Dispersive Treatment of

 $K_{S} \rightarrow \gamma \gamma$ and $K_{S} \rightarrow \gamma^{++}$
Lewis C. Tunstall

In collaboration with Gilberto Colangelo and Ramon Stucki [and with assistance from Bachir Moussaillam (Orsay)]

Albert Einstein Centre for Fundamental Physics Institute for Theoretical Physics
University of Bern
KAON 2016 // Birmingham // 14 ${ }^{\text {th }}-17^{\text {th }}$ September $/ / 2016$

0 | The wild west of kaon physics

Our ability to obtain precise SM predictions for kaon decays can be (very roughly) classified as follows:

0 | The wild west of kaon physics

Our ability to obtain precise SM predictions for kaon decays can be (very roughly) classified as follows:

The good: "golden modes" like $K \rightarrow \pi \nu \nu$ where dominant effect is short-distance (SD)

$$
A(s \rightarrow d \nu \bar{\nu}) \sim \frac{m_{t}^{2}}{m_{W}^{2}} \lambda_{t}+\frac{m_{c}^{2}}{m_{W}^{2}} \ln \frac{m_{W}}{m_{c}} \lambda_{c}+\frac{\Lambda_{\mathrm{QCD}}^{2}}{m_{W}^{2}} \lambda_{u}
$$

and hadronic matrix element involves single operator

0 | The wild west of kaon physics

Our ability to obtain precise SM predictions for kaon decays can be (very roughly) classified as follows:

The good: "golden modes" like $K \rightarrow \pi \nu \nu$ where dominant effect is short-distance (SD)

$$
A(s \rightarrow d \nu \bar{\nu}) \sim \frac{m_{t}^{2}}{m_{W}^{2}} \lambda_{t}+\frac{m_{c}^{2}}{m_{W}^{2}} \ln \frac{m_{W}}{m_{c}} \lambda_{c}+\frac{\Lambda_{\mathrm{QCD}}^{2}}{m_{W}^{2}} \lambda_{u}
$$

and hadronic matrix element involves single operator
The bad: CP-violating decays like $K_{L} \rightarrow \pi^{0} \ell^{+} \ell^{-}$where shortand long-distance (LD) effects come in equal measure

$$
\begin{aligned}
& \left.A\left(K_{L} \rightarrow \pi^{0} \ell^{+} \ell^{-}\right)\right|_{\mathrm{CPV}-\mathrm{ind}} \\
& =\epsilon A\left(K_{S} \rightarrow \pi^{0} \ell^{+} \ell^{-}\right)
\end{aligned}
$$

0 | The wild west of kaon physics

The ugly: non-leptonic decays e.g. $K_{S} \rightarrow \pi \pi$ and $K_{L} \rightarrow 3 \pi$
Dominated by long-distance contributions \Rightarrow require non-perturbative methods to determine e.g. $\langle\pi \pi| Q_{i}|K\rangle$
[See talks by Buras (large N_{c}) \& Sachrajda / Feng / Garron (lattice)]
Necessary to make sense of long-standing puzzles like the $\Delta I=1 / 2$ rule (assumed to be exact for purposes of this talk)

0 | The wild west of kaon physics

The ugly: non-leptonic decays e.g. $K_{S} \rightarrow \pi \pi$ and $K_{L} \rightarrow 3 \pi$ Dominated by long-distance contributions \Rightarrow require non-perturbative methods to determine e.g. $\langle\pi \pi| Q_{i}|K\rangle$
[See talks by Buras (large N_{c}) \& Sachrajda / Feng / Garron (lattice)]

Necessary to make sense of long-standing puzzles like the $\Delta I=1 / 2$ rule (assumed to be exact for purposes of this talk)

In between the trio are decays where separation of SD and LD effects can be achieved with varying degree of success

A systematic analysis is possible within 3-flavour $\chi \mathrm{PT}: \quad \begin{gathered}{[S t a t u s ~ r e v i e w e d ~ b y ~} \\ \text { Cirigliano et al. (12)] }\end{gathered}$

$$
\mathcal{A}=\left\{\mathcal{A}_{\mathrm{LO}}+\mathcal{A}_{\mathrm{NLO}}+\mathcal{A}_{\mathrm{NNLO}}+\ldots\right\}_{\chi \mathrm{PT}_{3}}
$$

Expansion in powers of $p=O\left(m_{K}\right)$ momentum and $m_{u, d, s}=O\left(m_{K}^{2}\right)$

1 | Chiral perturbation theory

Two features determine the quality of predictions arising from $\chi \mathrm{PT}_{3}$:
(1) hadronic uncertainties \Leftrightarrow low-energy constants (LECs), e.g. F_{π} not fixed by chiral symmetry, so need data or lattice to pin down

- leptonic and semi-leptonic kaon decays (:) [See Peter Stoffer's talk]
- non-leptonic and weak radiative decays

2 chiral expansion poorly convergent above $\pi \pi$ threshold [Meißner (91)] \Rightarrow final-state $\pi \pi$ interactions (FSI) important $\quad[T r u o n g ~(84 \& 88)]$

chiral perturbative methods
non-pert. methods based on unitarity, analyticity, and crossing symmetry

2 | Dispersion relations demystified

Dispersion relations address (1) \& 2 in model-independent framework

How? Consider e.g. some form factor

$$
F(z)=\left\{\begin{array}{c}
\text { real } z<s_{\text {th }} \\
\text { branch cut } z>s_{\text {th }} \\
\text { analytic for complex } z
\end{array}\right\}
$$

Cauchy theorem then gives:

$$
F(s)=\frac{1}{2 \pi i} \oint_{\mathcal{C}} d z \frac{F(z)}{z-s}=\frac{1}{\pi} \int_{s_{\mathrm{th}}}^{\Lambda^{2}} d z \frac{\operatorname{Im} F(z)}{z-s-i \epsilon}+\frac{1}{2 \pi i} \oint_{|z|=\Lambda^{2}} d z \frac{F(z)}{z-s}
$$

If boundary terms vanishes for $\Lambda \rightarrow \infty$ get unsubtracted dispersion rel.

$$
F(s)=\frac{1}{\pi} \int_{s_{\mathrm{th}}}^{\infty} d z \frac{\operatorname{Im} F(z)}{z-s} \Rightarrow
$$

can reconstruct real part if imaginary part known (usually from unitarity)

3 | Dispersive framework for $K_{S} \rightarrow \gamma \gamma^{*}$

This talk: dispersive treatment of $K_{S} \rightarrow \gamma \gamma^{*}$ transitions
\Rightarrow determine impact of FSI on predictions from $\mathrm{LO}_{\chi} \mathrm{PT}_{3}$
(1) for both photons on-shell compare
$\mathrm{BR}\left(K_{S} \rightarrow \gamma \gamma\right)_{\chi \mathrm{PT}_{3}}=2.0 \times 10^{-6}$
[D'Ambrosio \& Espriu (86); Goity (87)]
vS.
$\mathrm{BR}\left(K_{S} \rightarrow \gamma \gamma\right)_{\text {expt }}=(2.63 \pm 0.17) \times 10^{-6}$

2 the chiral predictions for the leptonic modes [Ecker, Pich \& de Rafael (88)]

$$
\left.\frac{\Gamma\left(K_{S} \rightarrow \gamma \ell^{+} \ell^{-}\right)}{\Gamma\left(K_{S} \rightarrow \gamma \gamma\right)}\right|_{\chi \mathrm{PT}_{3}}= \begin{cases}1.6 \times 10^{-2} & (\ell=e) \\ 3.8 \times 10^{-4} & (\ell=\mu)\end{cases}
$$

have not yet been tested by experiment but may lie within the projected sensitivity $\mathrm{BR}\left(K_{S}\right) \sim 10^{-9}$ of KLOE-2 (or LHCb?)

3 | Dispersive framework for $K_{S} \rightarrow \gamma \gamma^{*}$

Problem: kinematics completely fixed in two-body decay amplitudes Promote $m_{K}^{2} \rightarrow$ kinematic variable "s" and construct dispersion relation?

$$
\text { e.g. }\left.\quad A\left(K_{S} \rightarrow \pi \pi\right)\right|_{\chi \mathrm{PT}_{3}}=\{\mathrm{LECs}\} \times\left(s-m_{\pi}^{2}\right)
$$

∞ \# ways to go off-shell $\Rightarrow \infty$ arbitrariness [Büchler et al. (01)]
Key idea: let weak Hamiltonian \mathcal{H}_{w} inject momentum in $\left\langle\gamma \gamma^{*}\right| \mathcal{H}_{w}\left|K_{S}\right\rangle$ [Büchler et al. (01)]

NB. Physical decay amplitude recovered in limit $h \rightarrow 0$

3 | Dispersive framework for $K_{S} \rightarrow \gamma \gamma^{*}$

The cookbook

Several steps \& ingredients needed to construct the dispersion relations:
1 tensor decomposition into basis free from kin. zeros and singularities

$$
A_{\mu \nu}\left(k, q_{1}, q_{2}\right)=g_{\mu \nu} A_{1}+\sum_{i, j=1}^{3} q_{i \mu} q_{j \nu} A_{2}^{i j}
$$

e'mag Ward identities + suitable linear combos ${ }^{[B a r d e e n ~ \& ~ T u n g ~(ㅍ ㅣ) ; ~ T a r r a c h ~(75) ; ~}$
Colangelo et al. ($14 \& \underline{15}$)]

$$
\Rightarrow \quad A_{\mu \nu}\left(k, q_{1}, q_{2}\right)=\sum_{i=1}^{3} T_{\mu \nu}^{i} B_{i}\left(s, t, u, q_{2}^{2}\right)
$$

free from kinematic zeros and singularities
$\Rightarrow \quad$ Determination of scalar functions B_{i} completely fixes prediction for $K_{S} \rightarrow \gamma \gamma^{*}$

3 | Dispersive framework for $K_{S} \rightarrow \gamma \gamma^{*}$

A complete dispersive treatment of $K_{S} \rightarrow \gamma \gamma^{*} \Leftrightarrow$ analysis of all possible states $\pi \pi, 4 \pi, \mathrm{KK}, \ldots$ in all three channels $\mathrm{s}, \mathrm{t}, \mathrm{u}$

This is hard \Rightarrow simplify and neglect contributions to discontinuities coming from D-waves and higher
(2) first intermediate state due to $\pi \pi \Rightarrow$ unitarity relation

$$
\operatorname{disc}_{s} A_{\mu \nu}=\int d\{\text { phase }\} \times A_{\pi \pi} \times W_{\mu \nu}^{*}
$$

Dominant effect from FSI expected in S-wave \Rightarrow integration is simple:

$$
\operatorname{disc}_{s} B_{1}\left(s, q_{2}^{2}\right)=\{\text { phase space }\} \times A_{\pi \pi}(s) \times\left(\frac{h_{++}^{0}\left(s, q_{2}^{2}\right)}{s-q_{2}^{2}}\right)^{*}
$$

3 | Dispersive framework for $K_{S} \rightarrow \gamma \gamma^{*}$

(3) need input for subprocesses $K_{S} \rightarrow \pi \pi$ and $\gamma \gamma^{(*)} \rightarrow \pi \pi$
$K_{S} \rightarrow \pi \pi \quad$ use dispersive representation of Büchler et al. (01)

$$
\begin{aligned}
A_{\pi \pi}\left(s, t^{\prime}, u^{\prime}\right) & =\left\langle(\pi \pi)_{I=0}\right| \mathcal{H}_{w}\left|K_{S}\right\rangle \\
& =M_{0}(s)+C\left(s, t^{\prime}, u^{\prime}\right)
\end{aligned}
$$

angular dep.

- FSI fully accounted for in terms of Omnès factors such as

$$
\Omega_{\ell}^{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} d z \frac{\delta_{\ell}^{I}(z)}{z(z-s-i \epsilon)}\right)
$$

- convergence \Rightarrow two subtraction constants $a_{\pi \pi} \& b_{\pi \pi}$ required

3 | Dispersive framework for $K_{S} \rightarrow \gamma \gamma^{*}$

- match to XPT_{3} at soft-pion point $p_{\pi} \rightarrow 0$ to eliminate $b_{\pi \pi}$:

$$
b_{\pi \pi}=\frac{3 a_{\pi \pi}(1+X)}{m_{K}^{2}-m_{\pi}^{2}(4+3 X)}+O\left(m_{K}^{4}\right)
$$

$$
\Rightarrow \quad A_{\pi \pi}(s) \simeq a_{\pi \pi}\left[1+E(X) s / m_{K}^{2}\right] \Omega_{0}^{0}(s)
$$

fix by matching to

physical $\mathrm{K} \rightarrow \pi \pi$ amp
$\gamma \gamma^{(*)} \rightarrow \pi \pi \quad$ for helicity PW use data from two dispersive analyses

- $h_{++}^{0}(s)$ coupled-channel $\left\{\begin{array}{c}\gamma \gamma \rightarrow \pi \pi \\ \gamma \gamma \rightarrow K K\end{array}\right\} \quad \begin{aligned} & \text { [Garcia-Martin \& } \\ & \text { Moussallam (10)] }\end{aligned}$
- $h_{++}^{0}\left(s, q_{2}^{2}\right)$ single-channel [Moussallam (13)]

4 | Dispersion relations for $K_{S} \rightarrow \gamma \gamma$

Putting everything together and defining $A_{\gamma \gamma}(s) \equiv e^{2} B_{1}(s)$ gives once-subtracted dispersion relation:

$$
A_{\gamma \gamma}(s)=a_{\gamma \gamma}+\frac{s-s_{0}}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} d z \frac{\operatorname{Im}_{s} A_{\gamma \gamma}(z)}{\left(z-s_{0}\right)(z-s-i \epsilon)}
$$

fix by matching to $\chi_{P T_{3}}$
at chiral zero $\mathrm{s}_{0}=-0.098 \mathrm{GeV}^{2}$

Cutoff dependence?

Range of validity on $h_{++}^{0}(s)$ for $s \lesssim 2 \mathrm{GeV}^{2} \Rightarrow$ UV cutoff

Dependence is very mild so take $\Lambda=1.2 \mathrm{GeV}$ as benchmark

4 | Dispersion relations for $K_{S} \rightarrow \gamma \gamma$

Results

At physical point $s=m_{K}^{2}$ the effects from FSI distort the amplitude
$\operatorname{Re} A_{\gamma \gamma}$ enhanced
$\operatorname{Im} A_{\gamma \gamma}$ suppressed
[confirms obs. of Kambor \&
Holstein (94)]
\Rightarrow enhanced prediction for rate: $\mathrm{BR}_{\gamma \gamma}^{\text {disp }}=(2.34 \pm 0.26) \times 10^{-6}$
uncertainty from $X= \pm 0.3$ \& Omnès input
$\Rightarrow \mathrm{SM}$ in much better agreement with experiment:

$$
\mathrm{BR}_{\gamma \gamma}^{\text {expt }}=(2.63 \pm 0.17) \times 10^{-6}
$$

5 | Dispersion relations for $K_{S} \rightarrow \gamma \ell^{+} \ell^{-}$

Now allow one γ to be off-shell. Define $A_{\gamma \gamma^{*}}\left(s, q_{2}^{2}\right) \equiv e^{2} B_{1}\left(s, q_{2}^{2}\right)$ and consider once-subtracted dispersion relation at $\mathrm{s}_{0}=0$:

$$
\begin{aligned}
& \qquad A_{\gamma \gamma^{*}}\left(s, q_{2}^{2}\right)=a_{\gamma \gamma^{*}}\left(q_{2}^{2}\right)+\frac{s}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} d z \frac{\operatorname{disc}_{s} A_{\gamma \gamma^{*}}\left(z, q_{2}^{2}\right)}{z(z-s-i \epsilon)} \\
& \text { fix by matching } \\
& \text { to } \chi \mathrm{XP}_{3} \text { at } \mathrm{s}_{0}=0
\end{aligned}
$$

New feature: in addition to FSI get effects from pion vector form factor

Cutoff dependence?

Comparison of $h_{++}^{0}(s)$ and $h_{++}^{0}\left(s, q_{2}^{2}=0\right)$ \Rightarrow range of validity $s \lesssim 0.8 \mathrm{GeV}^{2}$

Taking $\Lambda=1.2 \mathrm{GeV}$ only leads to $\approx 7 \%$ shift

5 | Dispersion relations for $K_{S} \rightarrow \gamma \ell^{+} \ell^{-}$

Results

Consider energy dependence for fixed values of γ momentum

5 | Dispersion relations for $K_{S} \rightarrow \gamma \ell^{+} \ell^{-}$

Results

Consider energy dependence for fixed values of γ momentum

5 | Dispersion relations for $K_{S} \rightarrow \gamma \ell^{+} \ell^{-}$

Results

Consider energy dependence for fixed values of γ momentum

5 | Dispersion relations for $K_{S} \rightarrow \gamma \ell^{+} \ell^{-}$

Results

Now fix $s=m_{K}^{2}$ and vary γ momentum: FF effects large for $q_{2}^{2}>4 m_{\pi}^{2}$

Corrections from FSI and $\mathrm{FF} \Rightarrow$ sizeable enhancements in the rates

Input	$\mathrm{BR}\left(K_{S} \rightarrow \gamma e^{+} e^{-}\right)$	$\mathrm{BR}\left(K_{S} \rightarrow \gamma \mu^{+} \mu^{-}\right)$
$\chi \mathrm{PT}_{3}$	3.09×10^{-8}	7.25×10^{-10}
$\chi \mathrm{PT}_{3}\left(F_{\pi}^{V} \neq 1\right)$	3.17×10^{-8}	9.97×10^{-10}
This work	$(4.38 \pm 0.33) \times 10^{-8}$	$(1.45 \pm 0.21) \times 10^{-9}$
	$O(50 \%)$	$O(100 \%)$

6 | Summary and future prospects

Dispersion relations offer a complementary approach to $\chi \mathrm{PT}$ and ℓ_{QCD}

$$
\left\{\begin{array}{c}
\text { unitarity } \\
+ \\
\text { analyticity }
\end{array}\right\} \Rightarrow \quad \begin{aligned}
& \text { much better control over effects due } \\
& \text { to } \pi \pi \text { rescattering in final state (FSI) }
\end{aligned}
$$

For two-body decays, off-shell extrapolations in m_{K}^{2} are ambiguous \Rightarrow let \mathcal{H}_{w} carry momentum and analyse on-shell amplitudes

$K_{S} \rightarrow \gamma \gamma \quad$ - FSI significantly distorts the amplitude $\operatorname{Re} A_{\gamma \gamma} \Leftrightarrow \operatorname{Im} A_{\gamma \gamma}$

- agreement between SM and experiment is improved

$$
\mathrm{BR}_{\gamma \gamma}^{\text {disp }}=(2.34 \pm 0.26) \times 10^{-6} \quad \mathrm{BR}_{\gamma \gamma}^{\exp }(2.63 \pm 0.17) \times 10^{-6}
$$

6 | Summary and future prospects

$K_{S} \rightarrow \gamma \ell^{+} \ell^{-}$

- pion vector form factor \Rightarrow additional source of enhancement over LO $\chi \mathrm{PT}_{3}$

Input	$\mathrm{BR}\left(K_{S} \rightarrow \gamma e^{+} e^{-}\right)$	$\mathrm{BR}\left(K_{S} \rightarrow \gamma \mu^{+} \mu^{-}\right)$
$\chi \mathrm{PT}_{3}$	3.09×10^{-8}	7.25×10^{-10}
$\chi \mathrm{PT}_{3}\left(F_{\pi}^{V} \neq 1\right)$	3.17×10^{-8}	9.97×10^{-10}
This work	$(4.38 \pm 0.33) \times 10^{-8}$	$(1.45 \pm 0.21) \times 10^{-9}$

- effect largest in $\mu \mu$ mode ... within reach of KLOE-2?

In progress: extend dispersive framework to $K_{S} \rightarrow \gamma^{*} \gamma^{*}$

- dominant long-distance contribution to $K_{S} \rightarrow \ell^{+} \ell^{-}$
- can we expect large corrections to $\chi \mathrm{PT}_{3}$?

$$
\mathrm{BR}_{\mu^{+} \mu^{-}}^{\chi \mathrm{PT}_{3}}=5.1 \times 10^{-12} \quad \text { vs. } \quad \mathrm{BR}_{\mu^{+} \mu^{-}}^{\mathrm{LHCb}}<6.9(5.8) \times 10^{-9} \quad \begin{aligned}
& {[\text { See talk by }} \\
& \text { Ramos Pernas] }]
\end{aligned}
$$

- disentangle New Physics at $\mathrm{BR}_{\mu \mu}^{\mathrm{NP}} \gtrsim 10^{-11}$?

Back up slides

B1 | What happened to the weak mass term?

In principle, chiral and CPS symmetry permits an octet operator $Q_{m w}$ to be present in the effective theory; e.g. at $O\left(p^{2}\right)$ one has [Bernard et al. (85)]

$$
\mathcal{L}_{\text {weak }}^{\chi \mathrm{PT}_{3}} \supset \operatorname{Tr} \lambda_{6-i 7}\left(g_{M} M U^{\dagger}+\bar{g}_{M} U M^{\dagger}\right)
$$

Tadpole cancellation $\Rightarrow Q_{m w}$ completely removed by chiral rotation

$$
U \rightarrow \tilde{U}=R U L^{\dagger}, \quad\langle\tilde{U}\rangle_{\mathrm{vac}}=I
$$

[Crewther (86)]

- vacuum alignment can be extended to $O\left(p^{4}\right)$ [Kambor et al. (90)]
- remains valid when \mathcal{H}_{w} carries momentum (chiral symmetry local)

Conclude that $Q_{m w}$ has no effect on chiral low-energy theorems, esp.

$$
b_{\pi \pi}=\frac{3 a_{\pi \pi}(1+X)}{m_{K}^{2}-m_{\pi}^{2}(4+3 X)}+O\left(m_{K}^{4}\right)
$$

B2 | Omnès factors and inelasticities

Phases of Ω_{0}^{0} and h_{++}^{0} have to match in order for $\operatorname{Im} A_{\gamma \gamma} \in \mathbb{R}$

True in elastic region (Watson thm) but how does phase behave at $s>4 m_{K}^{2}$?

Define phase with "dip" behaviour:

$$
\phi_{0}^{0}(s)= \begin{cases}\delta_{0}^{0}(s), & s \leq s_{\pi} \\ \delta_{0}^{0}(s)-\pi, & s>s_{\pi}\end{cases}
$$

Comparison against "non-dip" phase

$$
\psi_{0}^{0}(s)=\arg h_{0,++}^{0}(s)
$$

then estimates systematic uncertainty

