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The bad: CP-violating decays like                    where short-  
and long-distance (LD) effects come in equal measure 
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 0 | The wild west of kaon physics

KL ! 3⇡The ugly: non-leptonic decays e.g.              and  KS ! ⇡⇡

h⇡⇡|Qi|Ki
Dominated by long-distance contributions       require  
non-perturbative methods to determine e.g.  

)

[See talks by Buras (large Nc) & Sachrajda / Feng / Garron (lattice) ]

Necessary to make sense of long-standing puzzles like the  
ΔI=1/2 rule (assumed to be exact for purposes of this talk)
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h⇡⇡|Qi|Ki
Dominated by long-distance contributions       require  
non-perturbative methods to determine e.g.  

)

[See talks by Buras (large Nc) & Sachrajda / Feng / Garron (lattice) ]

In between the trio are decays where separation of SD and LD effects  
can be achieved with varying degree of success

A systematic analysis is possible within 3-flavour       : 

A =
�
ALO +ANLO +ANNLO + . . .

 
�PT3

�PT [Status reviewed by  
Cirigliano et al. (12)]

Expansion in powers of                 momentum and p = O(mK) mu,d,s = O(m2
K)

Necessary to make sense of long-standing puzzles like the  
ΔI=1/2 rule (assumed to be exact for purposes of this talk)



 1 | Chiral perturbation theory

Two features determine the quality of predictions arising from        : 

1 hadronic uncertainties      low-energy constants (LECs), e.g. Fπ ,
not fixed by chiral symmetry, so need data or lattice to pin down

�PT3

• leptonic and semi-leptonic kaon decays 

• non-leptonic and weak radiative decays

😃

😰

[See Peter Stoffer’s talk]

non-pert. methods based on unitarity,  
analyticity, and crossing symmetry 

2 chiral expansion poorly convergent above ππ threshold [Meißner (91)]

) final-state ππ interactions (FSI) important

π

π

π

π

= . . .

⌧chiral perturbative 
methods

[Truong (84 & 88)]

https://indico.cern.ch/event/440244/contributions/2275293/attachments/1337161/2011915/Kl4_Stoffer.pdf
http://inspirehep.net/record/200624
http://inspirehep.net/record/254957
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 2 | Dispersion relations demystified

Dispersion relations address      &      in model-independent framework1 2

F (s) =
1

2⇡i

I

C
dz

F (z)

z � s
=

1

⇡

Z ⇤2

sth

dz
ImF (z)

z � s� i✏
+

1

2⇡i

I

|z|=⇤2

dz
F (z)

z � s

How?  Consider e.g. some form factor

F (z) =

8
<

:

real z < sth
branch cut z > sth

analytic for complex z

9
=

;

Cauchy theorem then gives:

If boundary terms vanishes for            get unsubtracted dispersion rel. ⇤ ! 1

F (s) =
1

⇡

Z 1

sth

dz
ImF (z)

z � s
)

can reconstruct real part if  
imaginary part known  
(usually from unitarity)



 0 | Motivation

This talk: dispersive treatment of                transitionsKS ! ��⇤

determine impact of FSI on predictions from LO χPT3)

1

BR(KS ! ��)�PT3 = 2.0⇥ 10�6 [D’Ambrosio & Espriu (86); Goity (87)]

vs.

BR(KS ! ��)
expt

= (2.63± 0.17)⇥ 10�6

for both photons on-shell compare

�(KS ! �`+`�)

�(KS ! ��)

����
�PT3

=

⇢
1.6⇥ 10�2 (` = e)
3.8⇥ 10�4 (` = µ)

2 the chiral predictions for the leptonic modes [Ecker, Pich & de Rafael (88)]

have not yet been tested by experiment but may lie within the  
projected sensitivity                       of KLOE-2 (or LHCb?)BR(KS) ⇠ 10�9
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Hw

KS

γ∗

A��⇤(s, t, u)A��⇤(m2
K , q22)

s = (q1 + q2)
2

t = (k � q1)
2

u = (k � q2)
2

=)

Promote           kinematic variable “s” and construct dispersion relation?

 3 | Dispersive framework for  

Key idea: let weak Hamiltonian      inject momentum in          Hw

[Büchler et al. (01)]

KS ! ��⇤

Problem: kinematics completely fixed in two-body decay amplitudes 

m2
K !

1 # ways to go off-shell          arbitrariness       ) 1 [Büchler et al. (01)]

NB.  Physical decay amplitude recovered in limit h ! 0

A(KS ! ⇡⇡)
��
�PT3

= {LECs}⇥ (s�m2
⇡)e.g.

h

k
q1

q2

h��⇤|Hw|KSi

Mandelstam  
variables

http://arxiv.org/abs/hep-ph/0102287


 3 | Dispersive framework for  KS ! ��⇤

Several steps & ingredients needed to construct the dispersion relations:

1 tensor decomposition into basis free from kin. zeros and singularities

Aµ⌫(k, q1, q2) = gµ⌫A1 +
3X

i,j=1

qiµqj⌫A
ij
2

e’mag Ward identities + suitable linear combos

Aµ⌫(k, q1, q2) =
3X

i=1

T i
µ⌫ Bi(s, t, u, q

2
2))

[Bardeen & Tung (71); Tarrach (75);  
Colangelo et al. (14 & 15)]

free from kinematic  
zeros and singularities

Determination of scalar functions      
completely fixes prediction for 

Bi

KS ! ��⇤

The cookbook

)

http://inspirehep.net/record/55944
http://inspirehep.net/record/98459
http://arxiv.org/abs/1402.7081


 3 | Dispersive framework for  KS ! ��⇤

2 first intermediate state due to ππ      unitarity relation 

Aππ W ∗

µν

k

h

q1, µ

q2, ν

discs Aµ⌫ =

Z
d{phase}⇥A⇡⇡ ⇥W ⇤

µ⌫

)

A complete dispersive treatment of              analysis of all possible,
states ππ, 4π, KK,... in all three channels s,t,u

KS ! ��⇤

This is hard     simplify and neglect contributions to discontinuities           
                     coming from D-waves and higher

)

discs B1(s, q
2
2) = {phase space}⇥A⇡⇡(s)⇥

✓
h0
++(s, q

2
2)

s� q22

◆⇤

Dominant effect from FSI expected in S-wave      integration is simple:)



 3 | Dispersive framework for  KS ! ��⇤

3 need input for subprocesses               and  KS ! ⇡⇡ ��(⇤) ! ⇡⇡

KS ! ⇡⇡

A⇡⇡(s, t
0, u0) = h(⇡⇡)I=0|Hw|KSi

= M0(s) + C(s, t0, u0)

use dispersive representation of Büchler et al. (01)

π

Hw

KS

π

• convergence       two subtraction constants       &       required) a⇡⇡ b⇡⇡

• FSI fully accounted for in terms of Omnès factors such as

not fixed by data or lattice

angular dep.

scattering  
phase shift

⌦

I
` (s) = exp

 
s

⇡

Z 1

4m2
⇡

dz
�I` (z)

z(z � s� i✏)

!

http://arxiv.org/abs/hep-ph/0102287


•           coupled-channel 
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b⇡⇡ =
3a⇡⇡(1 +X)

m2
K �m2

⇡(4 + 3X)
+O(m4

K)

• match to χPT3 at soft-pion point            to eliminate      :p⇡ ! 0 b⇡⇡

parametrises effects  
from O(p6): X=±0.3

) A⇡⇡(s) ' a⇡⇡
⇥
1 + E(X)s/m2

K

⇤
⌦0

0(s)

fix by matching to  
physical K→ππ amp

��(⇤) ! ⇡⇡ for helicity PW use data from two dispersive analyses

h0
++(s)

⇢
�� ! ⇡⇡
�� ! KK

�
[Garcia-Martin &  
Moussallam (10)]

•                single-channel h0
++(s, q

2
2) [Moussallam (13)]

http://arxiv.org/abs/1006.5373


 4 | Dispersion relations for KS ! ��

Dispersive

PDG average

�PT3

1.0 1.1 1.2 1.3 1.4
0

1.×10-9

2.×10-9

3.×10-9

4.×10-9

5.×10-9Cutoff dependence?

Putting everything together and defining                         gives  
once-subtracted dispersion relation:                       

A��(s) ⌘ e2B1(s)

A��(s) = a�� +
s� s0

⇡

Z 1

4m2
⇡

dz
Ims A��(z)

(z � s0)(z � s� i✏)

fix by matching to χPT3  
at chiral zero s0=-0.098 GeV2

Range of validity on            
for                      UV cutoff

h0
++(s)

s . 2 GeV2 )

Dependence is very mild so 
take Λ=1.2 GeV as benchmark



Physical point

�PT3
Dispersive
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At physical point             the effects  
from FSI distort the amplitude

Results

 4 | Dispersion relations for KS ! ��

SM in much better  
agreement with experiment:

)

s = m2
K

ReA�� enhanced

ImA�� suppressed

[confirms obs.  
of Kambor &  
Holstein (94)]

enhanced prediction for rate:)
BRdisp

�� = (2.34± 0.26)⇥ 10�6

uncertainty from  
X=±0.3 & Omnès input

BRexpt

�� = (2.63± 0.17)⇥ 10�6

http://arxiv.org/abs/hep-ph/9310324


 5 | Dispersion relations for KS ! �`+`�

Now allow one γ to be off-shell.  Define                                   and  
consider once-subtracted dispersion relation at s0=0: 

A��⇤(s, q22) ⌘ e2B1(s, q
2
2)

A��⇤(s, q22) = a��⇤(q22) +
s

⇡

Z 1

4m2
⇡

dz
discs A��⇤(z, q22)

z(z � s� i✏)
fix by matching  
to χPT3 at s0=0

New feature: in addition to FSI get effects from pion vector form factor

= +
FV
⇡ (q22)

Cutoff dependence? q22=0

q22=3m�
2

q22=9m�
2

0.8 0.9 1.0 1.1 1.2
0.00

0.02

0.04

0.06

Comparison of            and  h0
++(s) h0

++(s, q
2
2 = 0)

) range of validity s . 0.8 GeV2

Taking Λ=1.2 GeV only leads to ≈ 7% shift
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Results

Consider energy dependence for fixed values of γ momentum
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Dispersive

�PT3

�PT3 (F�V�1)

0.00 0.05 0.10 0.15 0.20 0.25
-2.×10-8
-1.5×10-8
-1.×10-8
-5.×10-9

0

5.×10-9
�PT3

�PT3 (F�V�1)

Dispersive

0.05 0.10 0.15 0.20 0.25
0

5.×10-9
1.×10-8
1.5×10-8
2.×10-8
2.5×10-8
3.×10-8

Input BR(KS ! �e+e�) BR(KS ! �µ+µ�
)

�PT3 3.09⇥ 10

�8
7.25⇥ 10

�10

�PT3 (FV
⇡ 6= 1) 3.17⇥ 10

�8
9.97⇥ 10

�10

This work (4.38± 0.33)⇥ 10

�8
(1.45± 0.21)⇥ 10

�9

 5 | Dispersion relations for KS ! �`+`�

Results

Now fix             and vary γ momentum: FF effects large for s = m2
K q22 > 4m2

⇡

Corrections from FSI and FF ⇒ sizeable enhancements in the rates

O(50%) O(100%)



 X | Remarks and future prospects  6 | Summary and future prospects

KS ! �� • FSI significantly distorts the amplitude 
• agreement between SM and experiment is improved

Dispersion relations offer a complementary approach to        and �PT `QCD

8
<

:

unitarity
+

analyticity

9
=

; ) much better control over effects due  
to ππ rescattering in final state (FSI)

For two-body decays, off-shell extrapolations in       are ambiguous   
) let      carry momentum and analyse on-shell amplitudesHw

Aππ W ∗

µν

k

h

q1, µ

q2, ν

ReA�� , ImA��

BRdisp
�� = (2.34± 0.26)⇥ 10�6 BRexp

�� (2.63± 0.17)⇥ 10�6

m2
K



• dominant long-distance contribution  
   to  
• can we expect large corrections to        ? 
!
!
!
• disentangle New Physics at
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KS ! �`+`� • pion vector form factor      additional source of 
enhancement over LO 
!
!
!
!

• effect largest in μμ mode ... within reach of KLOE-2? 

�PT3

)

KS

Hw

ℓ−

ℓ+

In progress: extend dispersive framework to KS ! �⇤�⇤

BR�PT3

µ+µ� = 5.1⇥ 10�12 BRLHCb
µ+µ� < 6.9(5.8)⇥ 10�9

[Isidori & Unterdorfer (03)]

Input BR(KS ! �e+e�) BR(KS ! �µ+µ�
)

�PT3 3.09⇥ 10

�8
7.25⇥ 10

�10

�PT3 (FV
⇡ 6= 1) 3.17⇥ 10

�8
9.97⇥ 10

�10

This work (4.38± 0.33)⇥ 10

�8
(1.45± 0.21)⇥ 10

�9

KS ! `+`�

�PT3

BRNP
µµ & 10�11?

vs. [See talk by  
Ramos Pernas]

http://arxiv.org/abs/hep-ph/0311084
https://indico.cern.ch/event/440244/contributions/2274015/attachments/1336667/2010887/Miguel_Ramos-KAON2016.pdf


Back up slides



 B1 | What happened to the weak mass term?

In principle, chiral and CPS symmetry permits an octet operator        
to be present in the effective theory; e.g. at         one has

L�PT3

weak � Tr�6�i7(gMMU† + ḡMUM†)

O(p2) [Bernard et al. (85)]

Qmw

Tadpole cancellation              completely removed by chiral rotation) Qmw

[Crewther (86)]U ! Ũ = RUL† , hŨivac = I

• vacuum alignment can be extended to 

• remains valid when      carries momentum (chiral symmetry local)  

O(p4) [Kambor et al. (90)]

Hw

Conclude that        has no effect on chiral low-energy theorems, esp.

b⇡⇡ =
3a⇡⇡(1 +X)

m2
K �m2

⇡(4 + 3X)
+O(m4

K)

Qmw

http://inspirehep.net/record/222116
http://inspirehep.net/record/214356
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 B2 | Omnès factors and inelasticities

Phases of     and       have to match 
in order for  

⌦0
0 h0

++

ImA�� 2 R

True in elastic region (Watson thm) 
but how does phase behave  
at             ?s > 4m2

K

�0
0(s) =

⇢
�00(s) , s  s⇡
�00(s)� ⇡ , s > s⇡

Define phase with “dip” behaviour:

 0
0(s) = arg h0

0,++(s)

Comparison against “non-dip” phase

then estimates systematic uncertainty


