε

2
arg

(
− M12

Γ12

)
(i) |εK | = sinφε

(
ImMSD

12

∆m
+
ImMLD

12

∆m
− ImΓ12

2ReΓ12

)
(ii)

From (i) to (ii): relies on {arg M12 , arg Γ12} . O(|εK |)� 1 (mod π)

(ii) depends on Kaon phase conventions before even evaluating its addenda

� ImMSD
12 ∝

(
|Vcb|2(1− ρ̄)ηttS0(xt) + ηctS0(xt , xc)− ηccxc

)
, perturbative

� ImMLD
12 : from chiral perturbation theory

Buras Guadagnoli Isidori 1002.3612

� Γ12 dominated by A∗0 Ā0, from the lattice (or from lattice A2 plus ε′exp)
Bai et al. 1505.07863 Blum et al. 1502.00263

Express
ImMLD

12
∆m

and ImΓ12
2ReΓ12

as multiplicative factor κε:

|εK |SM = κεCεB̂K |Vcb|2λ2η̄
[
|Vcb|2(1− ρ̄)ηttS0(xt) + ηctS0(xt , xc)− ηccxc

]
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Our evaluation of εK

Rephase Kaons to take advantage of this phase dependence!

|K 0〉 → |K 0〉′ = e iλc/|λc ||K 0〉, |K̄ 0〉 → |K̄ 0〉′ = e−iλc/|λc ||K̄ 0〉

λc = VcdV
∗
cs ' −λ

(
1 + η̄|Vcb|2

)

|εK | = sinφε

(
ImMSD

12

∆m
+
ImMLD

12

∆m
− ImΓ12

2ReΓ12

)
(ii)

ImM12 → ImM′12 = ImM12
Reλ2

c

|λ2
c |

+ ReM12
Imλ2

c

|λ2
c |
' ImM12 + 2λ4A2η̄ReM12 ,

−
ImΓ12

2ReΓ12
→ −

ImΓ12

2ReΓ12

′
' −

1

2

(
ImΓ12

ReΓ12
+

Imλ2c
Reλ2c

)
' −

ImΓ12

2ReΓ12
− λ4A2η̄ .

“charm box” becomes real ⇒ no ηcc term in ImMSD
12 ⇒ ImMSD

12 increases, κε decreases

|εK |SM = κεCεB̂K |Vcb|2λ2η̄
[
|Vcb|2(1− ρ̄)ηttS0(xt) + ηctS0(xt , xc)− ηccxc

]
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New error budget and comments

|εK |SM = κ′εCεB̂K |Vcb|2λ2η̄
[
|Vcb|2(1− ρ̄)ηttS0(xt) + ηctS0(xt , xc)

]

Importance of ImMLD
12 increases!

[ImMLD
12 contained in κε]

Maybe you’re thinking...:

? Is this phase the same θ of CP|K0〉 = e iθ|K0〉? No

?? Is this the same of working with the substitution λc = −λu − λt? No

[instead of the usual λu = −λc − λt , as proposed in Christ et al. 1212.5931]

??? Shouldn’t physics be independent of unphysical phase conventions? Yes,

but different pieces of εK (ImMLD,SD
12 ,...) have different errors

→ a rephasing changes the rel. importance of the pieces, and thus the εK error
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Maybe you’re thinking...:

? Is this phase the same θ of CP|K0〉 = e iθ|K0〉? No

?? Is this the same of working with the substitution λc = −λu − λt? No

[instead of the usual λu = −λc − λt , as proposed in Christ et al. 1212.5931]

??? Shouldn’t physics be independent of unphysical phase conventions? Yes,

but different pieces of εK (ImMLD,SD
12 ,...) have different errors

→ a rephasing changes the rel. importance of the pieces, and thus the εK error
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Conclusion and Outlook Ligeti Sala 1602.08494 (JHEP)

CP violation in Kaon mixing (εK )

= observable sensitive to the highest flavour and CP violating scales

∆εK |exp ∼ 0.5% ∆εK |SM ∼ 15% ⇒ SM determination needs improvement!

ηcc is the source of the largest non-CKM error

This talk: ηcc can be “removed” via a rephasing

Implications:

→ ∆εK |SM slightly reduced

→ Future: need Long-Distance contribution to M12 →
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Back up
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Values of Parameters

|εK |SM = k
(′)
ε CεB̂K |Vcb|2λ2η̄

(
|Vcb|2(1− ρ̄)ηttS0(xt) + ηctS0(xt , xc )

)
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Bounds on New Physics

LNP =
∑

i

1

Λ2
Oi O1 = (d̄LγµsL)2, O2 = (d̄R sL)2, O3 = (d̄αR sβL )(d̄βR s

α
L )

O4 = (d̄R sL)(d̄LsR), O5 = (d̄αR sβL )(d̄βL s
α
R )

[Dark: CKM-fit inputs Light: “tree-level” inputs]
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*Generic but well defined bounds, and actually directly valid for some models

(e.g. fermion resonances in CHM, now mT > 30 TeV)
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