

# Prospects for the search of $K^{\rm 0}_{\rm s}\!\to\pi^+\pi^-{\rm e}^+{\rm e}^-$ at LHCb

Carla Marin Benito on behalf of the LHCb collaboration

#### KAON 2016

Birmingham, 14-17 September 2016

ICCU



UNIVERSITAT DE BARCELONA



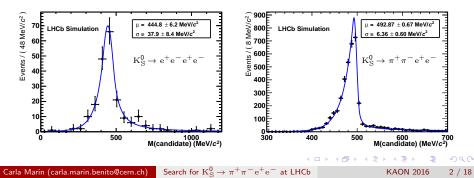
## Motivation



- LHCb has proved to be very competitive in strange physics.
  - Up to 5 talks with results and prospects in this conference!
- Recent interest in  $K^0_s \rightarrow \ell^+ \ell^- \ell^+ \ell^-$  decays: [Eur. Phys. J. C73 (2013) no. 12 2678]

$$\begin{array}{lll} \mathcal{B}({\rm K}_{\rm S}^{0}\!\to{\rm e^{+}e^{-}e^{+}e^{-}}) &\sim & 10^{-10} \\ \mathcal{B}({\rm K}_{\rm S}^{0}\!\to{\mu^{+}\mu^{-}e^{+}e^{-}}) &\sim & 10^{-11} \\ \mathcal{B}({\rm K}_{\rm S}^{0}\!\to{\mu^{+}\mu^{-}\mu^{+}\mu^{-}}) &\sim & 10^{-14} \end{array}$$

- Any enhancement is a sign of NP!
- ▶ Interference between  $K_s^0 \rightarrow \ell^+ \ell^- \ell^+ \ell^-$  and  $K_L^0 \rightarrow \ell^+ \ell^- \ell^+ \ell^-$  would allow CKM stringent constraints.
- No experimental results in the literature [PDG].

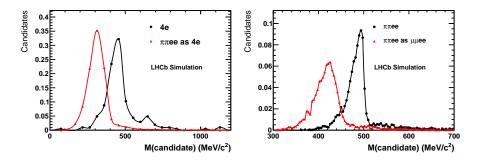

・ロト ・通 ト ・ モト ・ モト

## Electron modes



#### LHCb-PUB-2016-016

- Electron reconstruction is the main issue:
  - Low momenta + loss by Bremsstrahlung.
- Preliminary studies with MC:
  - Mass resolution good with two  $e^{\pm}$ , worse with four.
  - ▶ Peak displacement in both cases, larger with four e<sup>±</sup>.




## Electron modes



#### LHCb-PUB-2016-016

- Dangerous background:  $K^0_s \rightarrow \pi^+\pi^-e^+e^-$
- Study separation with two misidentified pions:



→ Ξ →

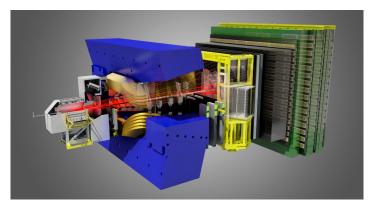
Search for  $K_S^0 \rightarrow \pi^+\pi^- e^+e^-$  at LHCb

# $K_s^0 \rightarrow \pi^+ \pi^- e^+ e^-$



- Dangerous background for  ${\rm K}^0_{\rm S}\!\rightarrow\ell^+\ell^-\ell^+\ell^-.$
- Good candidate for normalisation channel.
- $\bullet$  Interesting itself: light dark matter states decaying to  $\mathrm{e^+e^-}.$ 
  - $\blacktriangleright$  Search for peaks in  $e^+e^-$  invariant mass following  $_{\mbox{[PRD 92 (2015) no. 11 115017]}}.$
- Relatively large  $\mathcal{B}$  [PDG]:

$$\mathcal{B}(K_{s}^{0} \to \pi^{+}\pi^{-}e^{+}e^{-}) = (4.79 \pm 0.15) \times 10^{-5}$$


Study feasibility of observing  $K^0_{\rm S} \! \to \pi^+\pi^- {\rm e^+e^-}$  at LHCb

Search for  ${\rm K}^0_{\rm S} \rightarrow \pi^+\pi^-{\rm e^+e^-}$  at LHCb

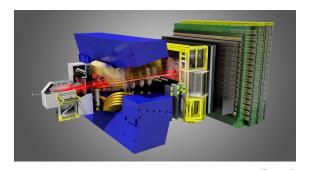


### LHCb detector

#### JINST3 (2008) S08005



- $\bullet$  e identification: e ID  $\sim$  90 % for  $\sim$  5 % e  $\rightarrow$  h mis-id probability.
- p resolution:  $\Delta p/p \sim$  0.4 % at 5 GeV/c to 0.6 % at 100 GeV/c
  - $\rightarrow$  Excelent mass resolution:  $\sim 4~{\rm MeV}/c^2$  for  ${\rm K_S^0} \rightarrow \mu^+\mu^-.$


Carla Marin (carla.marin.benito@cern.ch) Search for  $K^0_S o \pi^+\pi^-e^+e^-$  at LHCb

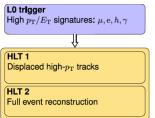
# LHCb detector for $\mathrm{K}^{0}_{\mathrm{s}}$ decays



LHCb is a kaon factory:  $\sim 10^{13}~{\rm K_S^0}/\,{\rm fb^{-1}}$  decay in LHCb acceptance. But, it is not optimised for the study of these decays:

|                | m ( $MeV$ ) | $	au~(10^{-12}~{ m s})$ |
|----------------|-------------|-------------------------|
| B <sub>d</sub> | 5300        | 1.5                     |
| Ks             | 500         | 90                      |




Carla Marin (carla.marin.benito@cern.ch)

Search for  $K^0_S \rightarrow \pi^+\pi^- e^+e^-$  at LHCb

KAON 2016 6 / 18

# LHCb Run I trigger for $\mathrm{K}^0_{\mathrm{s}}$ decays





#### Flexible trigger

- L0: calorimeters and muon chambers.
- HLT1: adds tracking and vertexing.
- HLT2: exclusive and inclusive full selections.

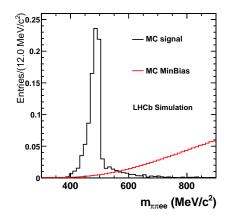
LHCb trigger was not designed to select  $\mathrm{K}^0_{\mathrm{S}}$  decays:

- They have larger  $\tau$  and lower daughter's  $p_T$ .
- No dedicated trigger selection for  $K^{0}_{s}\!\rightarrow\pi^{+}\pi^{-}e^{+}e^{-}$  in Run I.
- They may pass the trigger as background.



#### LHCb-PUB-2016-016

- Study based on MC and data in 2012 conditions: 2 fb<sup>-1</sup> at 8 TeV.
- Obtain reconstruction, selection and trigger efficiency in LHCb Run I.
  - Extract expected signal yield.
  - Estimate background level.
- Study trigger improvements for Run II and upgrade data-taking.
  - Extract expected signal yields.
- Asses observation feasibility.


# ${\rm K_s^0} \! \rightarrow \pi^+\pi^- {\rm e^+e^-}$ reconstruction



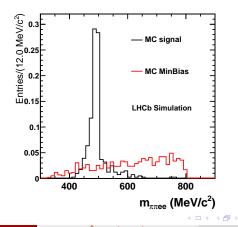
#### LHCb-PUB-2016-016

#### • Evaluated matching reconstructed particles to MC ones.

 $\epsilon^{sig}_{reco} = (0.134 \pm 0.002) \ \%$ 



Search for  $K^0_S \rightarrow \pi^+ \pi^- e^+ e^-$  at LHCb


# $\rm K^0_s \rightarrow \pi^+\pi^-e^+e^-$ selection



#### LHCb-PUB-2016-016

- Offline selection based on linear cuts (details in slide 21):
  - Loose  $p_{\rm T}$  but tight flight distance requirements.

$$\epsilon_{sel}^{sig} = (10.1 \pm 0.5) \%$$





#### LHCb-PUB-2016-016

- No dedicated selection in Run I.
  - ► Scan all available physics selections [LHCb-PUB-2014-046].
- One MC signal candidate selected:

$$\epsilon_{trig}^{sig} = (0.24^{+0.56}_{-0.20}) \%$$

• No MC background candidates pass the same trigger requirement:

$$\epsilon_{trig}^{bkg} < 0.51~\%$$

at 90 % CL.

KAON 2016 11 / 18

## Expected yields in Run I



#### LHCb-PUB-2016-016

- Define signal region: 450 < M < 520 MeV
- Expected signal yield per fb<sup>-1</sup> of Run I data:

$$N_{exp}^{sig} = N(\mathrm{K_S^0/\,fb^{-1}}) \cdot \mathcal{B}(\mathrm{K_S^0} 
ightarrow \pi^+\pi^-\mathrm{e^+e^-}) \cdot \epsilon^{sig}$$

$$N_{exp}^{sig} = 120^{+280}_{-100}$$

• Expected background yield per fb<sup>-1</sup> of Run I data:

$$N_{exp}^{bkg} = \sigma_{tot} \cdot \epsilon^{bkg}$$

$$\mathcal{N}^{bkg}_{exp} < 6.1 imes 10^{5}$$
 at 90 % CL.

Carla Marin (carla.marin.benito@cern.ch)

Search for  ${\rm K}^0_{\rm S} \rightarrow \pi^+\pi^-{\rm e^+e^-}$  at LHCb

KAON 2016 12 / 18

### Run I data



#### LHCb-PUB-2016-016

• Apply same selection & trigger to 2012 data (2 fb<sup>-1</sup> at 8 TeV):

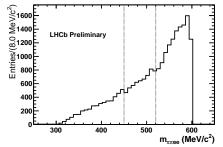



Figure:  $\pi^+\pi^-e^+e^-$  invariant mass distribution for reconstructed and selected 2012 data candidates.

$$N_{obs}^{bkg} \sim 6 imes 10^3$$

Observed background compatible with limit obtained from MC.

Carla Marin (carla.marin.benito@cern.ch)

Search for  ${\rm K}^0_{\rm S} \rightarrow \pi^+\pi^-{\rm e^+e^-}$  at LHCb

KAON 2016 13 / 18



#### LHCb-PUB-2016-016

- New dedicated HLT2 selection included for 2016 data-taking:
  - Based on linear cuts following the offline selection.
  - $\blacktriangleright$  Inclusive selection for  ${\rm K}^0_{\rm s}$  decays with  ${\rm e^+e^-}$  in the final state.
  - Efficiency estimated on 2012 MC (no 2016 MC available yet):

$$\epsilon_{trig}^{sig} = (0.24^{+0.56}_{-0.20}) \ \%$$

- Other differences in Run II neglected:
  - $\star$  Increase in  $K_s^0$  cross-section: much smaller than linear.
  - \* More  $K_s^0$  decaying outside VeLo: small effect.
  - \* Possible reconstruction and selection improvements.
- ► Signal yield per fb<sup>-1</sup> in Run II with these assumptions:

$$N_{exp}^{sig} = 120^{+280}_{-100}$$

Carla Marin (carla.marin.benito@cern.ch)

KAON 2016 14 / 18



#### LHCb-PUB-2016-016

- New dedicated HLT2 selection included for 2016 data-taking:
  - Run I trigger selection exploited a complementary approach.
  - Could also benefit from dedicated HLT1 selection.
    - $\rightarrow$  Room for improvement!

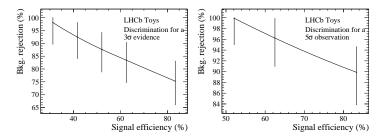
• Trigger fully based on software after the LHCb upgrade ( $\sim$ 2021).

- See Miguel Ramos talk for details.
- A 100 % trigger efficiency can be achieved.
- Expected signal yield per fb<sup>-1</sup> during the upgrade:

$$N_{exp}^{sig} = (5.0 \pm 0.3) \times 10^4$$

Carla Marin (carla.marin.benito@cern.ch)

Search for  $K_S^0 \rightarrow \pi^+\pi^- e^+e^-$  at LHCb


KAON 2016 15 / 18

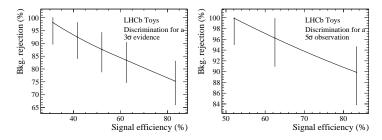
## Observation feasibility with Run I data



#### LHCb-PUB-2016-016

- Estimate feasibility of an evidence or observation from pseudoexperiments.
- Signal efficiency vs background rejection curves to achieve 3 and  $5\sigma$  significance.




• Well within the usual discrimination of MVA selections.

## Observation feasibility with Run I data



#### LHCb-PUB-2016-016

- Estimate feasibility of an evidence or observation from pseudoexperiments.
- Signal efficiency vs background rejection curves to achieve 3 and  $5\sigma$  significance.



• Well within the usual discrimination of MVA selections.

An evidence or observation is feasible with the LHCb Run I dataset!

## Summary & Conclusions



• LHCb has proved to be competitive in the search for strage decays.

# Summary & Conclusions



• LHCb has proved to be competitive in the search for strage decays.

#### LHCb-PUB-2016-016

- Feasibility study of observing  $K^0_{\rm S}\!\to\pi^+\pi^-{\rm e^+e^-}$  at LHCb:
  - Expected signal and observed background yield obtained for Run I.
  - Dedicated trigger selection included for 2016 data-taking.
    - $\star$  Still room for improvement in the trigger.
  - Large signal yield expected in the upgrade phase.
  - Pseudoexperiments to asses the observation feasibility with Run I data.

#### An evidence or observation is feasible with the LHCb Run I dataset

# Summary & Conclusions



• LHCb has proved to be competitive in the search for strage decays.

#### LHCb-PUB-2016-016

- Feasibility study of observing  $K^0_{\rm S}\!\to\pi^+\pi^-{\rm e^+e^-}$  at LHCb:
  - Expected signal and observed background yield obtained for Run I.
  - Dedicated trigger selection included for 2016 data-taking.
    - \* Still room for improvement in the trigger.
  - Large signal yield expected in the upgrade phase.
  - Pseudoexperiments to asses the observation feasibility with Run I data.

#### An evidence or observation is feasible with the LHCb Run I dataset

- $\bullet$  Observation of  $K^0_s \! \to \pi^+\pi^- e^+ e^-$  would allow to:
  - Test the SM predictions for  $K_s^0 \rightarrow \ell^+ \ell^- \ell^+ \ell^-$ .
  - ► Search for light dark matter states decaying to e<sup>+</sup>e<sup>-</sup>.

# THANK YOU

Carla Marin (carla.marin.benito@cern.ch)

Search for  ${\rm K}_{\rm S}^{0} \rightarrow \pi^{+}\pi^{-}{\rm e}^{+}{\rm e}^{-}$  at LHCb

▶ < ≧ ▶ ≧ ∽ ९ ୯ KAON 2016 18 / 18

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

# **BACK-UP**

Carla Marin (carla.marin.benito@cern.ch)

Search for  ${\rm K}_{\rm S}^{0} \rightarrow \pi^{+}\pi^{-}{\rm e}^{+}{\rm e}^{-}$  at LHCb

▶ ▲ ≣ ▶ ■ ク ९ @ KAON 2016 19 / 18

イロト イヨト イヨト イヨト



Different trigger categories:

- TOS (Trigger On Signal): the event is selected because the signal triggers it.
- TIS (Trigger Independent of Signal): the event is selected because some other particles in the event (not the signal ones) trigger it.

## Offline selection



| Selection                                  | Units               |           |
|--------------------------------------------|---------------------|-----------|
| track $\chi^2/ndof$                        |                     | < 3       |
| track ghost probability                    |                     | < 0.5     |
| track IP $\chi^2$                          |                     | > 16      |
| $e DLL_{e\pi}$                             |                     | > -4      |
| $e p_{T}$                                  | $\mathrm{MeV}/c$    | > 100     |
| $\pi \text{ DLL}_{\mathrm{K}\pi}$          |                     | < 5       |
| $\pi \ p_{ m T}$                           | MeV/c               | > 250     |
| $\mathrm{e^+e^-}$ DOCA                     | $\operatorname{mm}$ | > 10      |
| $\mathrm{e^+e^-}$ invariant mass           | $MeV/c^2$           | > 250     |
| $\mathrm{e^+e^-}~ p_\mathrm{T}$            | MeV/c               | > 250     |
| $\pi^+\pi^-\mathrm{e^+e^-}$ max DOCA       | $\mathrm{mm}$       | < 1.0     |
| $\pi^+\pi^-\mathrm{e^+e^-}$ invariant mass | $MeV/c^2$           | < 800     |
| K <sup>0</sup> <sub>s</sub> IP             | mm                  | < 1       |
| ${ m K}^0_{ m S}  	au$                     | ns                  | > 0.08953 |

Carla Marin (carla.marin.benito@cern.ch) Search for  $K^0_S \rightarrow \pi^+\pi^-e^+e^-$  at LHCb

**KAON 2016** 21 / 18



|                   | $\mathrm{K_s^0} \rightarrow \pi^+\pi^-\mathrm{e^+e^-}$ MC | MinBias MC                                                                              |
|-------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Trigger Selection | Efficiency (%)                                            | Efficiency (%)                                                                          |
| L0 & Hlt1 & Hlt2  |                                                           |                                                                                         |
| TIS TIS TIS       | < 0.73                                                    | $0.85\substack{+0.38\\-0.38}$                                                           |
| TIS TIS TOS       | < 0.73                                                    | $\begin{array}{c} 0.85\substack{+0.38\\-0.38}\\ 0.51\substack{+0.49\\-0.28}\end{array}$ |
| TOS TOS TOS       | $0.24\substack{+0.56\\-0.20}$                             | < 0.51                                                                                  |

Carla Marin (carla.marin.benito@cern.ch)

Search for  ${\rm K}_{\rm S}^{0} \rightarrow \pi^{+}\pi^{-}{\rm e}^{+}{\rm e}^{-}$  at LHCb

× ▲ ≧ ▶ ≧ ク ९ (\* KAON 2016 22 / 18

<ロ> (日) (日) (日) (日) (日)

## Other efficiencies



• Offline selection efficiency on Minimum Bias MC:

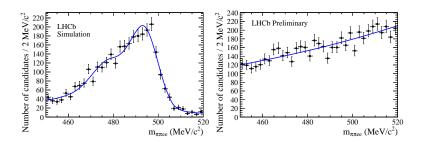
$$\epsilon^{bkg}_{sel} = (2.95\pm0.12) imes10^{-5}$$

• Signal region cut efficiency on  $K_s^0 \rightarrow \pi^+\pi^-e^+e^-$  MC:

$$\epsilon_M^{sig} = (76.9 \pm 1.8)\%$$

• Signal region cut efficiency on Minimum Bias MC:

$$\epsilon_M^{bkg} = (4.33 \pm 0.02)\%$$


Carla Marin (carla.marin.benito@cern.ch)

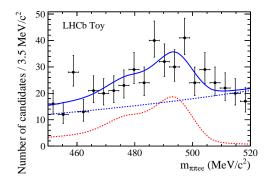
Search for  ${\rm K}^0_{\rm S} \to \pi^+\pi^-{\rm e^+e^-}$  at LHCb

KAON 2016 23 / 18



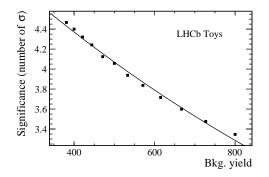
#### • Fit signal MC and data to extract signal and background PDFs.




Search for  $K_S^0 \rightarrow \pi^+\pi^- e^+e^-$  at LHCb

KAON 2016 24 / 18




- Build list of signal and background yields. For each pair:
  - Generate 10k toys: distributions floated according to errors obtained in previous step.
  - $\blacktriangleright$  Fit generated distribution w/ and w/o signal components

 $\rightarrow$  obtain significance.

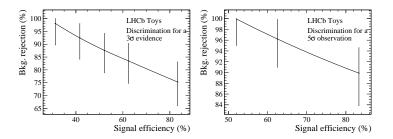




• Fit significance vs background yield curves for each signal yield with an exponential.



• Obtain background yield at 3 and  $5\sigma$  from fitted curve.


Search for  $K^0_S \rightarrow \pi^+ \pi^- e^+ e^-$  at LHCb

KAON 2016 26 / 18



• Build signal efficiency vs background rejection curves at 3 and  $5\sigma$ .

 Efficiency (rejection) wrt expected signal (observed background) yield in signal region.

