
Prospects for an experiment to measure ${\sf BR}(K_L \to \pi^0 v \bar{v})$ at the CERN SPS

Matthew Moulson INFN Frascati

For the NA62-KLEVER Project

$K \rightarrow \pi \nu \bar{\nu}$ in the Standard Model

FCNC processes dominated by *Z*-penguin and box amplitudes:

Extremely rare decays with rates very precisely predicted in SM:

- Hard GIM mechanism + pattern of CKM suppression $(V_{ts}^*V_{td})$
- No long-distance contributions from amplitudes with intermediate photons
- Hadronic matrix element obtained from $BR(K_{e3})$ via isospin rotation

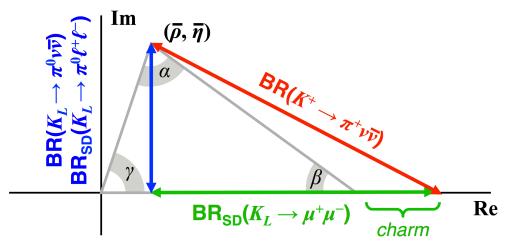
	SM predicted rates Buras et al, JHEP 1511*	Experimental status
$K^+\!\!\to\pi^+ v \overline{v}$	$BR = (8.4 \pm 1.0) \times 10^{-11}$	BR = (17.3 $^{+11.5}_{-10.5}$) × 10 ⁻¹¹ Stopped K^+ , 7 events observed BNL 787/949, PRD79 (2009)
$K_L \! o \pi^0 v \overline{v}$	BR = $(3.4 \pm 0.6) \times 10^{-11}$	BR < 2600 × 10 ⁻¹¹ 90%CL KEK 391a, PRD81 (2010)

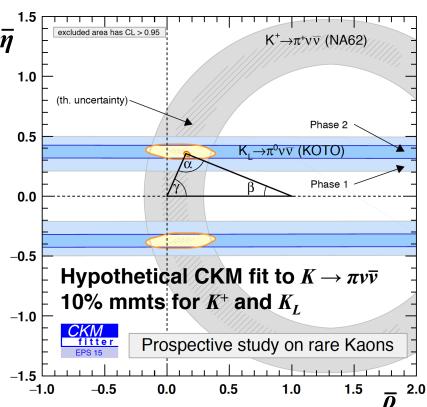
^{*} Tree-level determinations of CKM matrix elements

$K \rightarrow \pi \nu \bar{\nu}$ and the unitarity triangle

Dominant uncertainties for SM BRs are from CKM matrix elements

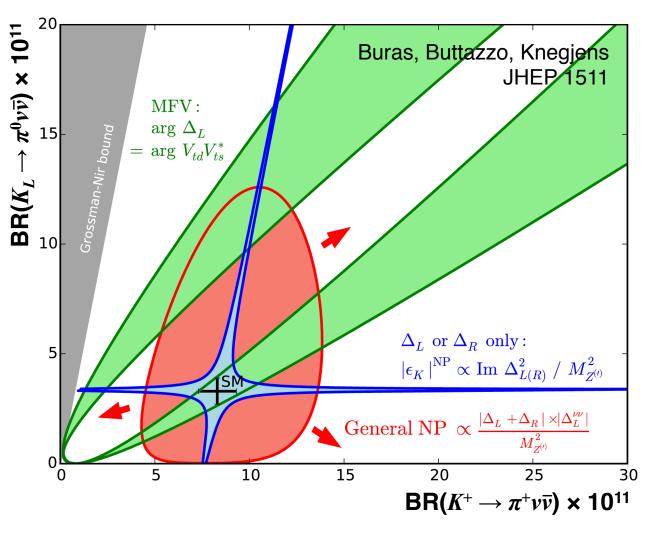
$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = (8.39 \pm 0.30) \times 10^{-11} \cdot \left[\frac{|V_{cb}|}{0.0407} \right]^{2.8} \cdot \left[\frac{\gamma}{73.2^{\circ}} \right]^{0.74}$$


Buras et al., JHEP 1511

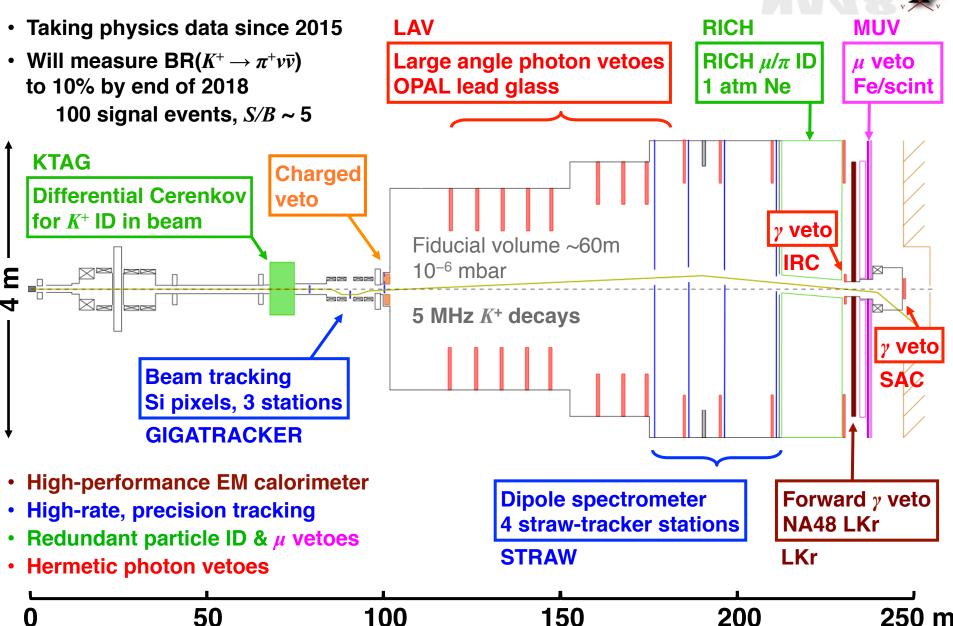

$$BR(K_L \to \pi^0 v \bar{v}) = (3.36 \pm 0.05) \times 10^{-11} \cdot \left[\frac{|V_{ub}|}{3.88 \times 10^{-3}} \right]^2 \cdot \left[\frac{|V_{cb}|}{0.0407} \right]^2 \cdot \left[\frac{\sin \gamma}{\sin 73.2^{\circ}} \right]^2$$

Intrinsic theory uncertainties ~ few percent

Measuring both K^+ and K_L BRs can determine the unitarity triangle independently from B inputs


Overconstrain CKM matrix → reveal NP?

$K \rightarrow \pi \nu \bar{\nu}$ and new physics


New physics affects BRs differently for K^+ and K_L channels Measurements of both can discriminate among NP scenarios

- Models with CKM-like flavor structure
 - -Models with MFV
- Models with new flavorviolating interactions in which either LH or RH couplings dominate
 - −*Z*/*Z*′ models with pure LH/RH couplings
 - Littlest Higgs withT parity
- Models without above constraints
 - -Randall-Sundrum

The NA62 experiment at the SPS

$K_L \to \pi^0 \nu \bar{\nu}$: Experimental considerations

Essential signature: 2γ with unbalanced p_{\perp} + nothing else!

All other K_L decays have ≥ 2 extra γ s or ≥ 2 tracks to veto

Exception: $K_L \rightarrow \gamma \gamma$, but not a big problem since $p_{\perp} = 0$

Generally used to reconstruct vertex position

$$m_{\pi^0}^2 = 2E_1 E_2 (1 - \cos \theta)$$

 $R_1 \approx R_2 \equiv R = \frac{d\sqrt{E_1 E_2}}{m_{\pi^0}}$

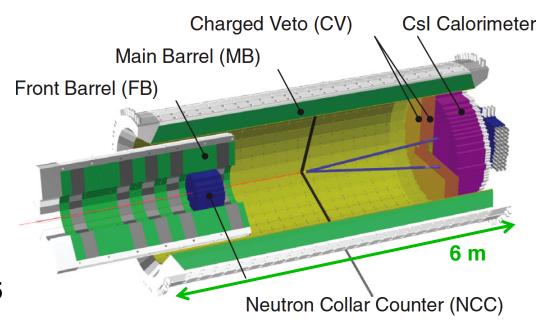
Main backgrounds:

Mode	BR	Methods to suppress/reject
$K_L ightarrow \pi^0 \pi^0$	8.64×10^{-4}	γ vetoes, π^0 vertex, p_\perp
$K_L ightarrow \pi^0 \pi^0 \pi^0$	19.52%	γ vetoes, π^0 vertex, p_\perp
$K_L \to \pi e v(\gamma)$	40.55%	Charged particle vetoes, π ID, γ vetoes
$\Lambda \to \pi^0 n$		Beamline length, p_{\perp}
$n + gas \rightarrow X\pi^0$		High vacuum decay region

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ at J-PARC

Result from 2013 pilot run:

arXiv:1609.03637


Next update expected soon:

 2×10^{18} pot (10% of 2015 data)

SES 5.9 x 10⁻⁹

Reached 42 kW beam power in 2015

- Will gradually increase to 100 kW
- Obtain SM sensitivity by 2019?

Long-term future: Strong intention to upgrade to ~100 event sensitivity

- No official Step 2 proposal yet (plan outlined in 2006 KOTO proposal)
- Scaling from original estimates: ~10 SM evts/yr per 100 kW beam power
- Exploring machine & detector upgrade possibilities to increase sensitivity
- Indicative timescale: data taking starting 2025?

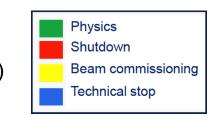
KLEVER: $K_L \rightarrow \pi^0 \nu \bar{\nu}$ at the SPS

Can a competitive measurement of BR($K_L \to \pi^0 \nu \bar{\nu}$) be made at the SPS?

NA62-16-03

Status report on design studies for an experiment to measure $BR(K_L \to \pi^0 \nu \bar{\nu})$ at the CERN SPS

A. Bradley, M.B. Brunetti, F. Bucci, A. Cassese, N. Doble, D. Di Filippo, E. Gamberini, L. Gatignon, A. Gianoli, E. Imbergamo, M. Lenti, S. Martellotti, A. Mazzolari, M. Moulson¹, I. Neri, F. Petrucci, P. Rubin, R. Volpe


April 27, 2016

Interesting features:

- High-energy experiment: Complementary approach to KOTO
- Photons from K_L decays boosted forward
 - Makes photon vetoing easier veto coverage only out to 100 mrad
- Possible to re-use LKr calorimeter, NA62 experimental infrastructure?

Fixed target runs at the SPS

- **Run 2 (2015-2018):** NA62 $K^+ \to \pi^+ \nu \bar{\nu}$ (talk by G. Ruggiero)
- Run 3 (2021-2024): NA62 exotics & LFV searches (talk by P. Petrov)
- Run 4 (starting 2026): KLEVER $K_L o \pi^0 v \bar{v}$ (this talk)

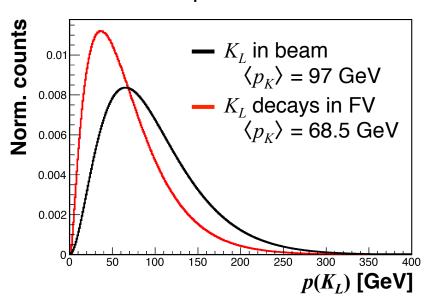
F. Bordry, presentation to HEPAP, Dec 2015

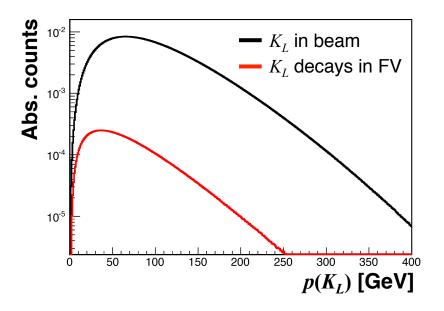
Required intensity for $K_L \rightarrow \pi^0 \nu \bar{\nu}$

Assumptions:

- BR($K_L \to \pi^0 \nu \bar{\nu}$) = 3.4 × 10⁻¹¹
- Acceptance for decays in FV ~ 10%

 $3 \times 10^{13} K_L$ decay in FV for 100 signal evts


Beam parameters:


- 400 GeV p on 400 mm Be target
- Production at **2.4 mrad** to optimize $(K_L \text{ in FV})/n$

 $2.8 \times 10^{-5} K_L$ in beam/pot

Fiducial volume acceptance ~ 2%

Required total proton flux = 5×10^{19} pot

10¹⁹ pot/year (= 100 eff. days) E.g.: 2 × 10¹³ ppp/16.8 s

Feasibility of intensity upgrade

- 2 × 10¹³ p/16.8 s = 6× increase in intensity relative to NA62 Tight neutral beam collimation Longer K_L lifetime $(\tau_L/\tau_+ \sim 5)$
- Max. intensity from SPS to North Area (TT20): 4×10^{13} ppp Must be divided among users: T2 + T4 + T6

2×10^{13} ppp not currently available on North Area targets

Target area and transfer lines would require upgrades

- Minimization of consequences of beam loss
- Additional shielding against continuous small losses
- Study issues of equipment survival, e.g., TAX motors
- Ventilation, zone segmentation, etc.

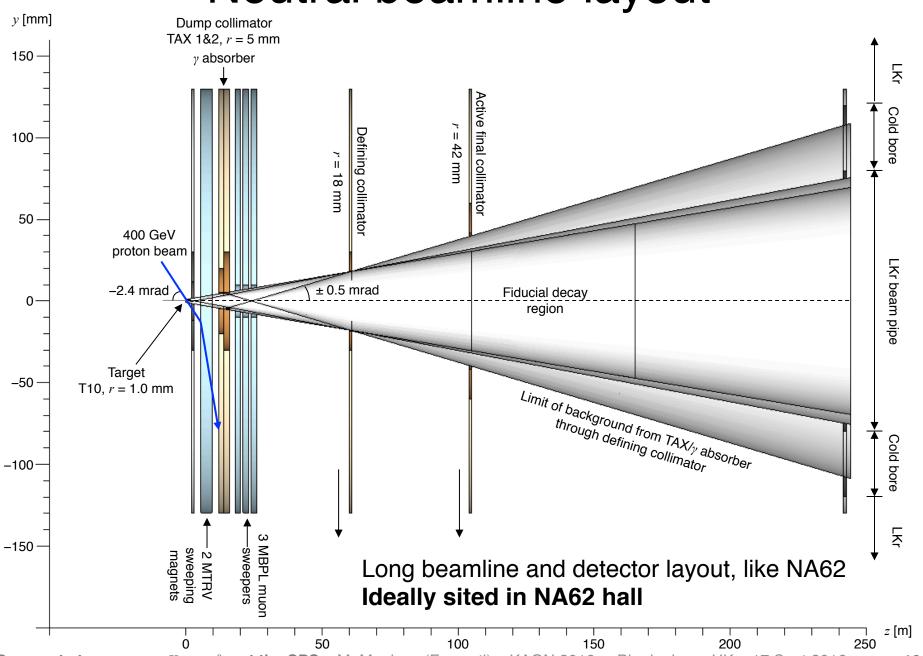
Detailed solutions & meaningful cost estimates will require serious study by the CERN Accelerator & Technology Sector

Participating in Physics Beyond Colliders process to better define available intensity & related issues

Neutral beamline layout

Beam acceptance

- $\Delta\theta \rightarrow 0.3 \text{ mrad} : \Delta\Omega \rightarrow 0.283 \text{ µsr}$
 - Just fits inside LKr central vacuum tube (r = 80 mm)

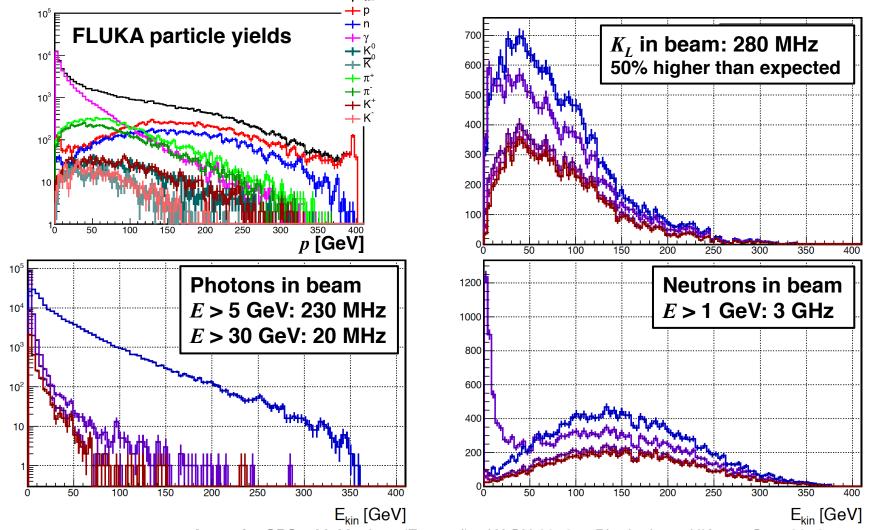

Collimators:

- **1. Dump collimator:** TAX1/2 (r = 5 mm) moved forward to z = 15 m
 - 2 vertical sweeping magnets upstream of TAX
 - 3 horizontal muon sweeping magnets downstream of TAX
- **2. Defining collimator:** r = 42 mm at z = 60 m
 - Keep background from TAX/converter within LKr bore (r < 120 mm)
- **3. Final collimator:** z = 105 m to remove upstream decay products
 - Regenerated K_S reduced to 10⁻⁴ between defining and final collimators
 - Final collimator is also an active detector to veto upstream decays

Photon converter between TAX1/2

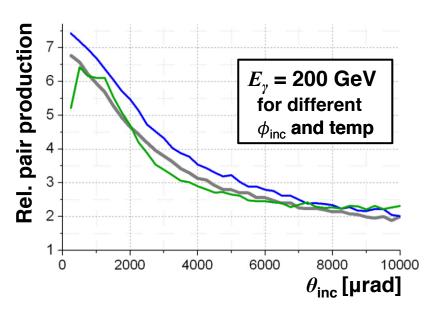
- Explore use of crystal converter to optimize K_L transmission
 - Pair production enhanced by coherent effects in crystals

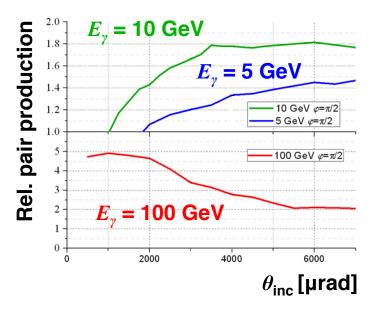
Neutral beamline layout



Beam simulation and flux estimates

FLUKA target simulation 400 GeV p + Be, 2.4 mrad Obtain p vs. θ distributions

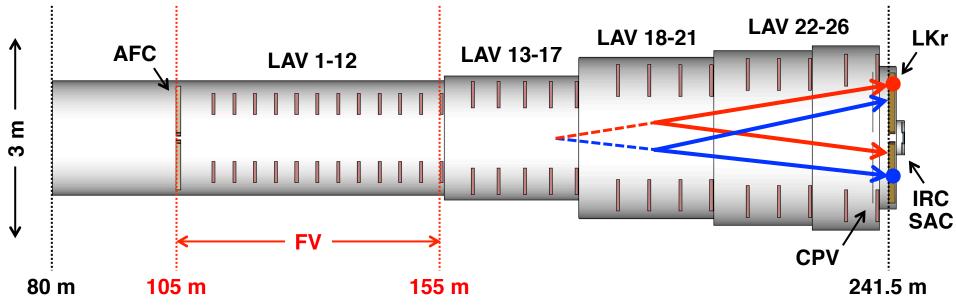



gen
After absorber
After dump collimator
After defining collimator
After final collimator

Efficient γ conversion with crystals

Coherent effects in crystals enhance pair-conversion probability

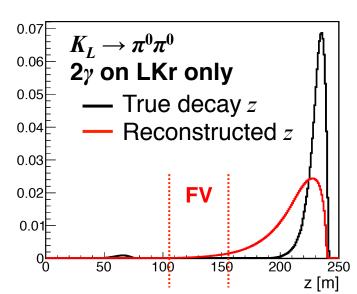
Use coherent effects to obtain a converter with large effective λ_{int}/X_0 :

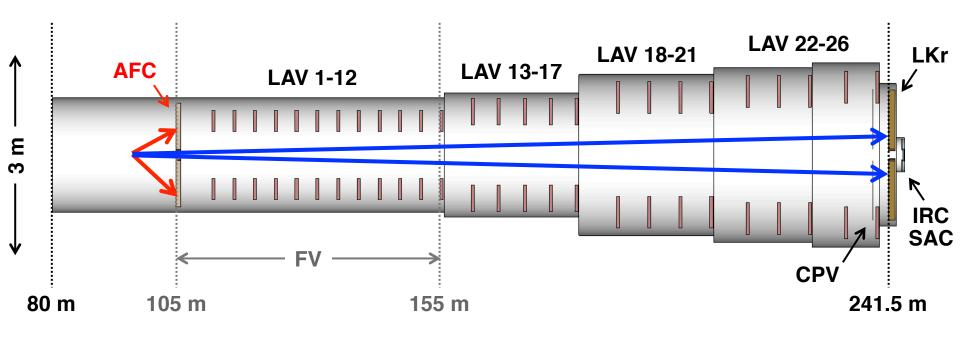

1. Beam photon converter in dump collimator

• Effective at converting beam γ s while relatively transparent to K_L

2. Absorber material for in-beam calorimeter (SAC)

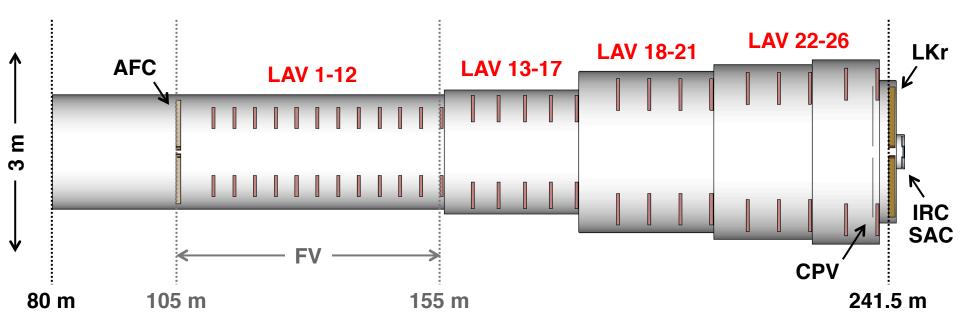
• Must be insensitive as possible to 3 GHz of beam neutrons while efficiently vetoing γ s from K_L decays

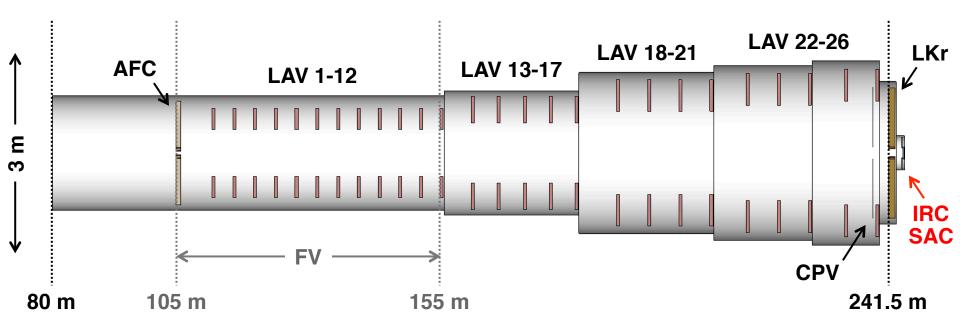

Work in progress in context of UA9 to introduce detailed simulation of coherent effects in crystals into Geant4



Vacuum tank layout and FV similar to NA62

90-m distance from FV to LKr significantly helps background rejection

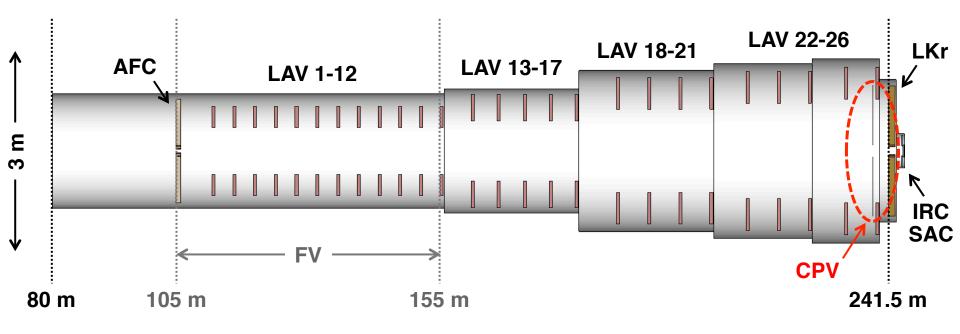

- Most $K_L \to \pi^0 \pi^0$ decays with lost photons occur just upstream of the LKr
- " π^0 s" from mispaired γ s are mainly reconstructed downstream of FV


Active final collimator (AFC) to veto upstream decays

- 25 m of vacuum upstream of final collimator No obstruction for γ s from decays with 80 m < z < 105 m
- Outer ring: Shashlyk calorimeter, Pb/scint in 1:5 ratio 10 cm < r < 1 m, 1/3 of total rate
- Inner ring: LYSO collar counter, 80 cm deep, shaped crystals
 4.2 cm < r < 10 cm, 2/3 of total rate

26 new large-angle photon veto stations (LAV)

- 5 sizes, sensitive radius 0.9 to 1.6 m, at intervals of 4 to 6 m
- Hermetic coverage out to 100 mrad for E_{γ} down to ~100 MeV
- Baseline technology: Lead/scintillator tile with WLS readout Based on design of CKM VVS
 Assumed efficiency based on E949 and CKM VVS experience


Small-angle photon veto systems (IRC, SAC)

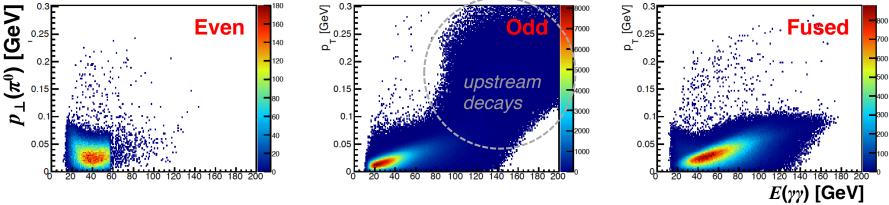
- Reject high-energy γ s from $K_L \to \pi^0 \pi^0$ escaping through beam hole
- Must be insensitive as possible to 3 GHz of beam neutrons

	Rate (MHz)	Req. 1 – ε
$\gamma, E > 5 \text{ GeV}$	230	10-2
γ , E > 30 GeV	20	10-4
n	3000	-

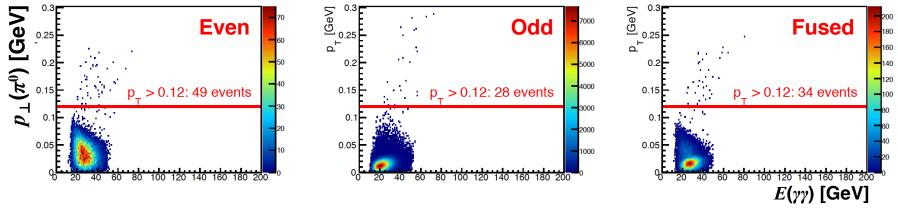
Baseline solution:

Tungsten/silicon-pad sampling calorimeter with crystal metal absorber

Charged particle rejection


- Charged particle vetoes (CPV): Scintillating tiles, just upstream of LKr
- Re-use NA62 hadronic calorimeters (MUV1/2, not shown)
 Ratio of hadronic/total energy effective to identify π showers
- **LKr shower profile:** Use cluster RMS to identify and reject π

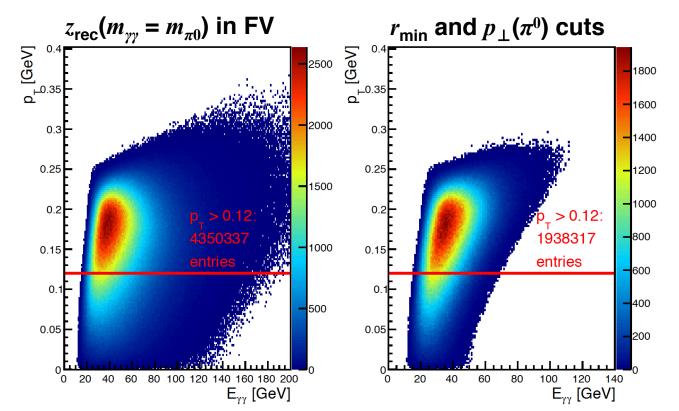
$K_L \rightarrow \pi^0 \pi^0$ rejection


 $K_L \rightarrow \pi^0 \pi^0$ simulated with fast MC (5 yr equivalent statistics)

- Accept only events with 2 γ s in LKr and no hits in AFC, LAV, IRC/SAC
- Distinguish between even/odd pairs and events with fused clusters

1. Require $z_{\text{rec}}(m_{yy} = m_{\pi 0})$ in fiducial volume (105 m < z < 155 m)

2. Require $r_{\rm min}$ > 35 cm on LKr and $p_{\perp}(\pi^0)$ > 0.12 GeV


22 $\pi^0 \pi^0$ **evts/year** About 50% with 1 γ with 100 < θ < 400 mrad, E < 50 MeV

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ acceptance

Cut stage	Cut eff.	Cuml. eff.
$K_L \rightarrow \pi^0 \nu \bar{\nu}$ evts with 2γ on LKr	2.0%	2.0%
$z_{ m rec}(m_{\gamma\gamma}=m_{\pi0})$ in FV	31%	0.62%
$r_{\rm min}$ > 35 cm on LKr	42%	0.26%
$p_{\perp}(\pi^0) > 0.12 \text{ GeV}$	78%	0.20%

Alternatively:

- 2.2% *K_L* decay in FV
- 27% $\pi^0 v \bar{v}$ with 2γ on LKr
- $\leftarrow \frac{\pi^0 \text{ in } \pi^0 v \overline{v} \text{ has large } E_{\text{kin}}}{V-A \text{ matrix element}}$

With:

- 10¹⁹ pot/year
- 2.8 × 10⁻⁵ K_L/pot
- BR = 3.4×10^{-11}
- $\varepsilon_{\text{total}}$ = 0.20%

19.4 $\pi^0 v \bar{v}$ evts/year

excluding transmission losses from γ converter

Prospects to measure $K_L \rightarrow \pi^0 vv$ at the SPS – M. Moulson (Frascati) – KAON 2016 – Birmingham, UK – 17 Sept 2016

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ sensitivity summary

Channel	Simulated statistics	Events found	Expected in 5 yrs*
$K_L ightarrow \pi^0 v \overline{v}$	100k yr	1.94M	97
$K_L\! o\pi^0\pi^0$	5 yr	111	111
$K_L ightarrow \pi^0 \pi^0 \pi^0$ All bkg evts from cluster fusion Upstream decays not yet included	1 yr	3	15
$m{K_L} \! o \! \gamma \gamma \ p_\perp$ cut very effective	3 yr	0	0
$K_L \rightarrow \text{charged}$	though	nt to be redu	cible

^{*}Must subtract 35% for K_L losses in dump γ converter

~ 60 SM $K_L \rightarrow \pi^0 v \bar{v}$ in 5 years with S/B ~ 1

Background study incomplete!

 π^0 from interactions of halo neutrons on residual gas, detector materials Radiative K_L decays, K_S /hyperon decays

Items requiring particular attention

Feasibility of obtaining required intensity

- Extent & costs of upgrades to beam transport from extraction point to T10 and to TCC8 cavern infrastructure
- Requires collaboration with ATS

Viability of concept for small-angle calorimeter

Realistic simulation of pair-creation enhancement in crystal absorber

Background rates from neutron halo and beam-gas interactions

Validation of LKr efficiency and two-cluster separation using NA62 data

Investigation of readout improvements to optimize LKr time resolution?

Add detail to simulation of beamline and detector

- Use this simulation to perform general survey of backgrounds
 - Radiative decays, K_s /hyperon decays

Possibility of adding charged-particle tracking to layout

- Final-state reconstruction for efficiency estimation & systematic control
- Possible expansion of physics program $(K_L \to \pi^0 \ell^+ \ell^-, LFV, etc.)$

Summary and outlook

Flavor will play an important role in identifying new physics, even if NP is found at the LHC

- $K \rightarrow \pi v \bar{v}$ is a uniquely sensitive indirect probe for high mass scales
- Need precision measurements of both K^+ and K_L decays

Preliminary design studies indicate that an experiment to measure $BR(K_L \to \pi^0 \nu \bar{\nu})$ can be performed at the SPS in Run 4 (2026-2029)

- Many issues still to be addressed!
- Expected sensitivity: ~ 60 SM events with S/B ~ 1
- Comparable in precision to KOTO Step 2, with complementary technique (high vs. low energy) and different systematics

$K_L \rightarrow \pi^0 v \bar{v}$ is a difficult measurement

2 efforts are justified to ensure precision measurement of the BR!

The NA62-KLEVER Project was recently presented at the CERN Physics Beyond Colliders workshop

 Our participation will help us to better define expectations in terms of available intensity and siting as we move towards an official proposal

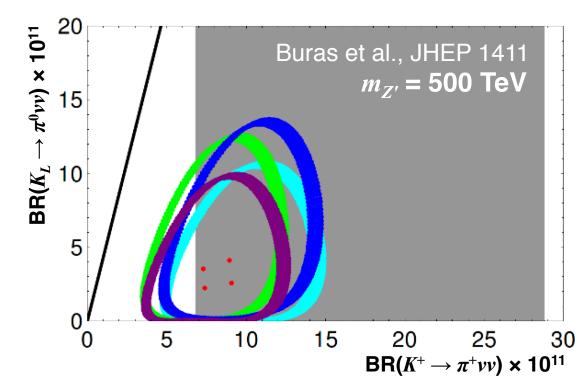
Additional information

$K \rightarrow \pi \nu \bar{\nu}$ and new physics

General agreement of flavor observables with SM → invocation of MFV

Long before recent flavor results from LHC

But NP may simply occur at a higher mass scale

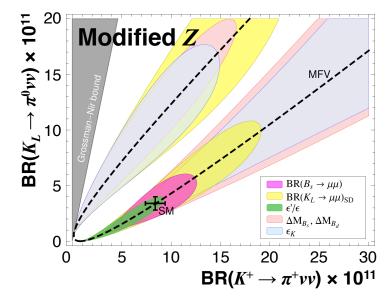

Null results from direct searches at LHC so far

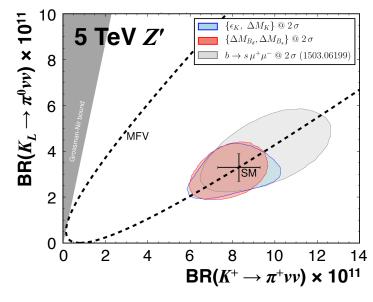
Indirect probes to explore high mass scales become very interesting!

$K \to \pi \nu \bar{\nu}$ is uniquely sensitive to high mass scales

Tree-level flavor changing Z' LH+RH couplings

- Some fine-tuning around constraint from ε_{κ}
- $K \rightarrow \pi v \bar{v}$ sensitive to mass scales up to 2000 TeV
 - Up to tens of TeV even if LH couplings only
- Order of magnitude higher than for B decays

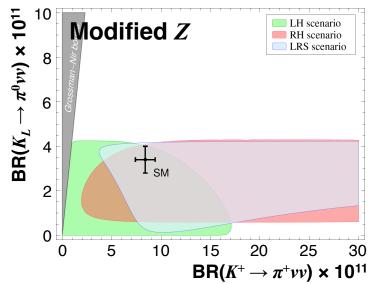

$K \rightarrow \pi \nu \bar{\nu}$ and other flavor observables

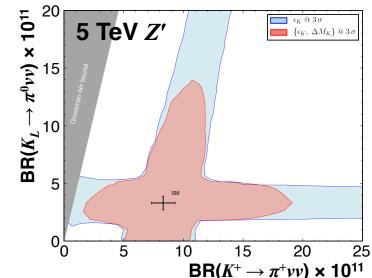

Simplified Z, Z' model used as paradigm

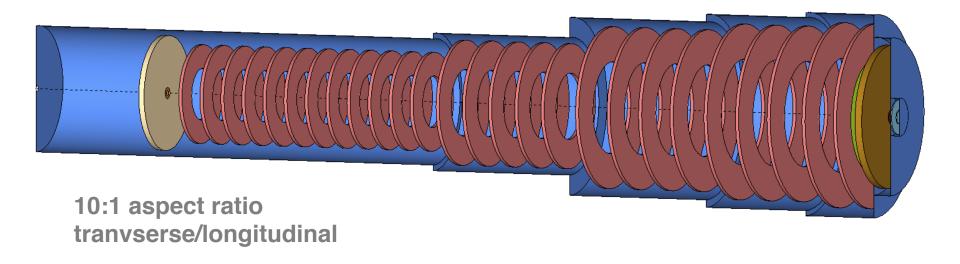
Buras, Buttazzo, Knegjens, JHEP 1511

CMFV hypothesis:

Constraints from B and K observables

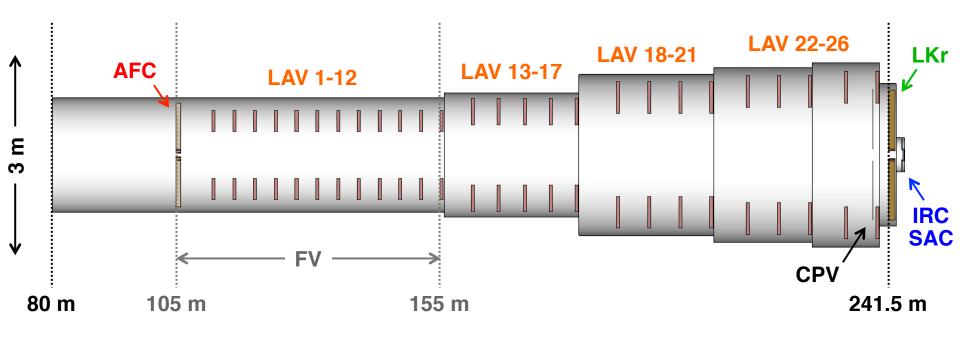





LH and RH couplings allowed:

Constraints from K observables:

- ε_K , ΔM_K
- ε'/ε , $K \to \mu\mu$ (for modfied Z)



Roughly same vacuum tank layout and fiducial volume as NA62

- Upstream edge of vacuum tank 25 m in front of AFC
- FV starts ~105 m downstream of target decay away Λ , K_S
- About 2.2% of K_L in beam decay in FV

Possible to re-use NA48 LKr calorimeter (?)

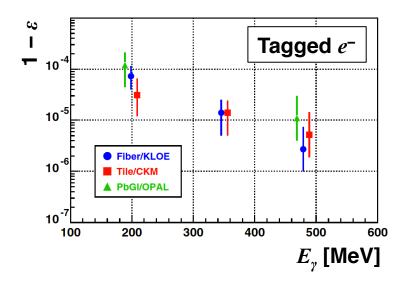
26 new large-angle photon veto stations (LAV), coverage to 100 mrad New small-angle photon veto detectors (IRC/SAC)

Assumed 1 – ε for indicative values of E_{γ}

AFC		LAV		LKr		SAC	
Required pe	erformance	From E949	, CKM VVS	Standard N	A62 values	Required pe	rformance
< 50 MeV	1	< 20 MeV	0.2%	< 1 GeV	1	> 5 GeV	10-2
> 1 GeV	10 ⁻⁴ (in)	200 MeV	3×10^{-5}	1 GeV	0.1%	> 30 GeV	10-4
> 1 GeV	10 ⁻⁵ (out)	> 2.5 GeV	2.5×10^{-6}	> 15 GeV	4×10^{-6}		

Large-angle vetoes

26 new LAV detectors providing hermetic coverage out to 100 mrad Need good detection efficiency at low energy (1 – ε ~ 0.5% at 20 MeV)


Baseline technology: CKM VVS
Scintillating tile with WLS readout

Good efficiency assumptions based on E949 and CKM VVS experience

E949 barrel veto efficienciesSame construction as CKM

Tests for NA62 at Frascati BTF

Parameterization:

10

1-129 MeV: KOPIO (E949 barrel)

OPIO Total Ineff

KOPIO Photonuclear KOPIO Sampling KOPIO Punchthrough

203-483 MeV: CKM VVS

Tests at JLAB for CKM:

• $1 - \varepsilon \sim 3 \times 10^{-6}$ at 1200 MeV

 E_{ν} [MeV]

Suitability of LKr calorimeter

Efficiency

- Same efficiency estimates as in NA62
- Slightly better efficiency for $E_{\gamma} > 15 \text{ GeV}$
- Need to be proven with NA62 data

]	LKr
Energy (GeV)	1 – ε
< 1	1
$1 \rightarrow 5.5$	$10^{-3} \rightarrow 10^{-4}$
$5.5 \rightarrow 7.5$	$10^{-4} \rightarrow 5 \times 10^{-5}$
$7.5 \rightarrow 10$	$5 \times 10^{-5} \rightarrow 10^{-5}$
$10 \rightarrow 15$	8×10^{-6}
> 15	4×10^{-6}

Two-cluster separation

- Clusters resolved if d > 6 cm in simulation
- Simplistic approach to take into account cluster-profile analysis

Time resolution

- Signal candidates all have $E_{\gamma\gamma} > 20$ GeV $\sigma_t = 2.5 \text{ ns/}\sqrt{E} \text{ (GeV)} \rightarrow 500 \text{ ps or better}$
- Needs improvement SAC may have O(100 MHz) accidental rate
- Possible to improve using new readout system?

Small-angle vetoes

Proof-of-concept simulation for baseline solution:

- W-Si pad calorimeter, 14 layers \times 1 mm crystal absorber, $\theta_{\rm inc}$ = 2 mrad
 - Depth = $14X_0$ for $E_v = 30$ GeV, but only $4X_0$ for $E_v = 5$ GeV
- Naïve simulation of pair-conversion enhancement with Geant4:
 - Increase overall density as function of E_{γ} , instead of X_0

Photons		
E_{γ} (GeV)	$ ho/ ho_0$	1 – ε
350 GeV	3.5	5 × 10 ⁻⁵
30 GeV	3.5	1 × 10 ⁻⁴
10 GeV	1.5	4.5%
5 GeV	1.0	20%

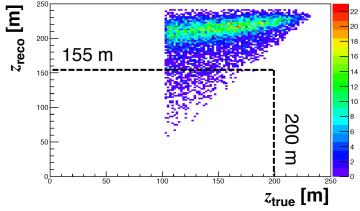
Neutrons

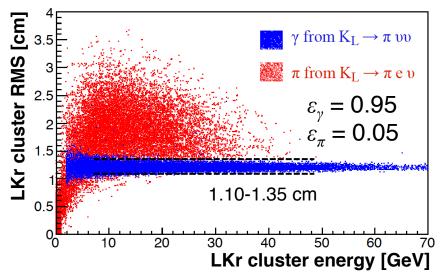
50-300	Gev	

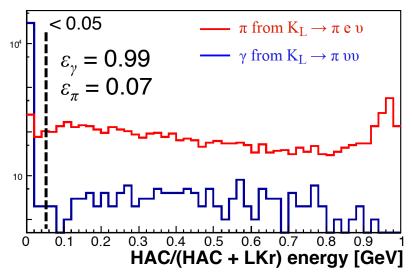
 $1 - \varepsilon = 20\%$

- E_{vis} thr. = 16 MeV chosen for E_{ν} = 30 GeV
- Inefficiency at small E_{γ} from punch through
- · Need better treatment of coherent effects
- Need additional handles for γ/n separation

Work in progress:


- Better simulation with X_0 for photons a function of E_{γ} and θ_{γ}
 - Benefit from effort by UA9 collaborators to introduce into Geant4 detailed simulation of coherent effects in crystals
- Optimize segmentation to obtain additional γ/n separation
 - Use backstop layer with different longitudinal segmentation to identify n


Charged particle rejection


 K_{e3} most dangerous mode: e easy to mistake for γ in LKr Acceptance $\pi^0 vv/K_{e3} = 30 \rightarrow \text{Need } 10^{-9} \text{ suppression!}$

Item	Rej. factor
Charged particle veto planes: 5 mm scintillator tiles	0.005/track 2 planes
Cluster RMS Or other LKr shower profile cuts	0.05
HAC/LKr energy ratio Re-use MUV1/2 from NA62	0.07

All πe from K_{e3} reconstructed as π^0 have $z_{\rm true}$ < 200 m

