

Bundesministerium für Bildung und Forschung

Measurement of $K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} e^{+}e^{-}$ with NA48/2 at CERN

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

KAON2016

16.09.2016 Birmingham

$K^{\scriptscriptstyle\pm} \mathop{\boldsymbol{\rightarrow}} \mu^{\scriptscriptstyle\pm} \nu_{\mu} \: e^+ e^-$ / Motivation

- □ One of the interesting modes of radiative semileptonic decays, K[±] → I[±] v₁ I^{'+}I^{'−}
 - ♦ I, I' = e, μ and I = I' or I \neq I'
 - ♦ NA48/2 large data sample
- **\Box** Test of **Ch**iral **P**erturbation **T**heory at $O(p^4)$

$K^{\scriptscriptstyle\pm} \not \rightarrow \mu^{\scriptscriptstyle\pm} \nu_{\mu} \: e^+ e^-$ / Motivation

□ One of the interesting modes of radiative semileptonic decays, K[±] → I[±]v_| I^{'+}I^{'−}

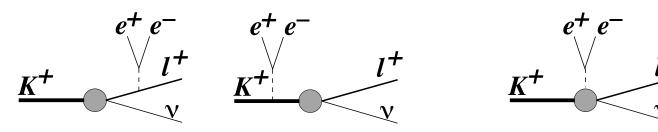
♦ I, I' = e, μ and I = I' or I \neq I'

NA48/2 large data sample

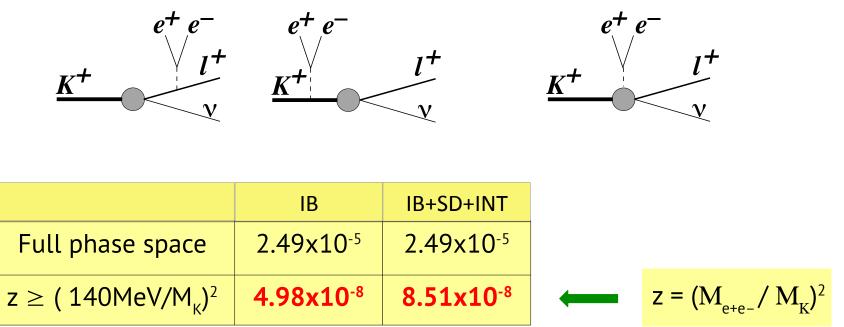
Test of Chiral Perturbation Theory at O(p⁴)
 Effective chiral Lagrangian: L₂ + L₄ + L_{anomaly}
 Unambiguous predictions

 Known low energy constants of chiral expansion

 \Box Theory guide of the NA48/2 study of $K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} e^{+}e^{-}$


Bijnens et al. (1993), Nucl.Phys., B396:81-118
 Implemented in NA48/2 Monte-Carlo simulation program

Theory Predictions for $K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} e^{+}e^{-}$

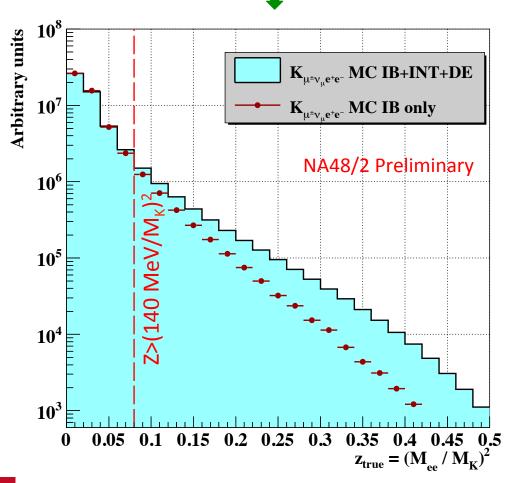

□ Inner Bremsstrahlung (**IB**), Structure Dependent (**SD**) and their interference (**INT**) terms in the decay amplitude

Theory Predictions for $K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} e^{+}e^{-}$

□ Inner Bremsstrahlung (**IB**), Structure Dependent (**SD**) and their interference (**INT**) terms in the decay amplitude

Bijnens et al. (1993), Nucl. Phys., B396:81-118

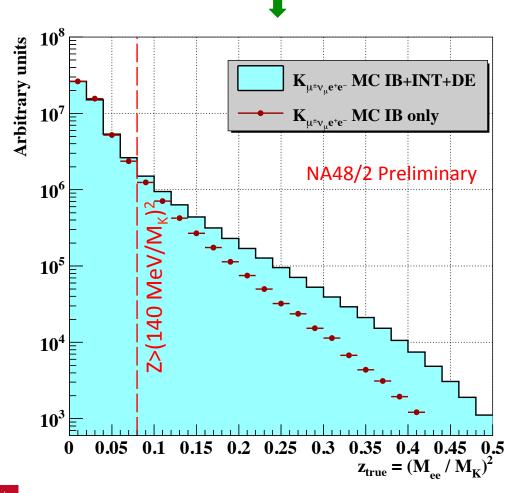
SD + INT (ChPT Form Factors) contribution is ~40% at large z
 Zero at tree level, arises from next-to-leading order loops



MC Simulation of $K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} e^{+}e^{-}$

□ Decay spectrum as a function of $z=(M_{e+e-}/M_K)^2$

◆ MC generator level – no selection criteria applied



MC Simulation of $K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} e^{+}e^{-}$

□ Decay spectrum as a function of $z=(M_{e+e-}/M_K)^2$

MC generator level – no selection criteria applied

JGL

z - most sensitive variable to ChPT FF contribution

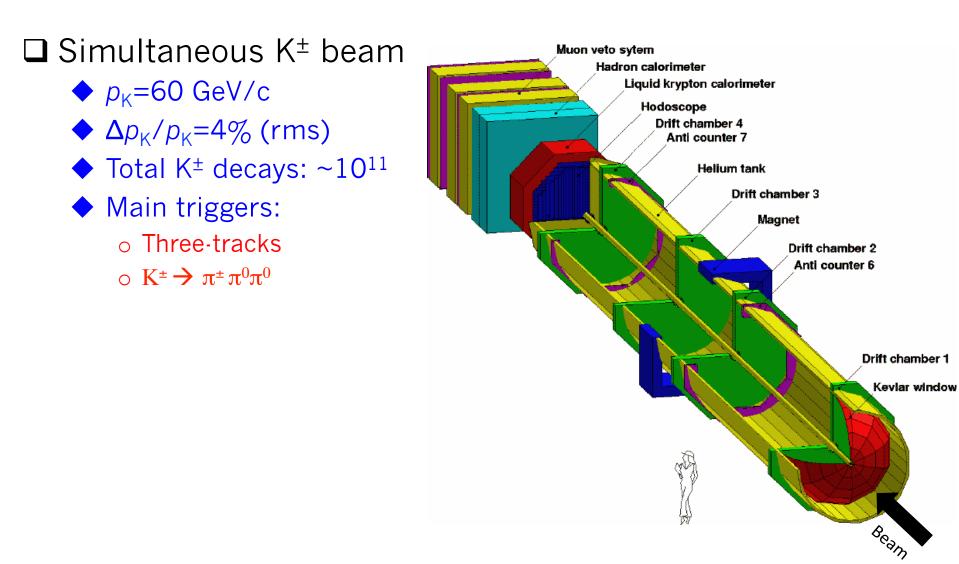
□ Region clean of Dalitz decays $\pi^0 \rightarrow e^+e^-\gamma$ $\blacklozenge M_{e^+e^-} \ge 140 \text{ MeV/c}^2$ $\blacklozenge M_{\pi^\circ} = 135 \text{ MeV/c}^2$

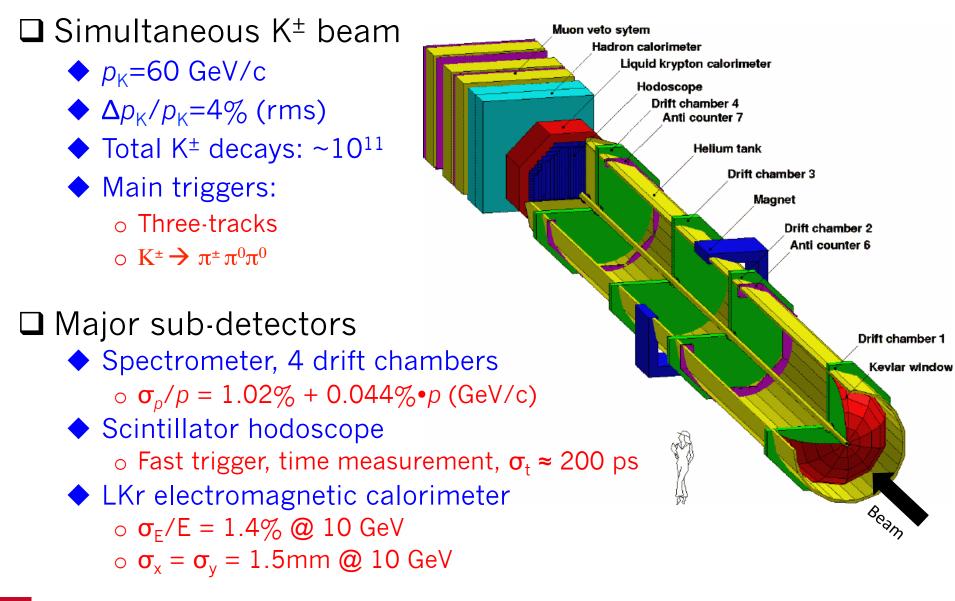
Decays suppressed by	Total branching
phase space	fraction
$K^{\pm} \rightarrow \pi^{\pm}\pi^{0} (\pi^{0} \rightarrow e^{+}e^{-}\gamma)$	3.6x10 ⁻³
$K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} \pi^{0} (\pi^{0} \rightarrow e^{+} e^{-} \gamma)$	5.8x10 ⁻⁴

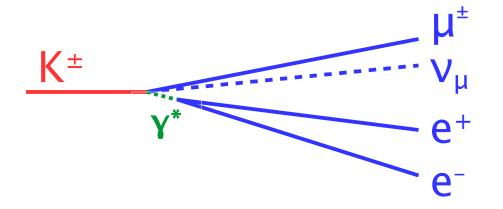
NA48/2 Experiment

□ Fixed-target experiment at CERN North Area

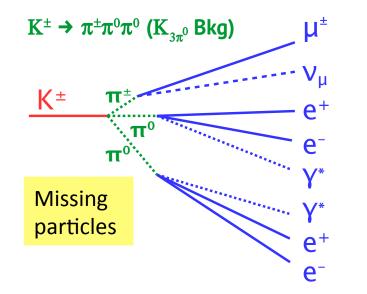
♦ 400 GeV/c proton beam from SPS


History of NA48/NA62 experiments		
97-01	NA48(K _S /K _L)	Re ε'/ε Direct CPV
02	NA48/1 (K _s / hyperons)	Rare K _s and hyperon decays
03 - 04	NA48/2 (K ⁺ / K ⁻)	Direct CPV search in K [±]
07-08	NA62-R _K (K+/ K ⁻)	$R_{K} = K_{e2}^{\pm} / K_{\mu 2}^{\pm}$
15-	NA62 (K ⁺)	$K^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \nu \ \bar{\nu}$

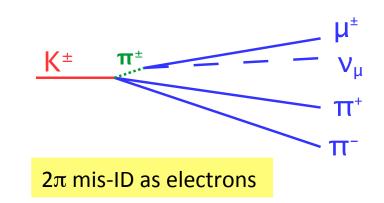

NA48 Detector and Beam


NA48 Detector and Beam

Signal Event Topology

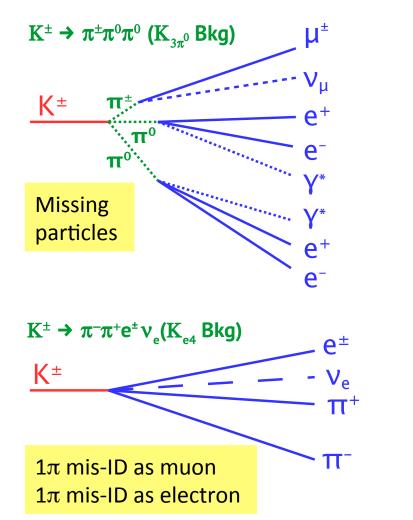


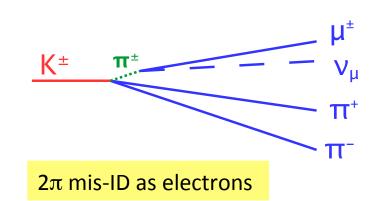
Experimental signature

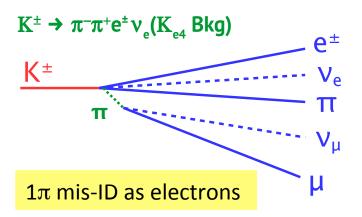

- ♦ 3 charged tracks
- Missing P_T
- No missing mass
- Vertex charge |Q|=1

□ Signal pre-selection cuts

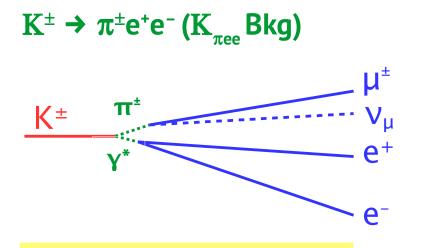
Background Estimation


 $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}(K_{3\pi}Bkg)$



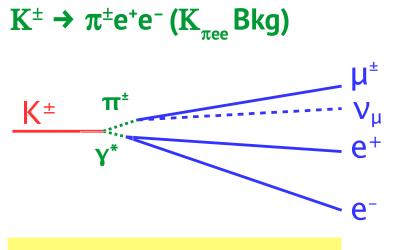

Background Estimation

 $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}(K_{3\pi}Bkg)$



□ Data driven estimate of $K_{3\pi^{\circ}}$, $K_{3\pi}$ and K_{e4} background ◆ Sideband selection with the same sign electrons, $\mu^+e^-e^-$ or $\mu^-e^+e^+$

Further Background Rejection



Exact signal signature

- □ Missing mass ♦ $M_{\mu\nu} = \sqrt{(P_K - P_{ee})^2}$
- $\Box M_{\mu\nu}(K^{\pm} \rightarrow \pi^{\pm} e^{+}e^{-}) \text{ peaks at} M_{\pi^{\pm}} = 140 \text{ MeV/c}^{2}$
- □ MC study of $M_{\mu\nu}$ resolution at $M_{\pi\pm}$: ◆ $\sigma(M_{\mu\nu}) = 10 \text{ MeV/c}^2$

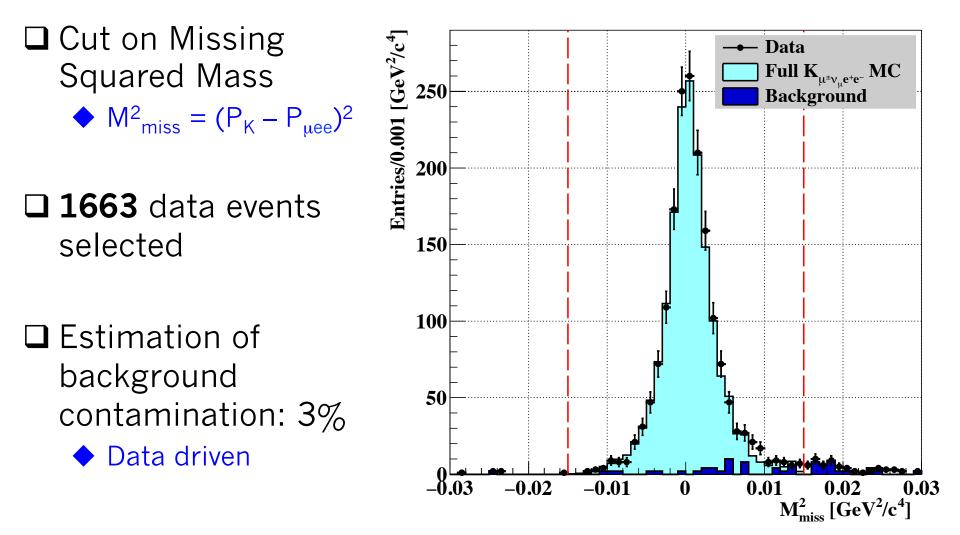
Further Background Rejection

Exact signal signature

- $\Box M_{\mu\nu}(K^{\pm} \rightarrow \pi^{\pm} e^{+}e^{-}) \text{ peaks at} M_{\pi^{\pm}} = 140 \text{ MeV/c}^{2}$

□ MC study of $M_{\mu\nu}$ resolution at $M_{\pi\pm}$: ◆ $\sigma(M_{\mu\nu}) = 10 \text{ MeV/c}^2$

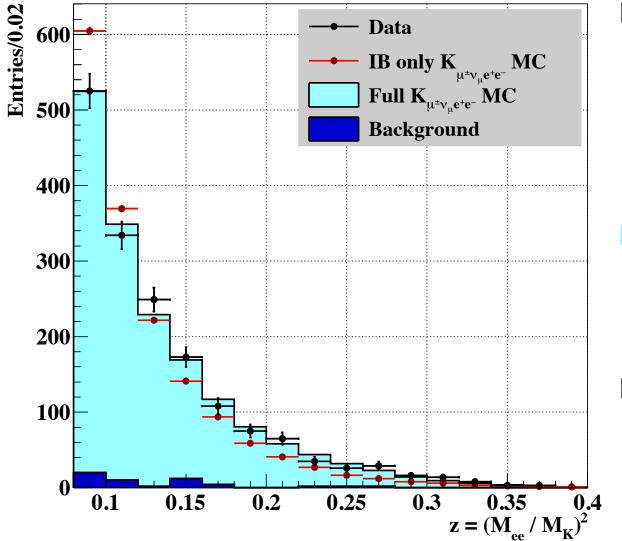
□ Selection cut $M_{\mu\nu}$ >170 MeV/c² (< $M_{\pi\pm}$ > + 3 $\sigma(M_{\mu\nu})$)


Effect:

JGU

- ◆ Signal acceptance reduced by 11%
- Complete rejection of $K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-}$ background (was ~10%)

Final Selection of Signal Events



□ Signal acceptance: 12-14% depending on z

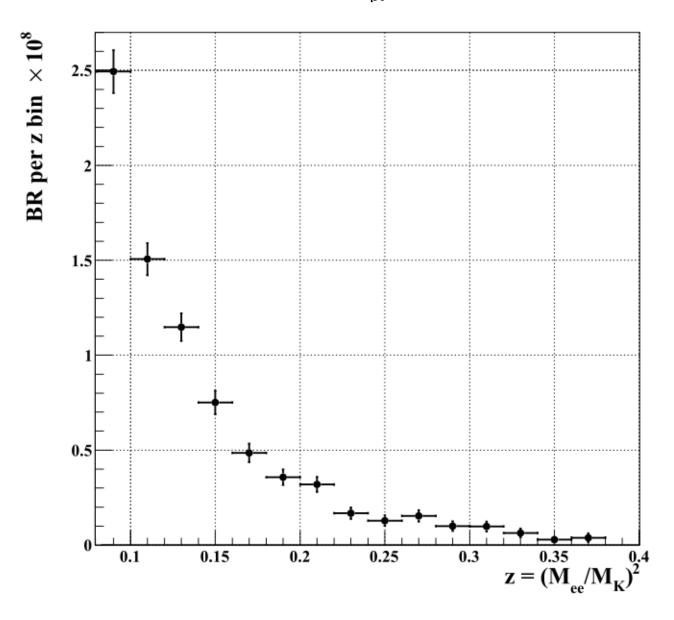
Comparison with ChPT MC Results in Z

Pure IB not matching to the observed zdistribution shape

IB+SD+INT fitting data very well

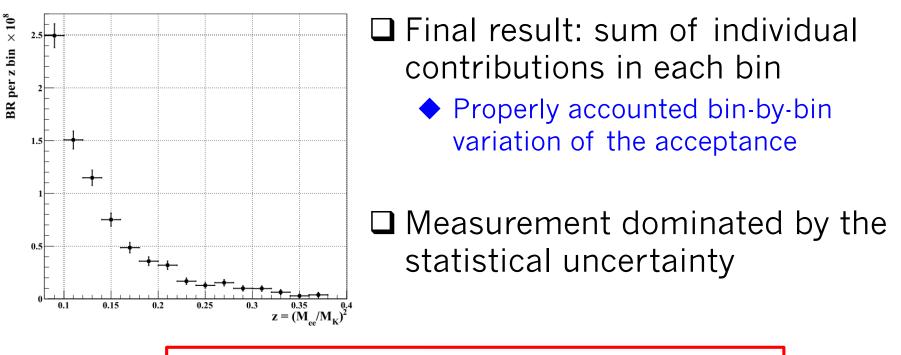
Measurement of the branching fraction for each bin of the zdistribution

K[±] Flux Measurement for Normalization



Normalization Entries/0.2 [MeV/c²] 10⁶ channel: $K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$ 🗕 Data $K_{\pi^{\pm}\pi^{+}\pi^{-}}MC$ Similarities with signal channel, three-tracks Background free 10⁵ selection • Large statistics, $\sim 10^9$ decays **10⁴** \Box K_{3 π} acceptance = $(24.04 \pm 0.01)\%$ 480 485 495 505 490 500 510 $M_{\pi^{\pm}\pi^{+}\pi^{-}}$ [MeV/c²]

Number of K[±] decayed in the fiducial volume
 N_{K±} = (1.56 ± 0.01) × 10¹¹


Results / BR($K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} e^{+}e^{-}$) vs. Z

Results

$$BR(K^{\pm} \to \mu^{\pm} \nu_{\mu} e^{+} e^{-} | M_{ee} \ge 140 M eV/c^{2}) =$$

(7.84 \pm 0.21(stat.) \pm 0.08(syst.) \pm 0.06(ext.)) \times 10^{-8}

Results

$$BR(K^{\pm} \to \mu^{\pm} \nu_{\mu} e^{+} e^{-} | M_{ee} \ge 140 M eV/c^{2}) =$$

(7.84 \pm 0.21(stat.) \pm 0.08(syst.) \pm 0.06(ext.)) \times 10^{-8}

Previous measurements

BR (z \geq (140MeV/M_K)²) = (12.3 ± 3.2)x10⁻⁸ (Diamant-Berger et.al. `76) BR (z \geq (145MeV/M_K)²) = (7.06 ± 0.31)x10⁻⁸ (Poblaguev et.al. `02)

Error Budget

 $BR(K^{\pm} \to \mu^{\pm} \nu_{\mu} e^{+} e^{-} | M_{ee} \ge 140 MeV/c^{2}) =$ (7.84 ± 0.21(stat.) ± 0.08(syst.) ± 0.06(ext.)) × 10⁻⁸

- Main sources of the systematic uncertainty
 - BR(K_{3π})
 - ♦ Radiative corrections
 - Limited statistics of data driven background
 - Trigger efficiency

Uncertainty type	δ BR/BR[x10 ²]
Data statistics	2.54
Normalization channel statistics	0.02
Total statistical	2.54
Rad. corr.	0.70
Background statistics	0.62
Trigger efficiency	0.54
Background systematic	0.30
Muon ID efficiency	0.13
Acc signal statistics	0.12
Electron ID uncertainty	0.04
Acc normalization statistics	0.03
Total systematic	1.15
External uncertainty (Br $K_{_{3\pi}}$)	0.72
Total uncertainty	2.88

Summary

- □ Model independent measurement of the radiative semileptonic decay $K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} e^{+}e^{-}$ using NA48/2 data: ♦ $BR_{exp}(K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} e^{+}e^{-} | z \ge (140 \text{ MeV/M}_{K})^{2}) = (7.84 \pm 0.23) \times 10^{-8}$
- Factor of 3 improved systematic uncertainty wrt to the previous measurements
- □ Factor of 1.5 improved total uncertainty
 - Dominated by the statistical uncertainty
- □ Measurement in good agreement with predictions of Chiral Perturbation Theory at the next-to-leading order
 ◆ BR_{theory}(K[±] → µ[±] v_µ e⁺e⁻ | z≥(140 MeV/M_K)²) = 8.51 x 10⁻⁸

