Prospects for exostics and LFV at NA62

Plamen Petrov Université catholique de Louvain, Belgium

on behalf of NA62

KAON 2016, Birmingham, 14-17 September 2016

Introduction

- NA62 is approved to run until LS2
- Main goal: $BR(K^+ \to \pi^+ \nu \bar{\nu})$ with 10% accuracy

This talk:

■ Broader physics program until LS2 (Run 2): LNV / LFV modes, heavy neutrinos, π^0

rare decays, ...

■ Broader physics program beyond LS2 (Run 3): LNV / LFV modes, heavy neutrinos, π^0 rare decays, hidden sector particles searches in kaon decays

NA62 experiment: $K \rightarrow \pi \nu \nabla$ decays

- FCNC processes dominated by Z-penguin and box amplitudes, theoretically clean, sensitive to various NP models (see talk by G.Rugguero, this conference)
- **SM prediction:** Buras et al., JHEP 11 (2015) 033

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (8.39 \pm 0.30) \cdot 10^{-11} \left(\frac{|V_{cb}|}{0.0407} \right)^{2.8} \left(\frac{\gamma}{73.2^{\circ}} \right)^{0.74} = (8.4 \pm 1.0) \cdot 10^{-11}$$

Experimental status:

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$$

Stopped K^+ , 7 events observed E787/E949, PRL 101 (2008) 191802

■ NA62 goal: BR($K^+ \rightarrow \pi^+ vv$ -bar) with O(10%) total uncertainty (~10¹³ K^+ in 2 yrs)

NA62 detector and beam line

- NA62 is designed to collect **100** $K^{\dagger} \rightarrow \Pi^{\dagger} vv$ events with **only 10 bkg**.
- ~10¹³K⁺ decays in the fiducial volume would be needed.
- This high-intensity and highperformance setup make NA62 perfectly suited for other NP searches in kaon decays!
- Trigger bandwidth is limited! The trigger strategy for exotic processes is critical!
- The detector and beam line are fully commissioned and performing as expected (see G. Ruggiero talk).

LAV

RICH

MUV

	NA48/2	NA62-RK	NA62	
Data taking	2003-4	2007-8	2014-18	
Primary intensity (ppp)	7×10^{11}	7×10^{11}	3 × 10 ¹²	
Solid angle (µsr)	~0.4	~0.4	~12.7	
Beam momentum (GeV)	60	74	75	
RMS momentum bite (GeV)	2.2	1.4	0.8	
Spectrometer thickness, X_0	2.8%	2.8%	1.8%	
Spectrometer P _T kick, MeV	120	265	270	
$M(K \rightarrow \pi^+\pi^+\pi^-)$ resolution, MeV	1.7	1.2	0.8	
K decays in fiducial region	2 × 10 ¹¹	2×10^{10}	1.2 × 10 ¹³	

Prospects for NP searches by 2018

- Trigger bandwidth for final states other than Π^+ + E_{miss} is limited to a **few 100 KHz**
- **LFV/LNV studies** that involve **low-bandwidth triggers for 3-track states** easy to include:

$$K^+ \rightarrow \Pi^+ \mu^{\pm} e^{\mp}, K^+ \rightarrow \Pi^- \mu^+ e^+, K^+ \rightarrow \Pi^- e^+ e^+, K^+ \rightarrow \Pi^- \mu^+ \mu^+$$

Possible to do some other studies in parasitic mode with the main trigger:

```
HNL in K^{+} \rightarrow \mu^{+} N, K^{+} \rightarrow e^{+} N
Rare \pi^{0} decays (Dark photon searches,...)
```

- L0 of the NA62 trigger system is implemented in hardware, based on FPGA technology Multiple track trigger can be set based on RICH PMTs multiplicity and CHOD quadrants Dielectron trigger: multiple track + more than 10GeV in the LKr Dimuon trigger: multiple track + signals in two MUV3 tiles LFV (muon-electron) trigger: multiple track + more than 10GeV in the LKr + one MUV3 tile
- Validation of the trigger rates and efficiencies with data is currently underway

NP searches in K⁺→πµµ decays

Search for Majorana neutrinos in LNV K⁺→π⁻μ⁺μ⁺ decays

Asaka-Shaposhnikov model (vMSM) [PLB 620 (2005) 17]

Dark Matter + Baryon Asymmetry (BAU) + low mass of SM v can be explained by adding three sterile Majorana neutrinos to the SM

Current limits set by NA48/2 (see talk by M. Piccini talk at this conference; paper in prep.)

BR($K^{\pm} \to \pi^{\mp} \mu^{\pm} \mu^{\pm}$) < 8.6 x 10⁻¹¹ @ 90% CL [World Best Limit]

Same-sign muons sample (decay chain $K^+ \rightarrow \mu^+ N$, $N \rightarrow \pi^- \mu^+$) Limit set at ~10⁻¹⁰ (90% CL) NA48/2

Search for resonances (N, X, etc.) in the opposite-sign muons sample Shaposhnikov-Tkachev model [PLB 639 (2006) 414] vMSM + real scalar field (inflaton X) with scale invariant couplings Explains universe homogenity and isotropy on large scales/structures on smaller scales Current limits:

Heavy neutrinos peak search in $K^+ \rightarrow \mu^+ (\pi^+ \mu^-)$ Inflatons peak peak search in $K^+ \rightarrow \pi^+ (\mu^- \mu^+)$ Limits set at ~10⁻⁹ (90% CL) NA48/2

Dedicated K⁺→πµµ trigger at NA62

- First look at the 2016 data: ~60K bursts taken at 18% intensity
- Dedicated trigger for three track di-muon events which runs in parallel with the main trigger
- The mass resolution at NA62 is better by a factor ~2 as compared to NA48/2
- NA62 can potentially improve by two orders of magnitude the NA48/2 results

Other LFV/LNV processes

Mode	UL at 90% CL	Experiment	Reference
$K^+ ightarrow \pi^+ \mu^+ e^-$	1.3×10^{-11}	BNL E777/E865	PRD 72 (2005) 012005
$K^+ o \pi^+ \mu^- e^+$	$5.2 imes10^{-10}$		
$K^+ ightarrow \pi^- \mu^+ e^+$	$5.0 imes10^{-10}$	BNL E865	PRL 85 (2000) 2877
$K^+ ightarrow \pi^- e^+ e^+$	$6.4 imes 10^{-10}$		

Recently observed deviations form SM in semileptonic B-meson decays hint at NP (consistent with MFV) that could produce LFV in K⁺ decays talk by L.Tunstall at this conference

The parameter space relevant for the explanation of the B-meson anomalies lies within the sensitivities of the NA62 experiment. Expected sensitivity ~10⁻¹²) (with a dedicated trigger) [hep-ph/1601.00970]

Heavy neutral leptons in K⁺ → I⁺N

- Can also search for HNL in $K^+ \rightarrow l^+ N$ where N does not decay inside the detector fiducial volume
- **■** $K^{+} \rightarrow l^{+}N$ events would appear as peaks in the $K^{+} \rightarrow l^{+}v$ squared missing mass distribution
- Searches are model independent

Analysis underway with NA62 data from 2015.

Heavy neutral leptons in K⁺→l⁺N

- Current experimental status: most stringent constraints from kaon measurements
- Expected SES with 2015 NA62 data at the level of 10^{-8} (similar for K→eN and K→µN)

п° decays

- With $BR(K^+ \rightarrow \pi^+ \pi^0) = 20\%$ NA62 is also a π^0 factory
- Search for **Dark photon** via the prompt decay chain π^0 -> $\gamma A'$, $A' \rightarrow e^+ e^-$
- Limited by irreducible Π^0_{D} -> $\gamma e^+ e^-$ background (BR=1.2%)
- Upper limit on ε^2 scales as $\sim (1/N)^{1/2}$
- Modest improvement over the NA48/2 result expected with larger sample at NA62.
- Difficult to set a **ee-trigger** without any downscaling.
- Long lived A' search in "beam-dump" mode (see next slides)
- Search for **n⁰->vv** decay (BR<1.6x10⁻⁶ @ 90% CL; LSND exp.)
- Sensitive to the neutrino mass. LFV NP modes such as Π^0 -> V_1V_2
- Fully included in the main trigger for **K->πνν**

NA62 after the LS2 (Run 3)

- Assuming the main goal is fulfilled, a broad physics program ahead of NA62 in Run 3
- With **minimal/no upgrades** of the present K⁺ beam and detector setup:

```
LFV/LNV high-sensitivity studies: K^+ \rightarrow \pi^+ \mu^+ e, K^+ \rightarrow \pi^- \mu^+ e^+, K^+ \rightarrow \pi^- e^+ e^+, K^+ \rightarrow \pi^- \mu^+ \mu^+ ultra-rare/forbidden \pi^0 decays: \mu e, 3\gamma, 4\gamma, ee, eeee
```

■ Year-long run in "beam-dump" mode: searches for MeV-GeV mass hidden-sector candidates (Dark Photons, Heavy neutral leptons, Axion like particles, etc.)

Run 3

Accelerator schedule	2015 2016 2017 2018	2019 2020	2021 2022 2023	2024 2025 2026	2027
LHC	Run 2	LS2	Run 3	LS3	Run 4
SPS				NA stop SPS stop	

Hidden sector at NA62

- If DM is a thermal relic from the early universe, can search for non-gravitational DM-SM interactions in particle physics experiments
- A mediator might exist which let DM and SM fields interact: vector (Dark Photon A'), neutrino (HNL N), axial (ALP a), etc.
- Experimental hints for hidden sector at MeV-GeV masses: e.g. *g-2* 3.5σ discrepancy could be resolved by e.g. light-by-light ALP loop effects [Marciano, et al. arXiv:1607.01022] or Dark Photons [B. Holdom Phys.Lett. B166 (1986) 196]
- Feeble interactions. Long lived states with ultra suppressed production rate
- Each portal can involve different interactions. Model dependence.

Hidden sector at NA62

- Proposal: run in "beam-dump" mode with one of the beam defining collimators (TAX) closed
- Production in the TAXe.g ALPs coupled to two photons

Production in decays of various mesons coming from the target 400 GeV incident proton beam 10¹⁸ POT/nominal year

RICH

MUV

 $\rightarrow 10^{15} \text{ D(S)}, 10^{14} \text{ K}, 10^{18} \, \text{m}^{0}/\text{\eta}/\text{\eta}'/\Phi/\rho/\omega \text{ with ratios } 6.4/0.68/0.07/0.03/0.94/0.95$

Large-angle photon vetoes RICH μ/π ID μ veto 1 atm Ne **OPAL** lead alass Fe/scint Charged Differential veto Cerenkov for K+ ID in beam veto TAX: ~11λ Cu-based Beam trackina veto Si pixels, 3 stations Preferred over **Be** target STRAW Dipole spectrometer Forward because of higher **Z** 4 straw-tracker stations veto 100 50 150 200 250 m

Search for visible decays of long-lived A'

- Search for displaced dilepton decays of dark photons, A'→ee, μμ
- Expected 90% CL plot evaluation: assuming 2x10¹⁸ 400 GeV POT; zero background; trigger, acceptance and selection efficiency

Sensitivity expected to be even higher: including direct QCD production of A'; production in the TAX (only target considered here)

Search for visible decays of HNL

- Search for displaced decays of HNL→πe, πμ
- Expected 90% CL plot evaluation: assuming 2x10¹⁸ 400 GeV POT; zero background; trigger, acceptance and selection efficiency

Sensitivity expected to be even higher: including other semileptonic and hadronic modes

Search for visible decays of ALPs

- Search for decays of ALP→γγ in the NA62 fiducial volume
- Expected 90% CL plot evaluation: assuming 1.3x10¹⁶ (3.9x10¹⁷) 400 GeV POT corresponding to 1 day (1 month) runs; zero background; geometrical acceptance;

Test of the zero background assumption

- Sensitivity projections based on the assumption of zero background
- Study one of the most important sources of background at NA62 using data: beam halo muons from upstream K, π decays expecting ~3 MHz μ⁺ and ~150 KHz μ⁻ in the detector acceptance Talk by T. Spadaro, Physics beyond colliders workshop @ CERN (7 Sep 2016)
- Test background rejection capability with current data searching for A'→μμ background from combinatorial pairing of halo μ's
- Data collected triggering on 2 muons in MUV3 (within 10ns) & LKr energy < 20 GeV</p>
 The trigger efficiency is included in the sensitivity projections shown previously

Test of the zero background assumption

Event selection: track quality + acceptance cuts

two track vertex: cda < 1 cm position 105 < Z < 165 m

Stat. corresponds to ~10¹⁵ POT

- Event-level veto conditions: energy in LKr <2 GeV veto on forward/large angle calorimeters veto on charged anti-counter
- **Total momentum stems from target**

Z of closest approach of Ptot to beam line (m)

No events selected in the signal region!

Conclusions

- There are planned and current searches for exotic processes at NA62:
 - K⁺ decays: LNV/LFV modes, HNL production searches (already under analysis with 2015 data) π⁰ decays: rare and forbidden LFV, dark photon production
- Assuming fulfillment of main goal, BR(K⁺→π⁺vv-bar) at 10% precision, broad physics program at NA62 after LS2 (to start in 2021)
- Current beam and detector setup: LFV/LNV/forbidden π⁰/K⁺ decays for SES ~10⁻¹²
- Year-long data-taking in "beam-dump" mode. Sensitivity to various NP models: Dark photons, Axions, Heavy neutral leptons, etc.
- Background rejection power studied for the searches proposed, up to $\sim 10^{15}$ POTs
- The current NA62 run will be exploited to: evaluate the background rejection up to ~10¹⁸ POTs; understand if the current apparatus needs any optimisations or modifications for a future "beam-dump" operation

Stay tuned!