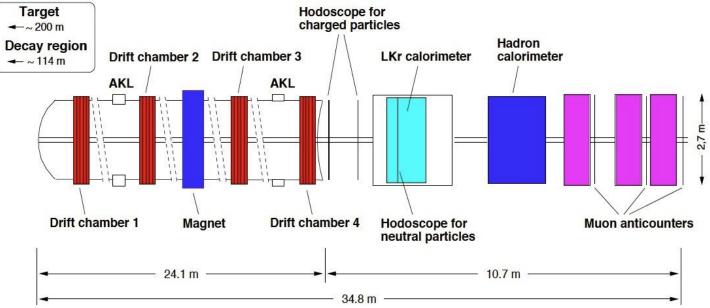
Search for dark photon at NA48/2, and measurement of π^0 form factor

Mauro Raggi, Sapienza Università di Roma e INFN Roma On behalf of the NA48/2 collaboration

KAON 2016 conference 14-17 September 2016 School of Physics and Astronomy, University of Birmingham

Outline

- NA48/2 experiments at CERN SPS
- \square Search for the dark photon in π^0 decays
- \square Measurement of π^0 form factor
- Conclusion and prospects


The NA48/2 and NA62 experiments @ SPS

NA48/2 collaboration: 15 institutes from 8 countries: NA62-RK collaboration: 30 institutes from 13 countries

NA48/2 (2003-04) NA62-RK (2007-08)

NA48/2 data taking : 4 months in 2003-04 (K[±]) 60 GeV Simultaneous K[±] beam NA62-RK data taking: 4 months in 2007 (K⁺) 74 GeV mostly K⁺ only beam

Magnetic Spectrometer

- 4 drift chambers and a dipole magnet

$$\frac{S(p)}{p} = (1.02 \oplus 0.044 p)\% \text{ p in GeV/c}$$

Liquid Krypton EM calorimeter (LKr)

- High granularity (13248 cells of 2x2 cm²)
- Quasi-homogeneous, 7m³ liquid Kr (27X₀)

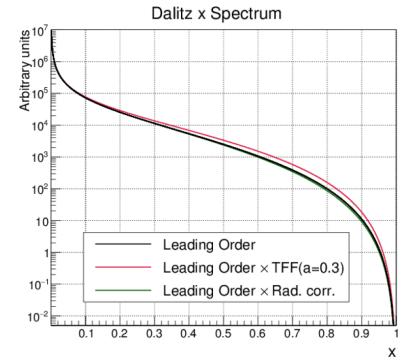
$$\frac{\sigma(E)}{E} = \frac{3.2\%}{\sqrt{E}} \oplus \frac{9\%}{E} \oplus 0.4\% \quad \text{E in GeV}$$

The π^0_D decay form factor |F(x)|

 $\square \pi^{0}{}_{D}: \pi^{0} \Box e^{+}e^{-\gamma} \text{ differential decay rate:}$

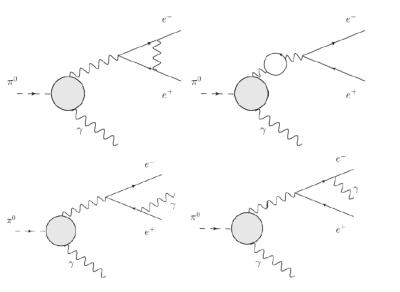
$$\frac{1}{\Gamma(\pi_{2\gamma}^{0})} \frac{d^{2}\Gamma(\pi_{D}^{0})}{dxdy} = \frac{\alpha}{4\pi} \frac{(1-x)^{3}}{x} (1+y^{2}+\frac{r^{2}}{x})(1+\delta(x,y))|F(x)|^{2}$$
$$x = \frac{(p_{e^{+}}+p_{e^{-}})}{m_{\pi^{0}}^{2}} \quad y = \frac{2p_{\pi^{0}} \cdot (p_{e^{+}}-p_{e^{-}})}{m_{\pi^{0}}^{2}(1-x)} \quad r^{2} = (2m_{e}/m_{\pi^{0}})^{2}$$

- **\square** First order Form Factor F(x):
 - $|F(x)| \sim 1 + ax$ a = FF slope parameter
 - Need sample with unbiased π^0 Dalitz decays.
- A clean and large sample of π^0_D can be obtained at NA62-RK:
 - Source: $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ tagged neutral pion (~10⁹ $\pi^{0} \square \sim 10^{7} \pi^{0}_{D}$ decays).
 - Avoid any trigger bias on the data sample (minimum bias trigger)
 - NA62-RK lower statistic but much better trigger conditions wrt to NA48/2

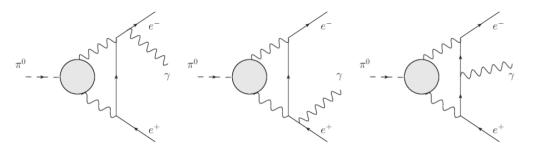

F(x)

Measuring $\pi^0_{\ D}$ transition FF slope

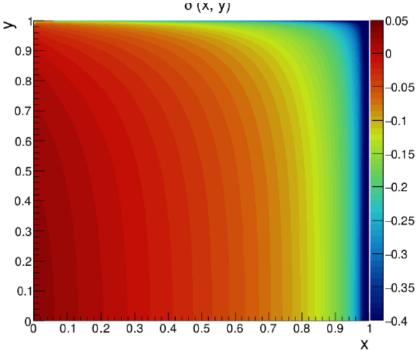
Fit the differential decay width as function of x:


$$\frac{1}{\Gamma(\pi_{2\gamma}^{0})}\frac{d\Gamma(\pi_{D}^{0})}{dx} = \frac{2\alpha}{3\pi}\frac{(1-x)^{3}}{x}(1+\frac{r^{2}}{x})\sqrt{1-\frac{r^{2}}{x}}(1+\delta(x,y))(1+ax)^{2}$$

- Theoretical expectation: a~0.03 VMD models.
- FF is a tiny effect:
 - Need very precise measurement of x
 - Proper radiative corrections $\delta(x,y)$
- Relevant measurement to improve precision calculation of light by light scattering contribution to muon g-2.



Computing π^0_D radiative correction $\delta(x,y)$


Original paper by **Mikaelian and Smith**: Phys. Rev. D5(1972) 1763

Recent improvement **Husek, Kampf and Novotny** Phys. Rev. D92(2015) *5*, 054027

$$\frac{d^2\Gamma}{dxdy} = \left(\frac{d^2\Gamma}{dxdy}\right)_0 (1 + \delta(x, y))$$

Husek, Kampf and Novotny

Parameterization introduced in MC to improve agreement with data.

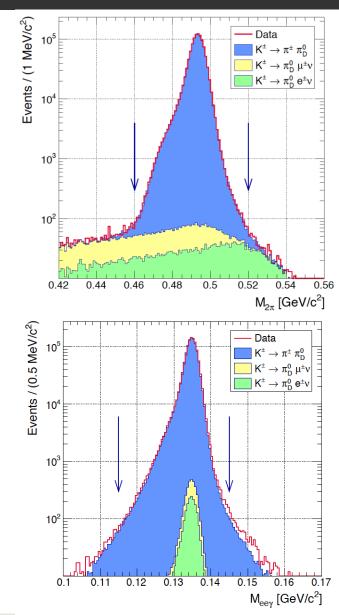
Simulation includes emission of radiative photons

NA62-RK π^0_D selection

 $\square \text{ Source } \mathsf{K}^{\pm} \rightarrow \Box^{\pm} \Box^{0} \text{ and } \mathsf{K}^{\pm} \rightarrow \Box^{0} \mu^{\pm} \dot{\mathsf{K}}^{\pm}$

 \blacklozenge Tag the π^0 and select its Dalits decay

Main selection cuts:

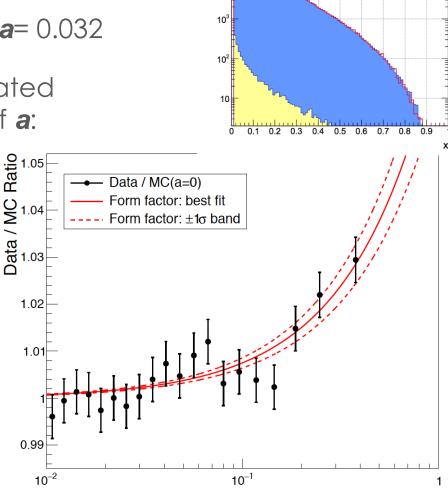

Three good track candidates

- One good gamma candidate
- Reconstructed e⁺e⁻γ invariant mass region: 115MeV/c²<M_{eeγ}<145MeV/c²
- Reconstructed $\Box^+\Box^0$ invariant mass region: 465 MeV/c² < M $_{\Box^+\Box 0}$ < 510 MeV/c²

Reconstructed Dalitz variable : 0.01<x<1</p>

Selected data sample NA62-RK 2007:

• $1.05 \times 10^6 \pi_D^0$ candidates


FF slope fit measurement

- Split the reconstructed Dalitz x data into 20 equi-populated bins
- Compare data with MC TFF slope a= 0.032
- Re-weight MC events to get simulated distributions with different values of *a*:

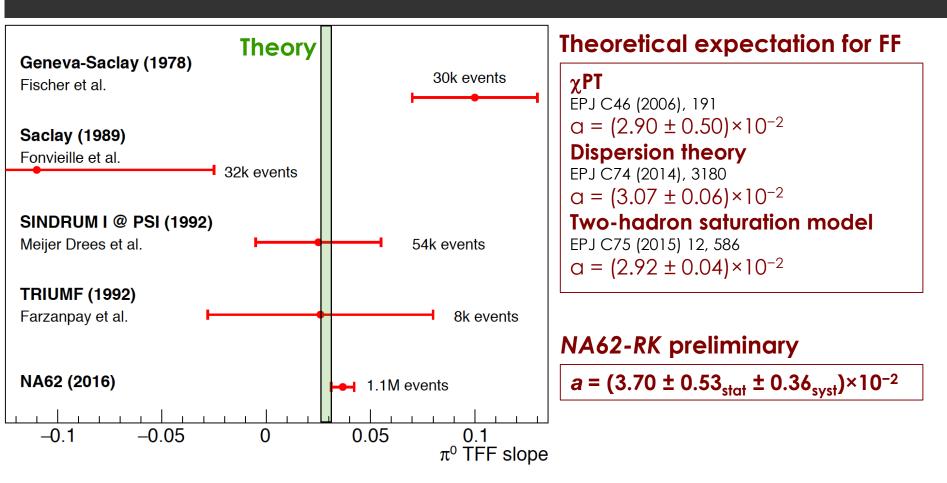
$$w(a) = \frac{(1+a x_{tr})^2}{(1+a_{sim} x_{tr})^2},$$

D Perform χ^2 test to extract best **a**

NA62-RK preliminary fit result: $a = (3.70 \pm 0.53_{stat} \pm 0.36_{syst}) \times 10^{-2}$ $\chi^2/d.o.f = 52.5/49$

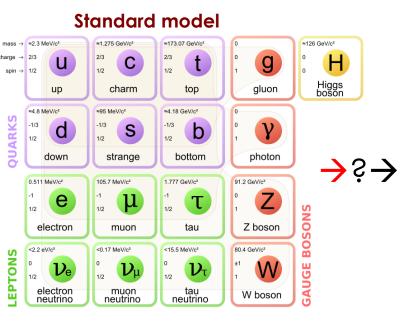
Events / 0.0

10⁵

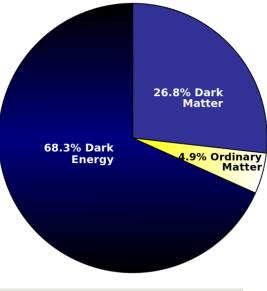

NA62

Preliminary

Data


 $\mathsf{K}^{\pm}
ightarrow \pi^{\pm} \pi^{0}_{\mathsf{D}}$ $\mathsf{K}^{\pm}
ightarrow \pi^{0}_{\mathsf{D}} \mu^{\pm} \nu$

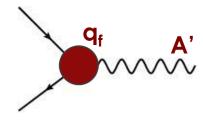
Comparison with other experiments


The NA62 preliminary measurement is the most precise FF measurement to-date Final result and paper to come soon!

What is the universe made of?

???Dark Sector??? h' Dark fermions? χ Z'

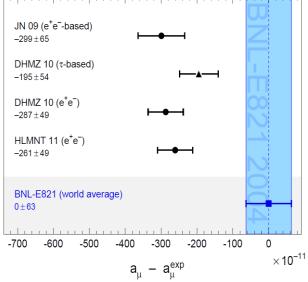
- Standard model only includes <20% of the matter in the universe</p>
 - We only know dark matter interacts gravitationally
- Many open questions
 - What is dark Matter made of?
 - How dark matter interact, if it does, with SM particles?
 - Does one or more new dark force exist?
 - How complex is the dark sector spectrum?

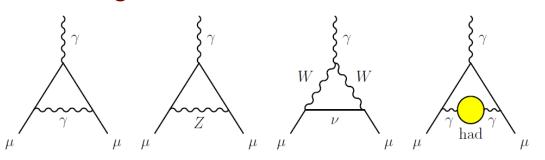


Simplest dark photon model

- The simplest hidden sector model just introduces one extra U(1) gauge symmetry and a corresponding gauge boson: the "dark photon" or A' boson.
- The coupling constant and the charges can be generated effectively through the kinetic mixing between the QED and the new U(1) gauge bosons

- In this **case the new coupling constant = e** is just proportional to electric charge and it is equal for both quarks and leptons.
- As in QED, this will generate new interactions with SM fermions of type:

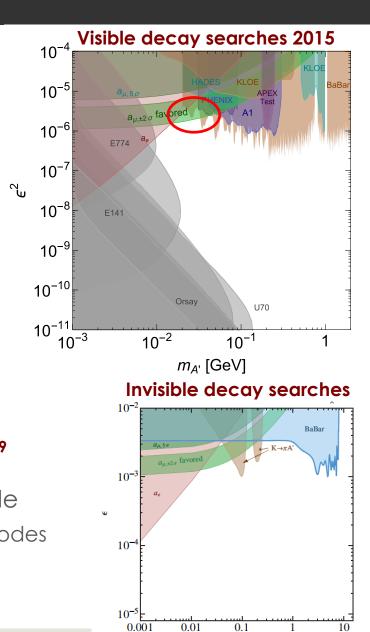

$$\mathcal{L} \sim g' q_f \bar{\psi}_f \gamma^\mu \psi_f U'_\mu$$


- Not all the SM particles need to be charged under this new symmetry
- In the most general case q_f is different in between leptons and quarks and can even be 0 for quarks. P. Fayet, Phys. Lett. B 675, 267 (2009)

B. Holdom Phys.Lett. B166 (1986) 196

Dark photon and g-2 $_{\mu}$

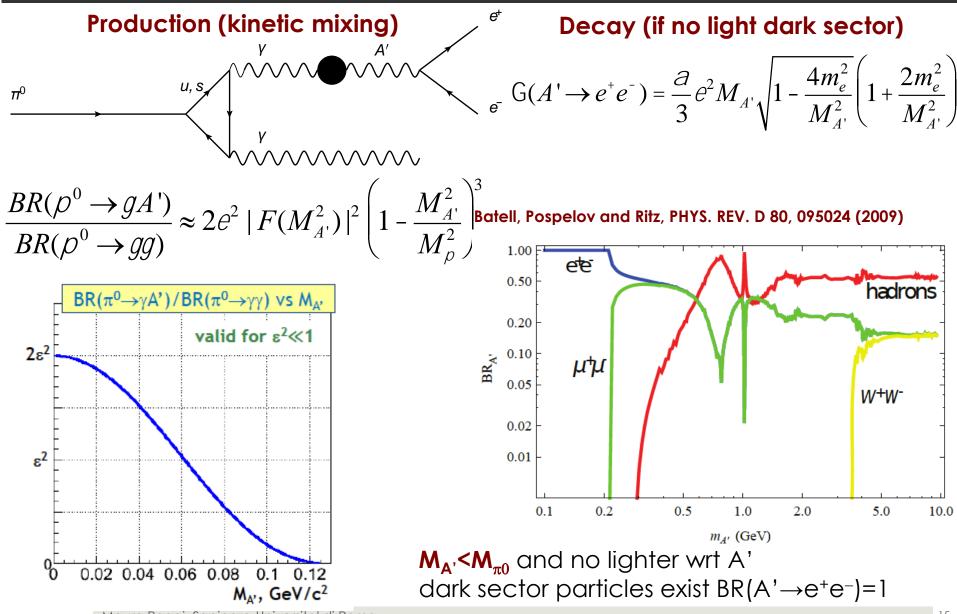
g-2 in the standard model



About 3s discrepancy between theory and experiment. Could be due to hadronic uncertainties on the Light by Light scattering?

10^{-1} g-2 and A' Excluded by $\Delta Br_{K to \pi ee} < 3.10$ κ^2 Additional diagram with dark 10 <6.10⁻⁹ photon exchange can fix the discrepancy! (with sub GeV A' masses 🙂) 10^{-5} Can be Ц probed by search of resonances |muon g-2|<2 σ A' M. Pospelov 10 MeV 500 MeV 100 MeV Phys.Rev. D80 (2009) 095002 m_{V}

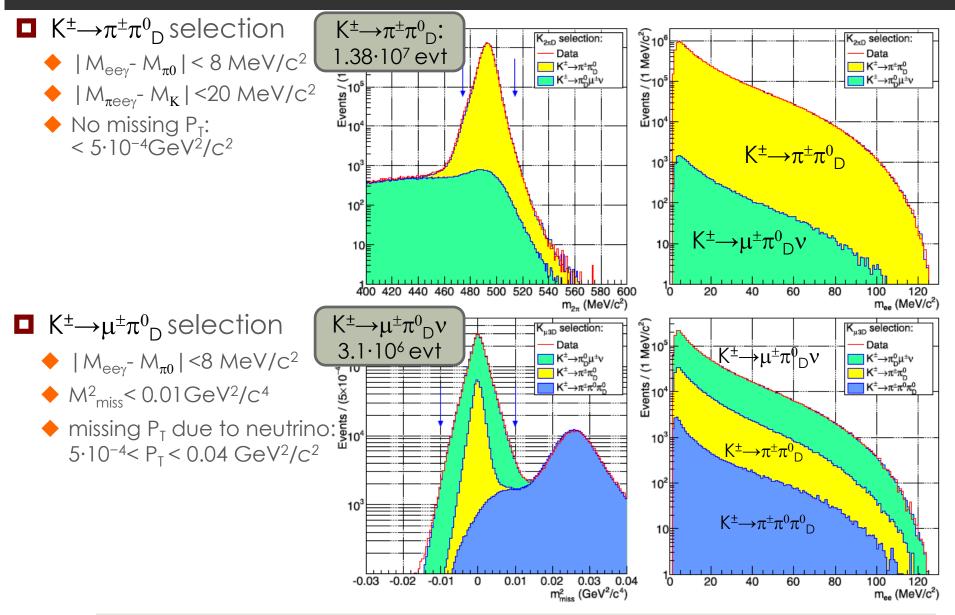
Dark photon searches status


- Visible decays: A' \rightarrow ee, $\mu\mu$, $\pi\pi$,
 - Kinetic mixed dark photons simplest model
- Favored parameters values explaining muon g-2 (green band)
 - A'-boson light 10-100 MeV
- Status of dark photon searches
 - Beam dump experiments (grey)
 - Fixed target (Apex, A1)
 - Mesons decays (Babar, KLOE, Wasa)
- Theoretical exclusion from g_e -2 g_{μ} -2
 - Fight limit form α_{EM} (red filled area) PhysRevD.86.095029
- Much less constraints on "Invisible" decay mode
 - If $M_{\chi} < M_{A'}/2$, $A' \rightarrow \chi \chi$, ϵ^2 suppression to all visible modes
 - No assumption on α_{D} and no kinetic mixing

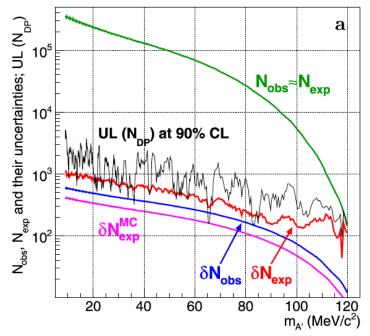
 $m_{A'}$ [GeV]

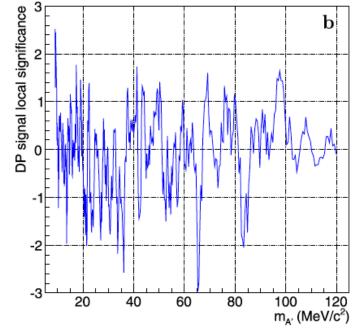
Mauro Raggi, Sapienza Universita' di Roma

Dark photon in π^0 decays



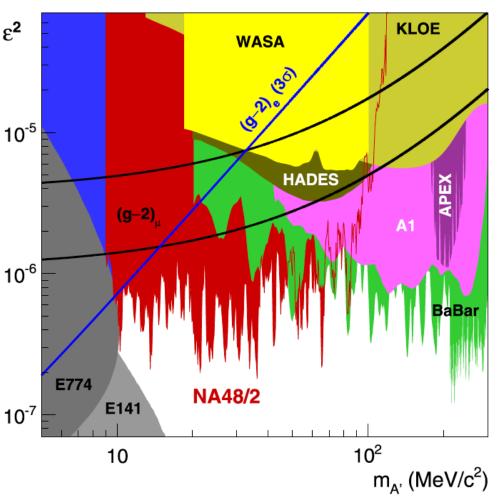
NA48/2 data sample


- Number of kaon decays in NA48/2 ('03/'04): $N_{K} \approx 2 \cdot 10^{11}$
 - 5 10¹⁰ π^0 tagged decays from $K^{\pm} \rightarrow \pi^{\pm} \pi^0$ and $K^{\pm} \rightarrow \pi^0 \mu^{\pm} \nu$ decays
- **D** Exclusive search for the **decay chain** $\pi^0 \rightarrow \gamma A'$, $A' \rightarrow e^+e^-$
 - Search for a narrow peak in the e^+e^- invariant mass.
 - High efficiency trigger chain for 3-track vertices throughout all the data taking
 - Very good spectrometer mass resolution: $\sigma_{Mee} \approx 0.012 \text{ x } M_{ee}$
- DP final state $\pi^0 \rightarrow \gamma A'$, $A' \rightarrow e^+e^-$ identical to $\pi^0_D \rightarrow \gamma e^+e^-$;
 - Main background is $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}_{D}$: BR(K_{2pD})=2.4 \] 10⁻³
 - Sensitivity is limited by the irreducible K_{2pD} background.
- Signal acceptance:
 - depending on $M_{A'}$ from 4.5% down to 0.5% for high values $M_{A'}$.


■ A total of ~1.7x10⁷ candidates collected during 2003-04 data taking

Data sample: $K_{2\pi D} + K_{\mu 3D}$ selection

Statistical significance

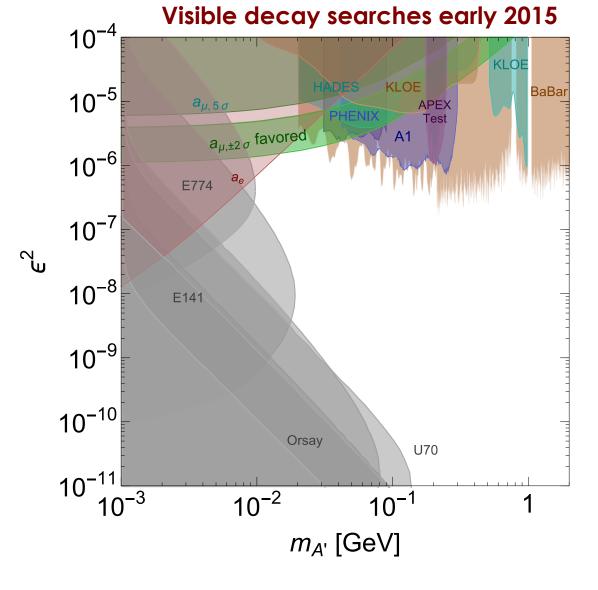


Scanned DP mass range: 9 MeV/c²<M_{DP}<120 MeV/c².

- Variable DP mass step: $\Box 1.5 \Box (M_{A'})$.
- DP search window: $\Box 0.5 \Box (M_{A'})$
- 404 DP mass hypothesis tested
- Confidence intervals for $N_{A'}$ are computed from:
 - \mathbb{N}_{exp} , \mathbb{N}_{obs} and $\mathbb{D}\mathbb{N}_{obs}$, $\mathbb{D}\mathbb{N}_{exp}$ in the signal mass window
 - Frequentist confidence intervals Rolke-Lopez method.
- Local significance never exceeds 3 (: no dark Photon signal observed Mauro Raggi, Sapienza Universita' di Roma

NA48/2 DP exclusion limit

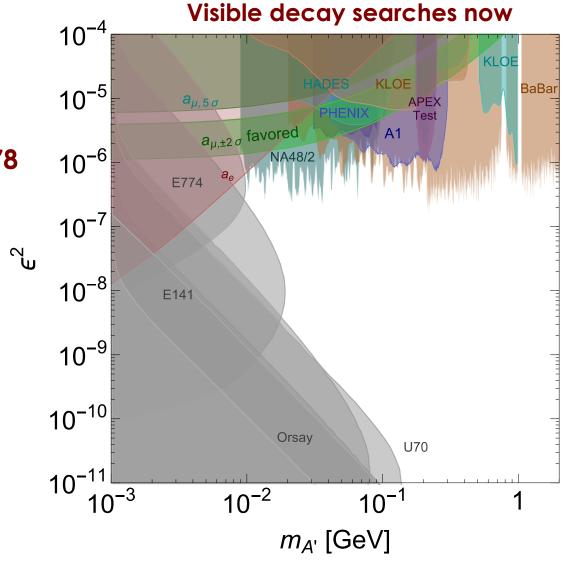
DP exclusion summary Final result: PLB746 (2015) 178

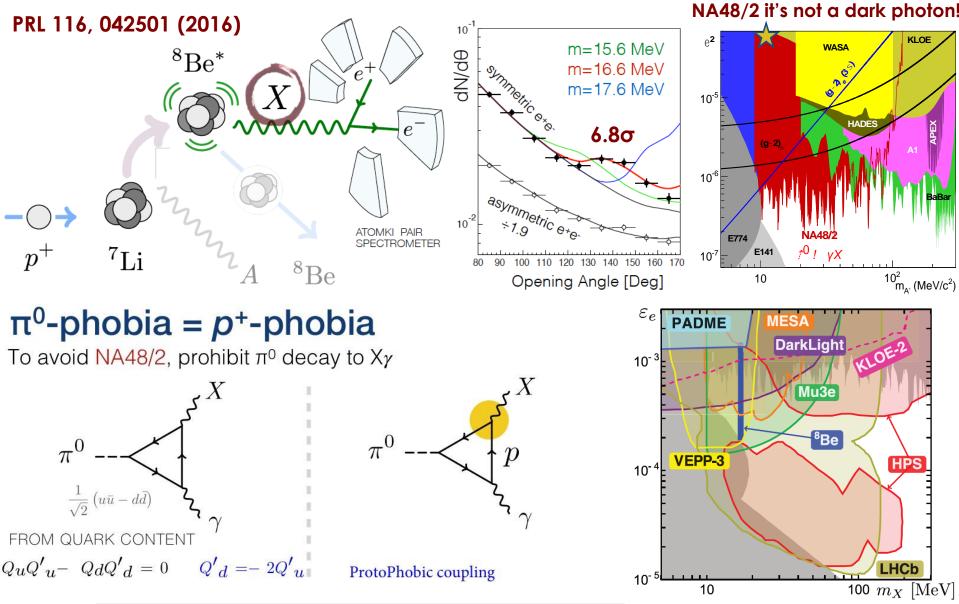

Improvement of the existing limits in the range 9-70 MeV/c^2 .

If **DP** couples to SM through kinetic mixing and decays only to SM fermions, it is ruled out as the explanation for anomalous (g-2)µ.

Sensitivity limited by irreducible \Box_D^0 background: upper limit on \Box^2 scales as $\sim (1/N_K)^{1/2}$, modest improvement with larger data samples.

Impact of NA48/2 measurement


Favored region (g-2)µ still available in the low mass region.


Impact of NA48/2 measurement

Favored region (g-2)µ completely excluded by NA48/2 measurement!

Final result: **PLB746 (2015) 178**

The Be⁸ anomaly and the proto-phobic fifth force

Conclusions

D NA62-RK performed the most precise measurement of the π^0 TFF

- $a = (3.70 \pm 0.53_{stat} \pm 0.36_{syst}) \times 10^{-2}$ PRELIMINARY
- Can be used to reduced uncertainties in the light by light scattering contribution to the (g-2)μ
- Final results and paper in preparation

■ NA48/2 set a limit on the dark photon searches (PLB746 (2015) 178)

- Improvement of the existing limits for visible decays in the range 9-70 MeV/c².
- Allowed value of ε^2 has been pushed well below 10⁻⁶ at 90% CL

 Assuming kinetic mixing and dark photon decaying to lepton pairs only the whole favored by (g-2)μ region has been excluded

Several new physics models constrained by the NA48/2 measurement