Recent results on exclusive hadronic cross sections measurements at *BABAR* KAON16 conference, Birmingham

Roger Barlow (on behalf of the BABAR collaboration)

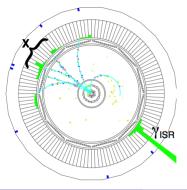
The University of Huddersfield

17th September 2016

BABAR and PEP-II

More than just a B factory

 $0.5 \ {\rm ab}^{-1}$ of data over ~ 10 years B mesons primary goal - but also produce charm and τ $(\sigma_{B\overline{B}} = 1.05, \sigma_{\tau^+\tau^-} = 0.92, \sigma_{c\overline{c}} = 1.35 nb)$ many BABAR τ and charm publications. Also does interesting light quark physics e^+e^- annihilation down to threshold Electromagnetic Calorimeter 6580 CsI crystals e+ ID, nº and y reco Instrumented Flux Return layers of RPCs (LSTs) ut and K, ID **Cherenkov Detector** (DIRC) 144 quartz bars 13.1 GeV1 K. # separation Drift Chamber 40 lavers Tracking + dE/dx e [9 GeV] Silicon Vertex Tracker 5 lavers of double sided silicon strips


Detector features

- Csl(Tl) crystal ECAL Great EM energy resolution: γ energy well measured Good $\pi^0 \& \eta$ reconstruction
- Superb K/π separation
- Vertexing

PEP-II as a low energy e^+e^- collider

Photon emitted from electron or positron as Initial State Radiation (ISR)

$$s' = s(1 - 2E_{\gamma}/\sqrt{s})$$

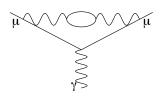
e

 s^\prime measured event by event - need unfolding

X is boosted - good detection even at threshold

Rates are low - but we have huge data samples

FSR small. Interference vanishes for charge symmetric detector


Roger Barlow (Huddersfield)

Exclusive hadronic cross sections at BaBar

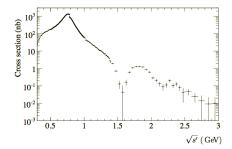
Why? Here's one reason

Muon $a_{\mu} = \frac{g-2}{2}$ measured as (11 659 209.1 ± 5.4 ± 3.3) × 10⁻¹⁰ Calculated (11 659 180.4 ± 5.1) × 10⁻¹⁰

3.4 Standard deviations! Is this the end for the standard model?

Corrections from QED (calculable), EW (small and calculable) and strong.

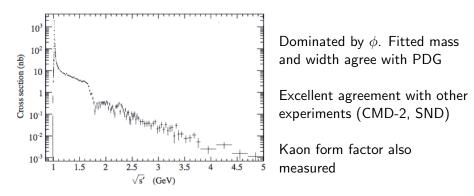
Hadronic correction to virtual photon propagator needs experimental input


 $\gamma^* \to q\overline{q} \to \gamma^*$ - or, equivalently, $\gamma^* \to \mathit{hadrons} \to \gamma^*$

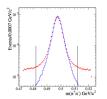
Linked to $\sigma(e^+e^- \rightarrow \gamma^* \rightarrow hadrons)$ by the optical theorem. Need to know $R = \sigma(hadrons)/\sigma(\mu^+\mu^-)$. Behaviour below 2 GeV most important Roger Barlow (Huddersfield) Exclusive hadronic cross sections at BaBar 17th September 2016 4 / 11

$$\pi^+\pi^-$$

Phys. Rev. Lett. 103, 231801 (2009); Phys. Rev. D 86, 032013 (2012).


Data driven techniques - uncertainties below 1% Effective luminosity from $\mu\mu\gamma$ events 2nd photon allowed - visible or along beam pipe. Particle identification using DIRC etc, also kinematic fit Efficiencies from MC corrected by data using control channels

Cross section as a function of energy


Pion contribution to vacuum polarisation (from threshold up to 1.8 GeV): $(514.1 \pm 2.2 \pm 3.1) \times 10^{-10}$

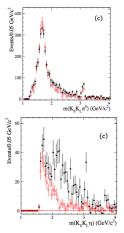
K⁺*K*⁻ PRD **88** 032013 (2013)

 K^+K^- contribution to vacuum polarisation : $(22.93 \pm 0.18 \pm 0.22 \pm 0.03) \times 10^{-10}$ (3rd error from ϕ parametrisation)

$K_S^0 K_L^0, K_S^0 K_L^0 \pi^+ \pi^-, K_S^0 K_S^0 \pi^+ \pi^-, K_S^0 K_S^0 K^+ K^-$ Phys. Rev. D. **89**, 092002 (2014)

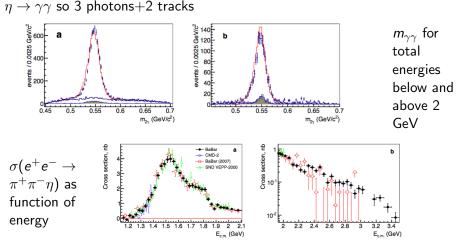
 \mathcal{K}_{S}^{0} from $\pi^{+}\pi^{-}$ decays: pairs of tracks forming distinct vertex. Easy. \mathcal{K}_{L}^{0} harder. Cluster in EM calorimeter, similar to photon cluster. Efficiency studies from $\phi \to \mathcal{K}_{S}^{0}\mathcal{K}_{L}^{0}$ decays.

 $K_S^0 K_L^0$ dominated by ϕ , like $K^+ K^-$. Fitted values agree with PDG. Also appearance of $\phi'(1680)$ - different behaviour from $K^+ K^-$



First measurements of $e^+e^- \rightarrow K^0_S K^0_L \pi^+\pi^-$, $K^0_S K^0_S \pi^+\pi^-$ and $K^0_S K^0_S K^+ K^ K^0_S K^0_L \pi^+\pi^-$ dominated by K^* production, some $\phi \pi \pi$

 $K^0_S K^0_L \pi^0, K^0_S K^0_L \eta, K^0_S K^0_L \pi^0 \pi^0$ ICHEP 2016

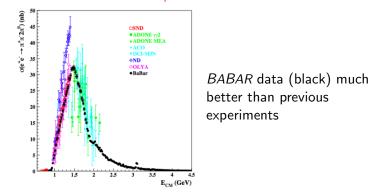

Mass of $K_S^0 K_L^0 \pi^0$ system, dominated by $KK^*(892)$ (red circles). $\phi \pi^0$ small. J/ψ appears

Mass of $K_S^0 K_L^0 \eta$ system, dominated by ϕ (red circles). Again, J/ψ appears

Measurement of $K_S^0 K_L^0 \pi^0 \pi^0$ gives total a_μ contribution of $KK\pi\pi$ as $(0.85 \pm 0.05) \times 10^{-10}$ - previously $(1.35 \pm 0.39) \times 10^{-10}$. Order of magnitude improvement as no reliance on isospin relations.

$\pi^+\pi^-\eta$ ICHEP 2016

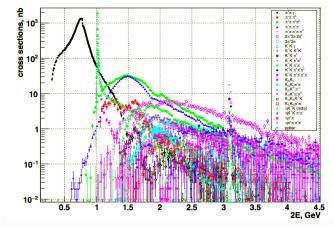
Well described by models including $\rho(770)$, $\rho(1450)$ and $\rho(1700)$ Small peak at 3.1 GeV - measure $BR(J/\psi \rightarrow \pi^+\pi^-\eta) = (0.042 \pm 0.008)\%$


Roger Barlow (Huddersfield)

Exclusive hadronic cross sections at BaBar

17th September 2016 9 / 11

$$e^+e^-
ightarrow \pi^+\pi^-\pi^0\pi^0$$
ichep 2016


Use full 431 fb⁻¹ sample of e^+e^- collisions 150,000 signal events selected Was big contribution to a_{μ} theory uncertainty

Contribution to a_{μ} $(18.1\pm0.1\pm0.6) imes10^{-10}$ in range 0.85 to 1.8 GeV

Conclusions

BABAR using the ISR technique can do precision studies of low energy e^+e^- annihilation

If the g - 2 anomaly persists, it can't be explained by uncertainties in the hadronic vacuum polarsation

Roger Barlow (Huddersfield)

Exclusive hadronic cross sections at BaBar