Study of the K[±] to $\pi^{\pm} \pi^{0} e^{+} e^{-}$ decay with NA48/2 @ CERN

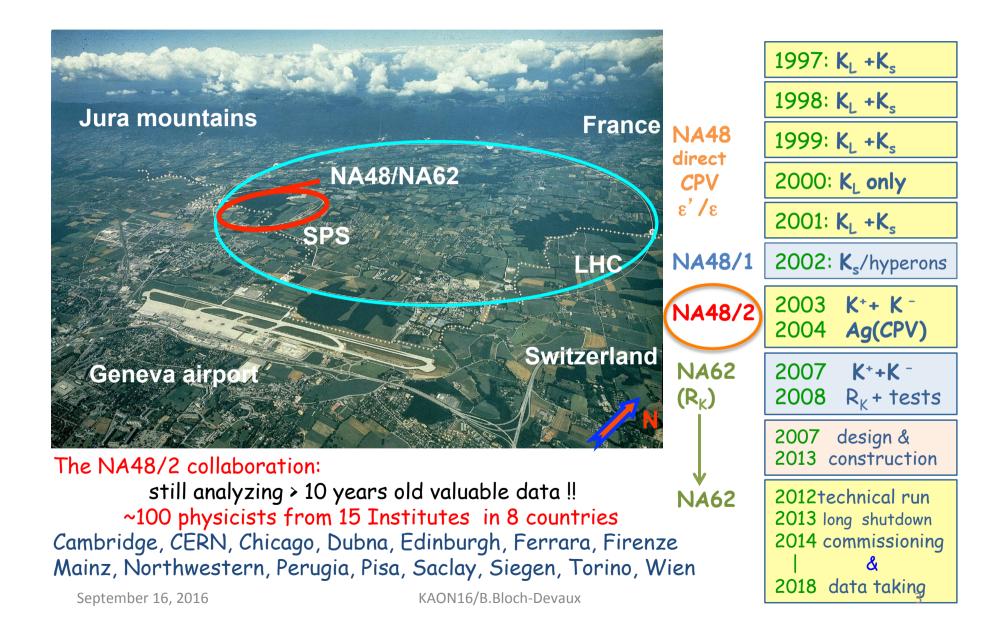
Brigitte Bloch-Devaux Università degli Studi di Torino

on behalf of the NA48/2 Collaboration

KAON16 10th International Conference on Kaon Physics University of Birmingham, UK , September 14-17

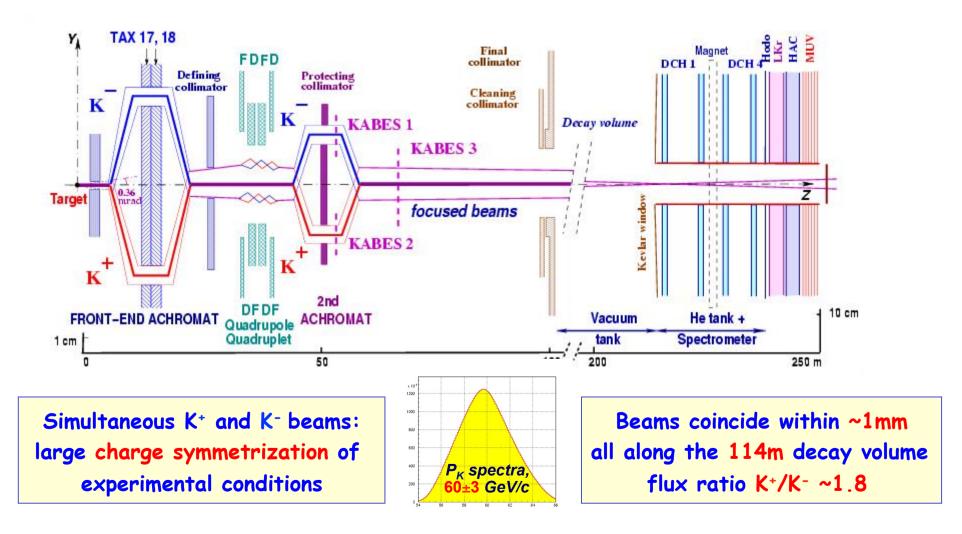
September 16, 2016

KAON16/B.Bloch-Devaux

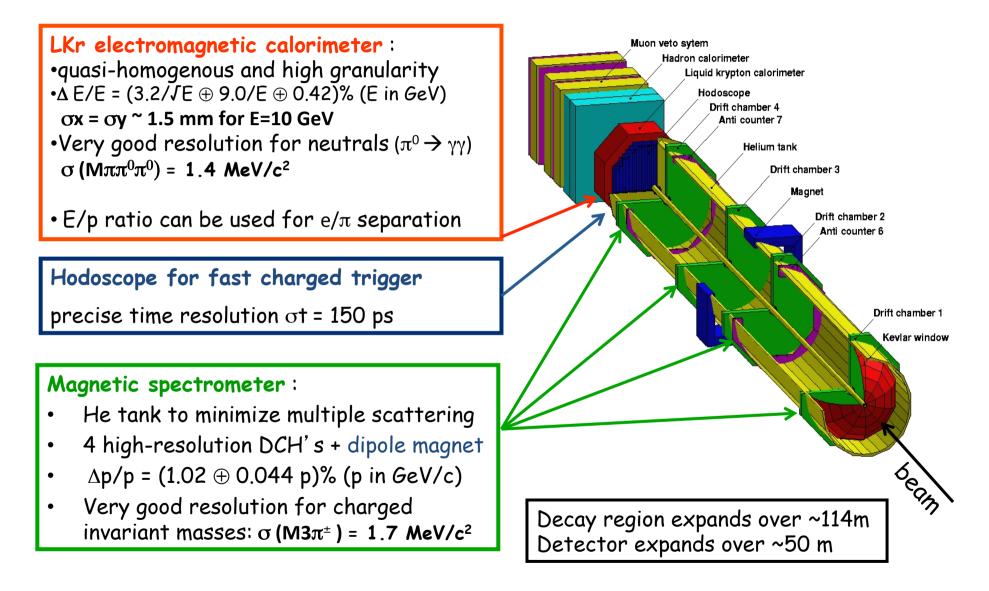

Outline

NA48/2 description of experimental setup & detector performances... any need to repeat it ?

- * ChPT and the $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} e^{+} e^{-}$ decay mode
- Selection and backgrounds
- Branching Ratio
- Summary/Prospects

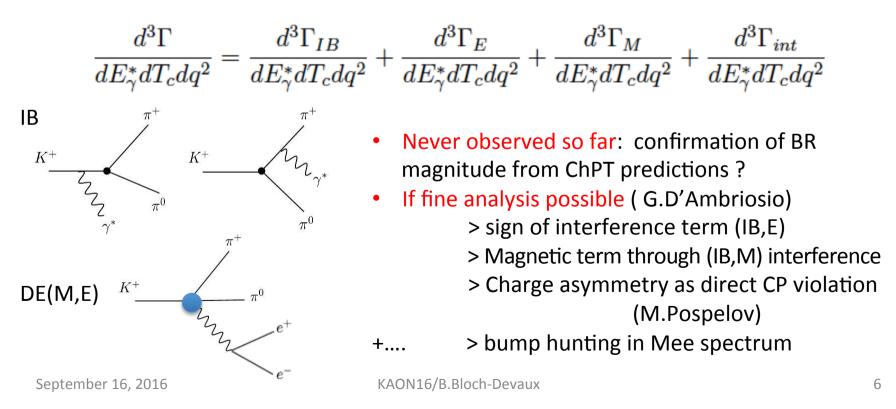


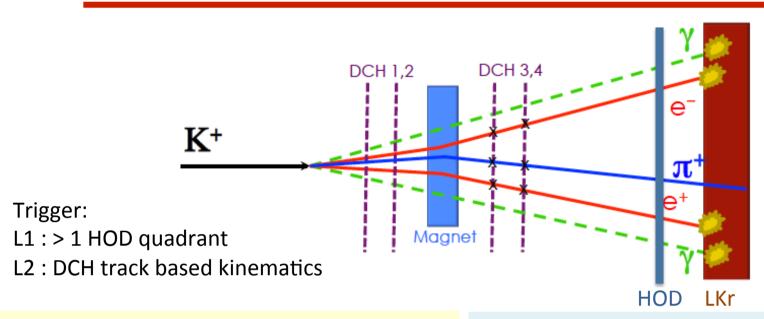
The NA48/NA62 experiments at CERN-SPS



The NA48/2 experimental setup; Kaon beam

2003 + 2004 run: ~ 6 months, ~ 2 10¹¹ K[±] decays in flight


NA48/2 detector and performances


Chiral Perturbation Theory and Kaon decays

- Kaon decays are a perfect laboratory to study ChPT (QCD at low energy)

 see the many theory talks this week
- K[±] → π[±] I⁺ I⁻ , K[±] → π[±] γ γ , K[±] → π[±] π⁰ γ , K[±] → π[±] π⁰ γ* → π[±] π⁰ e⁺ e⁻ and more.. πee PLB 677 (2009), πµµ PLB 697 (2011), πγγ PLB730 (2014), ππ⁰γ EPJC 68 (2010)
- What is so special about $\pi^{\pm} \pi^{0} e^{+} e^{-}$ decay ?
- H.Pichl, EPJ C20 (2001) 371
- L. Cappiello, O. Catà, G. D'Ambrosio, D.Gao EPJ C72 (2012) 1872

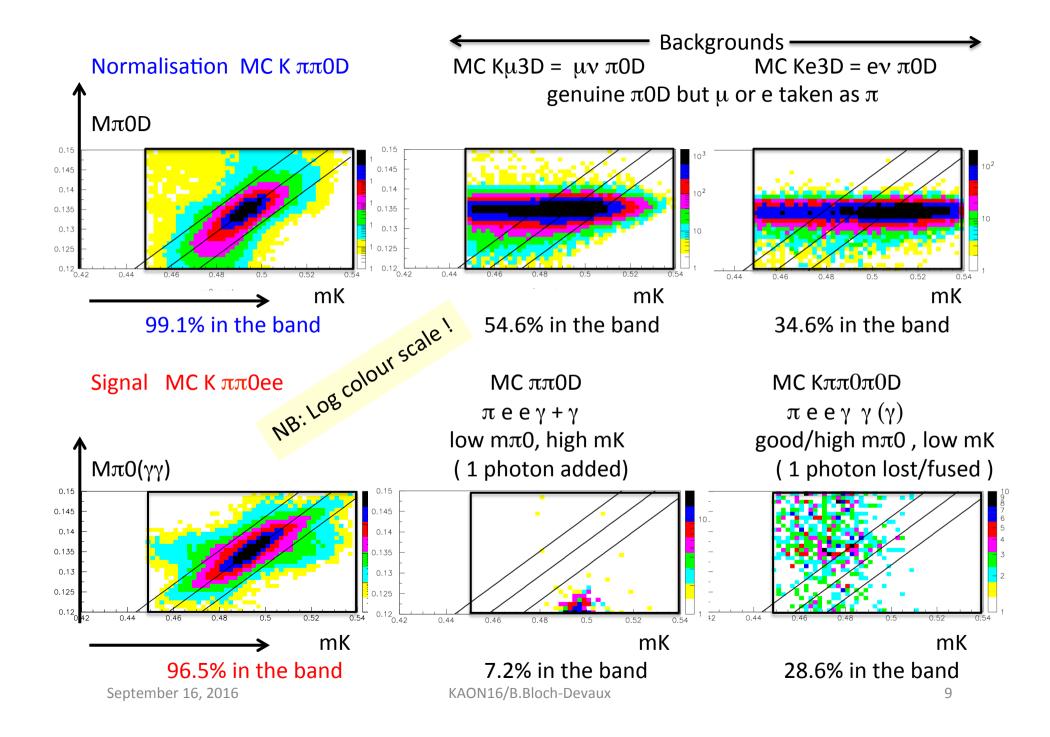
Event selection : signal and normalization

Signal: $\pi^{\pm} \pi^{0} e^{+} e^{-} = \pi^{\pm} \gamma \gamma e^{+} e^{-}$

- Final state reconstructed from 3 charged track and 2 photons forming a π^0 pointing to the same decay vertex

- Closed kinematics with two constraints on $M_{\pi 0},\,M_K$
- Differs from normalization by one extra $\boldsymbol{\gamma}$

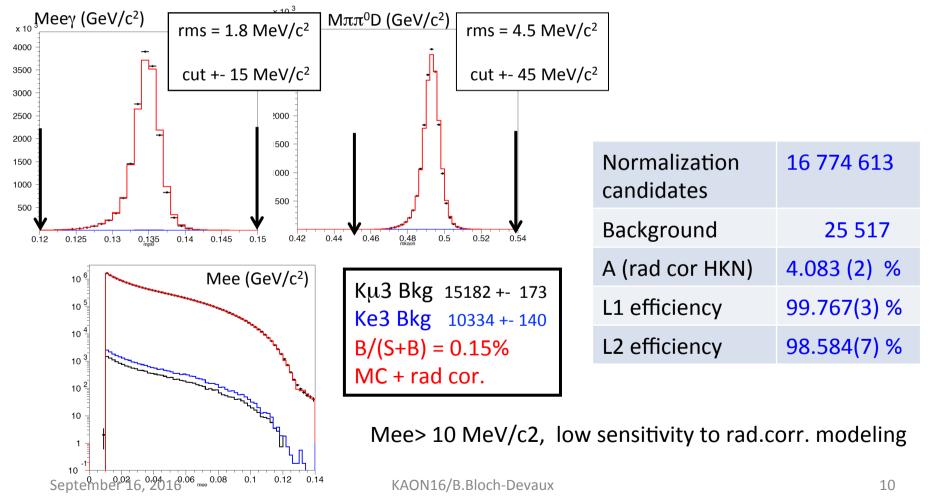
Normalization: $\pi^{\pm} \pi^{0}_{D} = \pi^{\pm} e^{+} e^{-} \gamma$


- Final state reconstructed from 3 charged tracks and 1 photon forming, with 2 opposite sign tracks, a π^0 pointing to the same decay vertex
- Closed kinematics with two constraints on $M_{\pi 0D},\,M_K$
- Very abundant: BR (ππ0) × BR (π0D) 20.66% × 1.174% = 2.425 10⁻³

Event selection: signal, normalization and backgrounds

Signal: $\pi^{\pm} \gamma \gamma e^{+} e^{-} \gamma$ Normalization = $\pi^{\pm} e^{+} e^{-} \gamma$ Require 3 good quality tracks forming a vertex in the fiducial decay region+ two good quality photon clusters+ one good quality photon clusters

- do not use PID from LKr information but only kinematics
- no more limitation from LKr geometrical acceptance for tracks
- Assign electron mass to the track with Q opposite to vertex charge
- For both (me, mπ) assignments to same charge tracks, compute reconstructed Mπ0 and Mkaon to be in a wide range and check kinematic correlation


 $|M\pi 0 - M_{PDG}| < 15 \text{ MeV/c2} |Mkaon - M_{PDG}| < 45 \text{ MeV/c2}$ $|M\pi 0 - 0.42 \text{ mK} + 73.2 \text{ MeV/c2}| < 6 \text{ MeV/c2} \text{ (masses in Mev/c2)}$

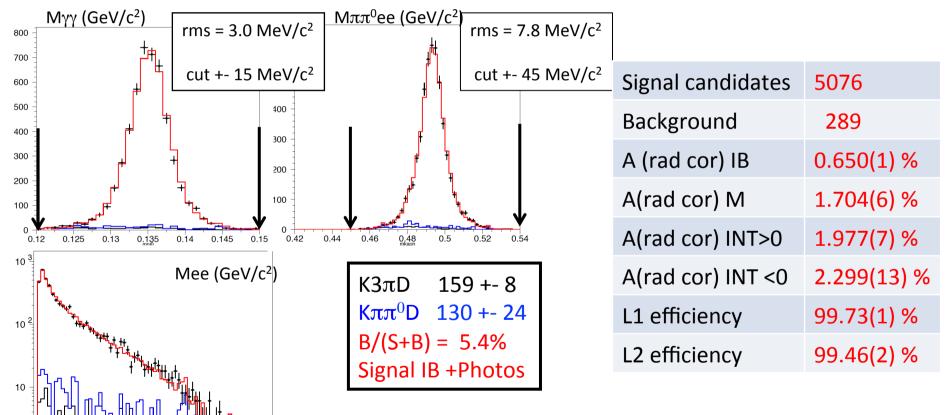
Normalization : large very pure sample

Normalisation K $\pi\pi$ 0D :

- K ππ0 generator code including 1 real photon emission Gatti EPJ C 45 (2006)
- π0D decays including 1 extra photon emission Husek, Kampf, Novotny PRD 92 (2015)
- also π OD decays including extra photon(s) emission Photos Was et al CPC 79 (1994)

Signal : small clean sample

Signal K $\pi\pi0$ e e: dominated by


September 16. 2016

0.1

0.12

0.14

- IB, then DE (M) and INT(IB,E) : 4 independent generations (IB, M, INT>0 and INT <0) with different acceptances (A(M) and A(BE) ~ 3 x A(IB))
- Rad. cor. adding extra photon(s) emission using Photos

Mee> 3 MeV/c2 , dominated by bkg at large values

KAON16/B.Bloch-Devaux

Branching ratio measurement and uncertainties

BR = $(Ns - Nbs)/(Nn - Nbn) \times (An/As) \times (\epsilon L1n \times \epsilon L2n)/(\epsilon L1s \times \epsilon L2s) \times BRn$

• What is As ? Define Aeff according to predicted fractions (IB/M) and (IB/BE) based on XE and XM measured in $\pi\pi^0\gamma$ by NA48/2 (EPJ C68 (2010) 75):

[A(IB) + 1/71 A(M) + 1/128 (0.732 INT>0 - 0.268 INT<0)] / (1 + 1/71 + 1/128)

Aeff = (0.666 +- 0.001) %

XE relative uncertainty ~30% , XM relative uncertainty ~5% translate to δ Aeff/Aeff ~0.25% due to mixture composition

Radiative corrections modeling ?

Branching ratio measurement ingredients

Normalization candidates	16 774 613
Background	25 517
A (rad cor HKN)	4.083 (2) %
L1 efficiency	99.767(3) %
L2 efficiency	98.584(7) %

Signal candidates	5076
Background	289
A (rad cor) eff	0.666(1) %
L1 efficiency	99.73(1) %
L2 efficiency	99.46(2) %

Source	δ BR/BR x 10 ²		
Ns	1.40		
Nbs	0.51		atat 1 40
Nn	0.02	4	stat 1.49
Nbn	Negl.	J	
As	0.18	Ĵ	
An	0.05		
L1n x L2n	0.01		
L1s x L2s	0.04		syst 1.03
A (rad corr)	0.56 *	ſ	,
A (fraction DE,INT)	0.25 *		
Trigger efficiency	0.80 *	J	
BR2π	0.39		ext 3.00
BRπ0D	2.98		CAC 3.00

* = not final

September 16, 2016

Branching ratio measurement @ NA48/2

BR = $(4.22 + 0.06_{stat} + 0.04_{syst} + 0.13_{ext})$ 10 ⁻⁶	
dominated by external error on BR(π 0D)	
In perfect agreement with	
Theory : ChPT calculations EPJ C72 (2012)	IB +DE + INT
BR (IB) = 4.19 10 ⁻⁶ no Rad Cor, No Isospin breaking Cor BR (IB) = 4.10 10 ⁻⁶ no Rad Cor, with Isospin breaking Cor*	* Total 4.29 10 ⁻⁶ * Total 4.19 10 ⁻⁶

(** private communication from authors)

Summary

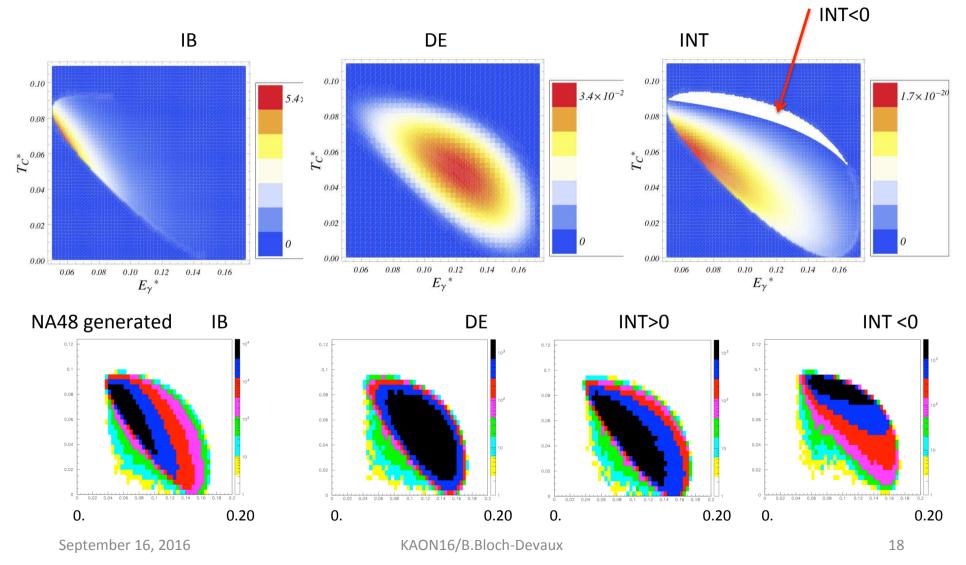
- NA48/2 has collected a clean sample of ~5000 π π0 e+ e- decay candidates with ~5% background : first observation leading to a 3-4% BR measurement in perfect agreement with ChPT predictions.
- BR = (4.22 +- 0.08_{exp} +- 0.13_{ext}) 10⁻⁶ uncertainty is dominated by external error experimental error is dominated by signal statistics

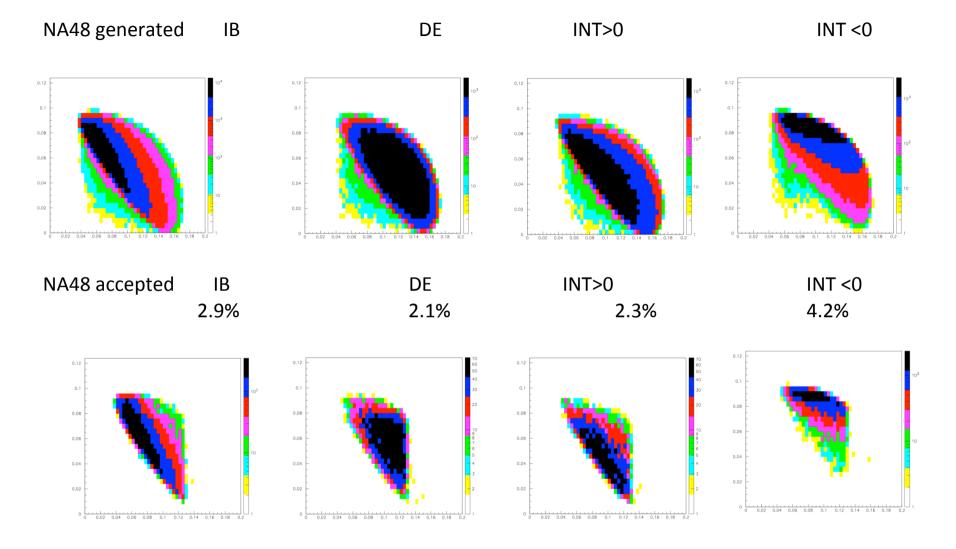
• discussion with theorists is most important for a correct and precise formulation of radiative and isospin breaking corrections

Prospects to collect more decays in the current NA62 run :

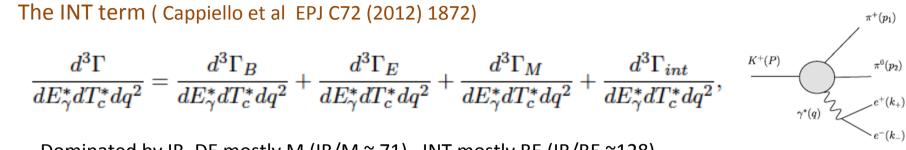
- requiring 3 tracks + large electromagnetic energy incompatible with πvv trigger
- parasitic 3-track trigger downscaled by a large factor : no way to collect more data than in 2003-2004 with this trigger (1.74 10¹¹ charged kaon decays analyzed)
- could be studied in Run 3 after LS2 (after 2020) with dedicated trigger

Measure BR(K+) and BR(K-) as independent quantities

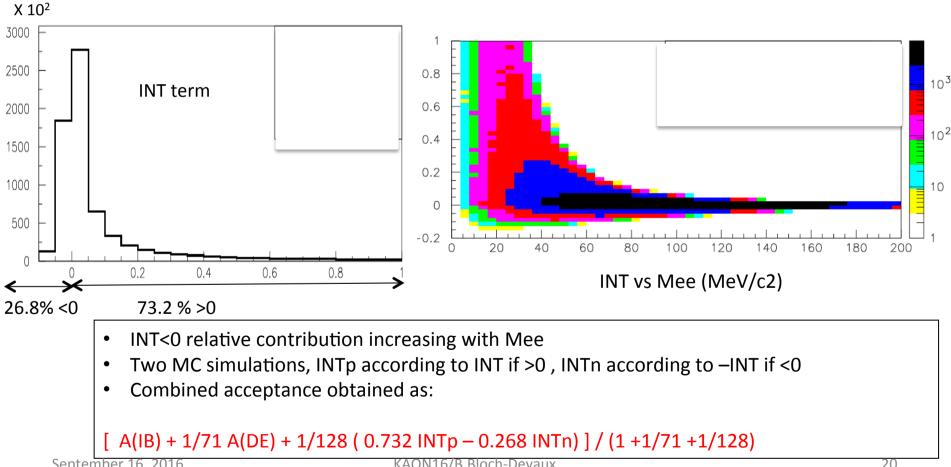

Statistics is even more limited as K+/K- = ~ 1.8 at production target


	K+	К-		K+	К-
Norm candidates	10776792	5997821	signal	3234	1842
Bkg	0.15%		Bkg	5%	
A (rad cor HKN)	4.087 (3) %	4.075 (4)%	Aeff	0.6687 (13) %	0.6605 (17) %
L1 efficiency	99.767(3) % 98.584(7) %		L1	99.73(1) %	
L2 efficiency			L2	99.46 (2) %	
BR(K+) = (4.17 +- 0.08) x 10 ⁻⁶		BR(K-) = (4.30 +-0.11) x 10 ⁻⁶			

```
(BR(K+) - BR(K-)) / (BR(K+) + BR(K-)) = -0.015 + 0.016
(stat errors only)
```


and more ?

Cappiello et al. suggest to look at mee ~50 MeV/c2 where IB,DE, INT populate differently the (E γ^* ,T* π) plane



After acceptance, we would need large statistics to disentangle the various contributions

Dominated by IB, DE mostly M (IB/M ~ 71), INT mostly BE (IB/BE ~128) Independent MC simulations of IB, DE and INT terms but

