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_ m m mw CD
Als = dvir) ~ —E X + —S In —Z ), + 222\,
miy miy M, miy

and hadronic matrix element involves single operator

The bad: CP-violating decays like K; — 7¢™¢~ where short-
and long-distance (LD) effects come in equal measure

0

A(Kp, — 70 e) ‘CPV—ind

= eA(Kg — 700t 0) e
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In between the trio are decays where separation of SD and LD effects
can be achieved with varying degree of success

[Status reviewed by

A systematic analysis is possible within 3-flavour xPT: Cirigliano et al. (12)]

A= {Avo + Axro + Annro + - - - }XPT3

Expansion in powers of p = O(m ) momentum and Muy.d,s = O(m%()



1 | Chiral perturbation theory

Two features determine the quality of predictions arising from yPT:

o hadronic uncertainties < low-energy constants (LECs), e.g. Fy

not fixed by chiral symmetry, so need data or lattice to pin down
e leptonic and semi-leptonic kaon decays [See Peter Stoffer's talk]

e non-leptonic and weak radiative decays

e chiral expansion poorly convergent above mtrt threshold [Meitner (91)]

= final-state mtw interactions (FSI) important  [Truong (84 & 88)]

R e ore:

chiral perturbative < non-pert. methods based on unitarity,
methods analyticity, and crossing symmetry



https://indico.cern.ch/event/440244/contributions/2275293/attachments/1337161/2011915/Kl4_Stoffer.pdf
http://inspirehep.net/record/200624
http://inspirehep.net/record/254957

2 | Dispersion relations demystified

Dispersion relations address o & 9 in model-independent framework

Im z
A

How? Consider e.g. some form factor

S
real z < sy \ A2

F(z) = branch cut z > sy f———> Rez

analytic for complex z

Cauchy theorem then gives:

F(s) — Ljész(z) _ l/SAQ g mEE) 1 A_AQ 2 F()

271 2 — 8 T 2 — 8 — 1€ 271 2 — 8

If boundary terms vanishes for A — oo get unsubtracted dispersion rel.

can reconstruct real part if

1 [ ImF(z
F(s) = —/ dz ) = imaginary part known
T Js,, Z—S

(usually from unitarity)



3 | Dispersive framework for Kg — "

This talk: dispersive treatment of Kg — v~ transitions

= determine impact of FSI on predictions from LO xPTs

o for both photons on-shell compare

BR(KS — ’Y’Y)XPTg — 2.0 X 1()_6 [D'Ambrosio & Espriu (86); Goity (87)]

VS.

BR(Ks — ¥Y)expt = (2.63 £0.17) x 107°

9 the chiral predictions for the leptonic modes [Ecker, Pich & de Rafael (88)]

['(Kg — v0T47) [ 1.6x1077 (£ =¢e)
I'(Kg — vY) 3.8 x 1074 (£ = p)

xPT's

have not yet been tested by experiment but may lie within the
projected sensitivity BR(Kg) ~ 107° of KLOE-2 (or LHCb?)



3 | Dispersive framework for Kg — "

Problem: kinematics completely fixed in two-body decay amplitudes

Promote m?% — kinematic variable “s” and construct dispersion relation?

= {LECs} x (s —m?2)

T

e.g. A(Kg — 7T7T)‘XPT3

oo # ways to go off-shell = oo arbitrariness [Biichler et al. (01)]

Key idea: let weak Hamiltonian H,, inject momentum in (v7*|H,|Ks)
[Biichler et al. (01)]

o Kg Y Mandelstam
variables
KS — o
h” v s =(q1 + q2)
q- * .&/ K . - 2
Ay (m%(7 qg) Ay (8,1, 1) u=(k— Q2)2

NB. Physical decay amplitude recovered in limit h — 0


http://arxiv.org/abs/hep-ph/0102287

3 | Dispersive framework for Kg — "

The cookbook

Several steps & ingredients needed to construct the dispersion relations:
o tensor decomposition into basis free from kin. zeros and singularities
3 o .
A,ul/(ka q1, QZ) — g,ul/Al + Z Qi,quVA;J

2,J=1

[Bardeen & Tung (71); Tarrach (75);
Colangelo et al. (14 & 15)]

= A/,LI/ICQ1 QQ Z StugZ)

\ free from kinematic

zeros and singularities

e'mag Ward identities + suitable linear combos

= Determination of scalar functions B;
completely fixes prediction for Kg — v~


http://inspirehep.net/record/55944
http://inspirehep.net/record/98459
http://arxiv.org/abs/1402.7081

3 | Dispersive framework for Kg — "

A complete dispersive treatment of Kg — vv* < analysis of all possible
states tm, 4w, KK,... in all three channels s,t,u

This is hard = simplify and neglect contributions to discontinuities
coming from D-waves and higher

9 first intermediate state due to Tt = unitarity relation

3 @ @ - discs A, = /d{phase} X Anr X WJ,
e >

Dominant effect from FSI expected in S-wave = integration is simple:

hg)i——k(sa qg)>*
S—C_Ig

disc, Bi(s,q3) = {phase space} x A, (s) x (



3 | Dispersive framework for Kg — "

input for subprocesses Kg — 7w and v — 77

use dispersive representation of Biichler et al. (01)

\<:< Aﬂw(s,t/,u/) — <(7T7T)]:0’/Hw‘K5>
L = My(s) + C(s,t',u)
N

angular dep.

e FSI fully accounted for in terms of Omnés factors such as

scattering

Ty h hift
00 I phase shi
Q(s) = exp (S/ dz 0 (2) )
4

m2  2(z — s — i€

e convergence = two subtraction constants a.r & b, required

N/

not fixed by data or lattice


http://arxiv.org/abs/hep-ph/0102287

3 | Dispersive framework for Kg — "

e match to xPT3 at soft-pion point p, — 0 to eliminate b, :

3arr(1+ X)

brr = |
T m2 —m2(4+3X) | |
A parametrises effects

~ from O(p®): X=+0.3

= Anr(8) 2 are |1+ E(X)s/m75|Q(s)

fix by matching to _/‘

physical K—mm amp

vy ) —

for helicity PW use data from two dispersive analyses

Moussallam (10)]

° h3‘+(8) Coupled—channel { ,y/y — T } [Garcia—l\/lartin &

vy — KK

e hl.(s,45) single-channel [Moussallam (13)


http://arxiv.org/abs/1006.5373

4 | Dispersion relations for Kg — v

Putting everything together and defining A (s) = e®B1(s) gives
once-subtracted dispersion relation:

S — Sg /OO 1 Im; A, (2)
4

m2 (2= 80)(z — s — i€)

A (8) = av~ -
'Y'Y( )/ Yy o T
fix by matching to xPT3
at chiral zero sp=-0.098 GeV?

Cutoff dependence? = ST PDG average __
- S T T ——
Range of validity on h9L+(s) O N

— 3.x1077¢

for s <2 GeV? = UV cutoff = xRy
£ 2.x107¢ :
. : 3 : :
Dependence is very mild so T 1.x107} ;
take A=1.2 GeV as benchmark £ ob E
1.0 1.1 1.2 1.3 1.4

Cutoff A [GeV]




4 | Dispersion relations for Kg — v

Results

8. X 10_9 5
6.x1079F
4.x1077}

Dispersive | ]

At physical point s = m?% the effects

from FSI distort the amplitude

2.x 107}

Physical point
\

Re A, (s) [GeV™!]

~2.x 107}

Re A?”Y enhanced [confirms obs.
of Kambor &

Im A~ suppressed Holstein (94)]

_4.x107F

-
— oy
—— -
-
-
[ S

= enhanced prediction for rate:
BROPP = (2.34 £ 0.26) x 107°

uncertainty from /
X=+0.3 & Omnés input

= SM in much better
agreement with experiment:

6.x 1079}

4.x1070}

Im A, (s) [GeV ']

BRI = (2.63 +£0.17) x 107°



http://arxiv.org/abs/hep-ph/9310324

5 | Dispersion relations for g — v/ /¢~

Now allow one v to be off-shell. Define A..-(s,q3) = e*Bi(s,q3) and
consider once-subtracted dispersion relation at sp=0:

s [ discs A~ (2, g3
Ay (s, q3) —CLW*(QS) T _/ dz s Ay -QQ)
T Jam2 2(z — s — 1€)
fix by matching /

to xP T3 at sp=0

New feature: in addition to FSI get effects from pion vector form factor

Cutoff dependence?

e
o
S

Comparison of h3 , (s) and h% , (s,q5 = 0)

<

o

=
—

— range of validity s < 0.8 GeV”
Taking A=1.2 GeV only leads to = 7% shift

Cutoff A [GeV]



5 | Dispersion relations for Kg — v/ /¢~

Results

Consider energy dependence for fixed values of ¥ momentum

1.5% 1078 L

) [GeV ]

1.x 1078}

2
2

5.x 1079}

Re A,«(s,q

_5.x107F

Vs [GeV]

1.5x 1078}
1.x1078}

5.x 1079}

Im A, (s, qg) [GeV_l]

00 01 02 03 04 05 06 0.7

Vs [GeV]
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1 —2.x1079} l ]
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5 | Dispersion relations for Kg — v/ /¢~

Results

Now fix s = m?% and vary Yy momentum: FF effects large for ¢ > 4m?

- 5_)(1()—9:_ """""""""" IS 3.x107%;
| et T s L ] — [
% O- ~"‘~-‘:::—=;‘=ﬁ=============:_I T 25)(].0_8-
O, f\ Z 2.><10‘85—
o =5x 107 e O, L [f
- i 3 1.5x1078}
Y _ -8r NN [
C\lg 1.x10 —— Dispersive %?\ .g 1. X% 10—8 s
< —1.5x1078F | T APTs . ot
- i ] — | & 5.x1077¢f
& | —— xPT3 (FY#1) ] - :
< —2.x10¥%fF B—-r—rm = ] 0t
0.00 0.05 0.10 0.15 0.20 0.25

q; [GeV?]

Corrections from FSI| and FF = sizeable enhancements in the rates

Input BR(Kg — veTe™) BR(Kg — yutu™)
YPTs 3.09 x 1078 7.25 x 10710
xPTs (FY #1) 3.17 x 1078 9.97 x 1019
This work (4.38 £0.33) x 1078 (1.45+£0.21) x 107°

O(50%) O(100%)



6 | Summary and future prospects

Dispersion relations offer a complementary approach to xPT and /qcp

-
uiitarity much better control over effects due

™ ing in final state (FSI
analyticity to Tor rescattering in final state (FSI)

For two-body decays, off-shell extrapolations in m?% are ambiguous

— let H carry momentum and analyse on-shell amplitudes

Kgs — vy| e FSlsignificantly distorts the amplitude Re A, < Im A,
e agreement between SM and experiment is improved

>©< BRgi,ySp — (2.34 T 0.26) X 10_6 BRi};p(Q.GS 0.17) X 10_6




6 | Summary and future prospects

Kg — Wg—l—g—

O~

e pion vector form factor = additional source of
enhancement over LO yPT3

Input BR(Kg — veTe™) BR(Kg — yutu™)
yPT5 3.09 x 1078 7.25 x 10710
xPTs (FY #1) 3.17 x 1078 9.97 x 10710
This work (4.38 £0.33) x 1078 (1.45£0.21) x 107Y

o effect largest in pyu mode ... within reach of KLOE-27

In progress: extend dispersive framework to Kg — 4™+~

to Kg — a/

e dominant long-distance contribution Ks -
Hy o~ g 2 : /an

e can we expect large corrections to xP 13?7

BRY, ' =51x107" vs. BRUHP <6.9(5.8) x 1070 @™

pt Ramos Pernas]

o disentangle New Physics at BRSE > 10~11? [Isidori & Unterdorfer (03)]


http://arxiv.org/abs/hep-ph/0311084
https://indico.cern.ch/event/440244/contributions/2274015/attachments/1336667/2010887/Miguel_Ramos-KAON2016.pdf

Back up slides



Bl | What happened to the weak mass term?

In principle, chiral and CPS symmetry permits an octet operator Qv
to be present in the effective theory; e.g. at O(p?) one has [Bernard et al. (85)]

LX003 D Trag_sr (g MU + gasUMT)

weak

Tadpole cancellation = Qmw completely removed by chiral rotation

~

U—U=RULT, (U)vae = I [Crewther (86)]

e vacuum alignment can be extended to O(p*) [Kambor et al. (90)]
e remains valid when H,, carries momentum (chiral symmetry local)

Conclude that Qmw has no effect on chiral low-energy theorems, esp.

n_ 3amr(1+ X)
" mi —m2(4+ 3X)

- O(m)


http://inspirehep.net/record/222116
http://inspirehep.net/record/214356

B2 | Omneés factors and inelasticities

Phases of ) and A7 , have to match
in order for Im A, € R

True in elastic region (Watson thm)
but how does phase behave
at s > 4m3%7?

Define phase with “dip” behaviour:

8(5):{ 60 (s), s < sqg

S > S

Comparison against “non-dip” phase
o(s) = arghg 4 (s)

then estimates systematic uncertainty

P

——————————
-
-,




